Effect of Passive Solar Drying on the Quality Characteristics of Apricots
Abstract
1. Introduction

2. Materials and Methods
2.1. Materials
2.2. Process of Passive Solar Drying and Freeze-Drying of Apricots
2.3. Water Content Testing
2.4. Color Measurement and Analysis
2.5. Vitamin C, Phenolic Compounds, and Dissolved Solids Contents Testing
2.6. Fourier Transform Infrared (FTIR) Spectroscopic Analysis
2.7. Microstructure Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Simulation of Malatya Climate
3.2. Water Content Post Drying
3.3. Color Post Drying
3.4. Vitamin C, Phenolic Compounds, and Dissolved Solids Contents Post-Drying
3.5. Microstructure Post Drying
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wani, A.A.; Zargar, S.A.; Malik, A.H.; Kashtwari, M.; Nazir, M.; Khuroo, A.A.; Ahmad, F.; Dar, T.A. Assessment of variability in morphological characters of apricot germplasm of Kashmir, India. Sci. Hortic. 2017, 225, 630–637. [Google Scholar] [CrossRef]
- Akhone, M.A.; Bains, A.; Tosif, M.M.; Chawla, P.; Fogarasi, M.; Fogarasi, S. Apricot Kernel: Bioactivity, Characterization, Applications, and Health Attributes. Foods 2022, 11, 2184. [Google Scholar] [CrossRef]
- Karatas, N. Evaluation of Nutritional Content in Wild Apricot Fruits for Sustainable Apricot Production. Sustainability 2022, 14, 1063. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, J.; Pu, X.; Shi, X.; Cheng, W.; Wang, B. Volatile Compounds Analysis and Biomarkers Identification of Four Native Apricot (Prunus armeniaca L.) Cultivars Grown in Xinjiang Region of China. Foods 2022, 11, 2297. [Google Scholar] [CrossRef] [PubMed]
- Kafkaletou, M.; Velliou, A.; Christopoulos, M.; Ouzounidou, G.; Tsantili, E. Impact of Cold Storage Temperature and Shelf Life on Ripening Physiology, Quality Attributes, and Nutritional Value in Apricots—Implication of Cultivar. Plants 2023, 12, 2875. [Google Scholar] [CrossRef]
- Yang, Q.; Hu, C.; Li, J.; Xiao, H.; Jia, W.; Wang, X.; Liu, X.; Tang, Z.; Chen, B.; Yi, X.; et al. Effects of Different Natural Drying Methods on Drying Characteristics and Quality of Diaogan apricots. Agriculture 2024, 14, 660. [Google Scholar] [CrossRef]
- Poyraz, S.; Gul, M. The Development of Apricot Prodcution and Foreign Trade in the World and in Turkey. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2022, 22, 601–616. [Google Scholar]
- Al-Soufi, M.H.; Alshwyeh, H.A.; Alqahtani, H.; Al-Zuwaid, S.K.; Al-Ahmed, F.O.; Al-Abdulaziz, F.T.; Raed, D.; Hellal, K.; Mohd Nani, N.H.; Zubaidi, S.N.; et al. A Review with Updated Perspectives on Nutritional and Therapeutic Benefits of Apricot and the Industrial Application of Its Underutilized Parts. Molecules 2022, 27, 5016. [Google Scholar] [CrossRef]
- Climate Data. Available online: https://en.climate-data.org/asia/turkey/malatya/malatya-281/ (accessed on 11 October 2025).
- Uzundumlu, A.; Karabacak, T.; Ali, A. Apricot Production Forecast of the Leading Countries in The Period of 2018–2025. Emir. J. Food Agric. 2021, 33, 682–690. [Google Scholar] [CrossRef]
- Abdulvahitoglu, A.; Abdulvahitoglu, A.; Cengiz, N. A Comprehensive Analysis of Apricot Drying Methods via Multi-Criteria Decision Making Techniques. J. Food Process Eng. 2024, 47, e14759. [Google Scholar] [CrossRef]
- Zengin, R.; Uğur, Y.; Levent, Y.; Erdoğan, S.; Hatterman-Valenti, H.; Kaya, O. Sun-Drying and Melatonin Treatment Effects on Apricot Color, Phytochemical, and Antioxidant Properties. Appl. Sci. 2025, 15, 508. [Google Scholar] [CrossRef]
- Inyang, U.; Oboh, I.; Etuk, B. Drying and the Different Techniques. Int. J. Food Nutr. Saf. 2017, 8, 45–72. [Google Scholar]
- Karaman, B.; Tamer, C.; Ozcan Sinir, G.; Suna, S.; Çopur, Ö.U. Impact of different drying parameters on color, β-carotene, antioxidant activity and minerals of apricot (Prunus armeniaca L.). Ciência Tecnol. Aliment. 2016, 36, 171–178. [Google Scholar]
- Nanjundappa, N.; Umadevi, B.; Jayasimha, R.; Thennarasu, K. The influence of color on taste perception. Natl. J. Physiol. Pharm. Pharmacol. 2023, 13, 1945–1951. [Google Scholar] [CrossRef]
- Sen, F.; Ozgen, M.; Asma, B.M.; Aksoy, U. Quality and nutritional property changes in stored dried apricots fumigated by sulfur dioxide. Hortic. Environ. Biotechnol. 2015, 56, 200–206. [Google Scholar] [CrossRef]
- Otlu, O.; Gul, M.; Onal, Y.; Kıran, T.; Colak, C.; Karabulut, A. Does the high sulfur content in apricots affect oxidative stress? Running title: Effect of sulfur amount on oxidative stress. Med. Sci. 2022, 11, 267–273. [Google Scholar] [CrossRef]
- Asma, B.M. Malatya: World’s Capital of Apricot Culture. Chron. Hortic. 2007, 47, 20–24. [Google Scholar]
- Rustamova, R.; Mamatsabirov, F.; Sulaymanova, S.; Rakhmatov, A.; Babayev, A.; Allenova, I.; Isomiddinova, H. Study on sulfitation of fruits and berries: Methods of sulfitation and desulfitation. E3S Web Conf. 2024, 497, 03020. [Google Scholar] [CrossRef]
- Gao, J.-R.; Li, M.-Y.; Cheng, Z.-Y.; Liu, X.-Y.; Yang, H.; Li, M.-T.; He, R.-Y.; Zhang, Q.; Yang, X.-H. Effects of Different Drying Methods on Drying Characteristics and Quality of Small White Apricot (Prunus armeniaca L.). Agriculture 2024, 14, 1716. [Google Scholar] [CrossRef]
- Yang, Q.; Yi, X.; Xiao, H.; Wang, X.; Liu, L.; Tang, Z.; Hu, C.; Li, X. Effects of Different Drying Methods on Drying Characteristics, Microstructure, Quality, and Energy Consumption of Apricot Slices. Foods 2024, 13, 1295. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Sylvain Tiliwa, E.; Yan, W.; Roknul Azam, S.M.; Wei, B.; Zhou, C.; Ma, H.; Bhandari, B. Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Res. Int. 2022, 152, 110744. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, I.; Bilenler, T.; Sislioglu, K.; Gokbulut, I.; Ozdemir, I.S.; Seyhan, F.; Ozturk, K. Chemical composition of apricots affected by fruit size and drying methods. Dry. Technol. 2018, 36, 1937–1948. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Zhu, L.; Geng, Z.; Liu, X.; Cheng, Z.; Zhao, M.; Zhang, Q.; Yang, X. Sea Buckthorn Pretreatment, Drying, and Processing of High-Quality Products: Current Status and Trends. Foods 2023, 12, 4255. [Google Scholar] [CrossRef]
- Vadivambal, R.; Jayas, D.S. Changes in quality of microwave-treated agricultural products—A review. Biosyst. Eng. 2007, 98, 1–16. [Google Scholar] [CrossRef]
- Kayran, S.; Doymaz, İ. Infrared Drying and Effective Moisture Diffusivity of Apricot Halves: Influence of Pretreatment and Infrared Power. J. Food Process. Preserv. 2017, 41, e12827. [Google Scholar] [CrossRef]
- Salehi, F. Recent Applications and Potential of Infrared Dryer Systems for Drying Various Agricultural Products: A Review. Int. J. Fruit Sci. 2020, 20, 586–602. [Google Scholar] [CrossRef]
- Kuhn, K.; Strnad, C.; Bowman, P.; Young, K.; Kroll, E.; DeBruine, A.; Knudson, I.; Navin, M.; Cheng, Q.; Swedish, M.; et al. Validation of a Passive Solar Drying System Using Pineapple. Foods 2024, 13, 3081. [Google Scholar] [CrossRef]
- Ingham, J.; Kanungo, M.; Beauchamp, B.; Korbut, M.; Swedish, M.; Navin, M.; Zhang, W. Validation of Solar Dehydrator for Food Drying Applications: A Granny Smith Apple Study. J. Chem. Eng. Res. Updates 2022, 9, 13–21. [Google Scholar] [CrossRef]
- Liu, C.; Lv, M.; Du, H.; Deng, H.; Zhou, L.; Li, P.; Li, X.; Li, B. Effect of Preliminary Treatment by Pulsed Electric Fields and Blanching on the Quality of Fried Sweet Potato Chips. Foods 2023, 12, 2147. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M. Phenolic Compounds in Food: Characterization and Health Benefits. Molecules 2022, 27, 783. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Meng, Z.; Dong, T.; Fan, X.; Wang, Q. Enzymatic browning and polyphenol oxidase control strategies. Curr. Opin. Biotechnol. 2023, 81, 102921. [Google Scholar] [CrossRef]
- Zhang, S. Recent Advances of Polyphenol Oxidases in Plants. Molecules 2023, 28, 2158. [Google Scholar] [CrossRef]
- Giannakourou, M.C.; Taoukis, P.S. Effect of Alternative Preservation Steps and Storage on Vitamin C Stability in Fruit and Vegetable Products: Critical Review and Kinetic Modelling Approaches. Foods 2021, 10, 2630. [Google Scholar] [CrossRef]
- Elgailani, I.E.H.; Elkareem, M.A.M.G.; Noh, E.A.A.; Adam, O.E.A.; Alghamdi, A.M.A. Comparison of Two Methods for The Determination of Vitamin C (Ascorbic Acid) in Some Fruits. Am. J. Chem. 2017, 2, 1–7. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Commodity Specification for Dried Fruit. Available online: https://www.ams.usda.gov/sites/default/files/media/CommoditySpecificationDriedFruitAugust%202019.pdf (accessed on 11 October 2025).
- Food and Agriculture Organization of the United Nations; World Health Organization. General Standard for Dried Fruits. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/hu/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B360-2020%252FCXS_360e.pdf (accessed on 11 October 2025).
- Wang, H.; Iqbal, A.; Murtaza, A.; Xu, X.; Pan, S.; Hu, W. A Review of Discoloration in Fruits and Vegetables: Formation Mechanisms and Inhibition. Food Rev. Int. 2023, 39, 6478–6499. [Google Scholar] [CrossRef]
- Zaman, R.; Nawaz, R.; Nasreen, R.; Fatima, N.; Siddique, R.; ur Raheem, M.I.; Hassan, M. Postharvest Management and Chemical Treatments for Apricot Preservation in Pakistan. Int. J. Res. Publ. Rev. 2023, 4, 1116–1131. [Google Scholar]
- Nakagawa, K.; Horie, A.; Nakabayashi, M.; Nishimura, K.; Yasunobu, T. Influence of processing conditions of atmospheric freeze-drying/low-temperature drying on the drying kinetics of sliced fruits and their vitamin C retention. J. Agric. Food Res. 2021, 6, 100231. [Google Scholar] [CrossRef]
- Coşkun, N.; Sarıtaş, S.; Jaouhari, Y.; Bordiga, M.; Karav, S. The Impact of Freeze Drying on Bioactivity and Physical Properties of Food Products. Appl. Sci. 2024, 14, 9183. [Google Scholar] [CrossRef]
- Bayram, H.M.; Ozkan, K.; Ozturkcan, A.; Sagdic, O.; Gunes, E.; Karadag, A. Effect of drying methods on free and bound phenolic compounds, antioxidant capacities, and bioaccessibility of Cornelian cherry. Eur. Food Res. Technol. 2024, 250, 2461–2478. [Google Scholar] [CrossRef]
- Wani, S.M.; Masoodi, F.A.; Haq, E.; Ahmad, M.; Ganai, S.A. Influence of processing methods and storage on phenolic compounds and carotenoids of apricots. LWT—Food Sci. Technol. 2020, 132, 109846. [Google Scholar] [CrossRef]
- Yara North America. Available online: https://www.yara.us/crop-nutrition/citrus/managing-total-soluble-solids/ (accessed on 11 October 2025).
- Valero, D.; Serrano, M. Growth and ripening stage at harvest modulates postharvest quality and bioactive compounds with antioxidant activity. Stewart Postharvest Rev. 2013, 9, 7. [Google Scholar] [CrossRef]
- Menzel, C.M. Effect of Temperature on Soluble Solids Content in Strawberry in Queensland, Australia. Horticulturae 2022, 8, 367. [Google Scholar] [CrossRef]
- Béjar-Grimalt, J.; Pérez-Guaita, D.; Sánchez-Illana, Á.; García-Contreras, R.; Kataria, R.; Bureau, S.; de la Guardia, M.; Cadet, F. Classification of Apricot Varieties by Infrared Spectroscopy and Machine Learning. ACS Agric. Sci. Technol. 2025, 5, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Akhter, N.; Majid, D.; Rather, J.A.; Makroo, H.A.; Dar, B.N.; Manzoor, N. Development of functional apricot pulp powder: A sustainable approach to prevent post-harvest loss. Food Humanit. 2025, 5, 100746. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dopirak, M.; Dopirak, M.; Gupta, A.; Navin, M.; Swedish, M.; Tchesnokova, A.; Cheng, Q.; Zhang, W. Effect of Passive Solar Drying on the Quality Characteristics of Apricots. Appl. Sci. 2025, 15, 12750. https://doi.org/10.3390/app152312750
Dopirak M, Dopirak M, Gupta A, Navin M, Swedish M, Tchesnokova A, Cheng Q, Zhang W. Effect of Passive Solar Drying on the Quality Characteristics of Apricots. Applied Sciences. 2025; 15(23):12750. https://doi.org/10.3390/app152312750
Chicago/Turabian StyleDopirak, Mason, Matus Dopirak, Aakash Gupta, Michael Navin, Michael Swedish, Anna Tchesnokova, Qingsu Cheng, and Wujie Zhang. 2025. "Effect of Passive Solar Drying on the Quality Characteristics of Apricots" Applied Sciences 15, no. 23: 12750. https://doi.org/10.3390/app152312750
APA StyleDopirak, M., Dopirak, M., Gupta, A., Navin, M., Swedish, M., Tchesnokova, A., Cheng, Q., & Zhang, W. (2025). Effect of Passive Solar Drying on the Quality Characteristics of Apricots. Applied Sciences, 15(23), 12750. https://doi.org/10.3390/app152312750

