Development of a 140 MPa Deep In Situ Pressure-Preserved Coring Controller
Abstract
1. Introduction
2. Challenges in Pressure—Pressure Coring Technology
3. The Theoretical Model’s Construction and Structural Optimization of the Pressure Controller
4. Numerical Simulations of Stress–Strain Characteristics for Deep In Situ Pressure Controller
5. Physical Test of Ultimate Pressure Strength for Core Controllers
5.1. Experimental Procedure
5.2. Experimental Results
6. Conclusions
- (1)
- The results of numerical simulation and theoretical calculation show that one of the causes for the failure of the pressure-bearing capacity of the pressure-holding controller is the shear failure at its short axis. The suppression of valve cover deformation and the optimization of the sealing structure are the keys to developing a pressure-holding controller.
- (2)
- The optimized saddle-shaped pressure controller effectively limits valve cover deformation to within 0.015 mm, ensuring proper sealing surface clearance. The maximum pressure-bearing capacity of the pressure controller is constrained by the deformation and sealing of its short axis. Shear failure of the saddle-shaped step is identified as the primary cause of failure. To enhance load capacity, high-strength materials could be utilized.
- (3)
- The 35CrNi3MoVR material saddle-shaped pressure controller shows optimal capacity, with a pressure strength exceeding 140 MPa and maintaining this strength for at least 15.1 h, while also exhibiting near-zero leakage. These findings provide support for pressure core sampling in oil and gas exploration at depths exceeding 5000 m.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, X.J.; Xie, H.P.; Li, C.; Liu, G.K.; Gao, M.Z. Design of a high-performance pressure-preserving controller for in situ pressure-preserving coring in deep oil and gas extraction. J. Rock Mech. Geotech. Eng. 2025, 17, 5038–5052. [Google Scholar] [CrossRef]
- Xie, H.P.; Gao, M.Z.; Zhang, R.; Zhou, H.W.; Gao, F.; Chen, L.; Peng, R.D.; Li, X.J.; Ju, Y. Application prospects of deep in-situ condition-preserved coring and testing systems. Adv. Geo-Energy Res. 2024, 14, 12–24. [Google Scholar] [CrossRef]
- Wang, J.; Xie, H.P.; Li, C. Anisotropic failure behaviour and breakdown pressure interpretation of hydraulic fracturing experiments on shale. Int. J. Rock Mech. Min. Sci. 2021, 142, 104748. [Google Scholar] [CrossRef]
- Ray, B.; Timothy, S.C. Current perspectives on gas hydrate resources. Energy Environ. Sci. 2011, 4, 1206–1215. [Google Scholar]
- Milko, A.V.; Sassen, R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope. Mar. Petrol. Geol. 2003, 20, 111–128. [Google Scholar] [CrossRef]
- Piñero, E.; Marquardt, M.; Hensen, C.; Haeckel, M.; Wallmann, K. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences 2013, 10, 959–975. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Nguyen, A.V. The dual effect of sodium halides on the formation of methane gas hydrate. Fuel 2015, 156, 87–95. [Google Scholar] [CrossRef]
- Koh, D.Y.; Ahn, Y.H.; Kang, H.; Park, S.; Lee, J.Y.; Kim, S.J.; Lee, J.; Lee, H. One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas. AIChE J. 2015, 61, 1004–1014. [Google Scholar] [CrossRef]
- Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. Methane Hydrate—A major reservoir of carbon in the shallow geosphere. Chem. Geol. 1988, 71, 41–51. [Google Scholar] [CrossRef]
- Xie, H.P.; Hu, Y.Q.; Gao, M.Z.; Chen, L.; Zhang, R.; Liu, T.; Gao, F.; Zhou, H.W.; Peng, X.B.; Li, X.J.; et al. Research progress and application of deep in-situ condition preserved coring and testing. Int. J. Min. Sci. Technol. 2023, 33, 1319–1337. [Google Scholar] [CrossRef]
- Xie, H.P.; Liu, T.; Gao, M.Z.; Chen, L.; Zhou, H.W.; Ju, Y.; Gao, F.; Peng, X.B.; Li, X.J.; Peng, R.D. Research on in-situ condition preserved coring and testing systems. Petrol. Sci. 2021, 18, 1840–1859. [Google Scholar] [CrossRef]
- Shi, X.J.; Xie, H.P.; Li, C.; Liu, G.K.; Wei, Z.J.; Wang, T.Y.; Li, J.; Li, Q.Y. Influence of the mechanical properties of materials on the ultimate pressure-bearing capability of a pressure-preserving controller. Petrol. Sci. 2024, 21, 3558–3574. [Google Scholar] [CrossRef]
- Lei, L.; Park, T.; Jarvis, K.; Pan, L.; Tepecik, I.; Zhao, Y.; Ge, Z.; Choi, J.; Gai, X.; Sergio, A.G.T.; et al. Pore-scale observations of natural hydrate-bearing sediments via pressure core sub-coring and micro-CT scanning. Sci. Rep. 2022, 12, 3471. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.J.; Xie, H.P.; Li, C.; Li, J.N.; Liu, G.k.; You, Z.X.; Gao, M.Z. Performance of a deep in situ pressure-preserving coring controller in a high-temperature and ultrahigh-pressure test system. J. Rock Mech. Geotech. Eng. 2025, 17, 877–896. [Google Scholar] [CrossRef]
- Ashena, R.; Thonhauser, G. Coring Methods and Systems; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Demirbaş, A. Methane hydrates as potential energy resource: Part 1-Importance, resource and recovery facilities. Energy Convers. Manag. 2010, 51, 1547–1561. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, T.; Pang, X.Q.; Wang, E.Z.; Liu, X.H.; Wu, Z.Y.; Chen, D.; Li, C.R.; Zhang, X.W.; Wang, T. Research progress and challenges of natural gas hydrate resource evaluation in the South China Sea. Petrol. Sci. 2022, 19, 13–25. [Google Scholar] [CrossRef]
- Kvenvolden, K.; Cameron, D. Pressure Core Barrel: Application to the Study of Gas Hydrates, Deep Sea Drilling Project Site 533, Leg 76; Initial Reports of the DSDP; Texas A&M: College Station, TX, USA, 1983. [Google Scholar]
- Dickens, G.; Wallace, P.J.; Paull, C.; Borowski, W.S. Detection of methane gas hydrate in the Pressure Core Sampler (PCS): Volume-pressure-time relations during controlled degassing experiments. Proc. Ocean. Drill. Program Sci. Results 2000, 164, 113–126. [Google Scholar]
- Ruppel, C.; Boswell, R.; Jones, E. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling: Introduction and overview. Mar. Petrol. Geol. 2008, 25, 819–829. [Google Scholar] [CrossRef]
- Peterson, M.N. Design and Operation of a Wireline Pressure Core Barrel; Technical Report; Deep Sea Drilling; Scripps Institution of Oceanography: La Jolla, CA, USA, 1984. [Google Scholar]
- Li, C.; Xie, H.P.; Gao, M.Z.; Chen, L.; Li, J. Novel designs of pressure controllers to enhance the upper pressure limit for gas-hydrate-bearing sediment sampling. Energy 2021, 227, 120405. [Google Scholar] [CrossRef]

















| Number of Elements | Maximum Stress | Minimum Stress | Maximum Displacement | Minimum Displacement |
|---|---|---|---|---|
| 20,430 | 1185 | 72.39 | 0.4445 | 0.007 |
| 26,862 | 1185 | 74.04 | 0.439 | 0.005 |
| 52,306 | 1185 | 56 | 0.4544 | 0.0068 |
| 80,496 | 1185 | 48.86 | 0.4562 | 0.00627 |
| 132,760 | 1185 | 34.85 | 0.4529 | 0.00743 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Shi, X.; Zhao, L.; Fang, X.; Yang, X.; Li, J. Development of a 140 MPa Deep In Situ Pressure-Preserved Coring Controller. Appl. Sci. 2025, 15, 11792. https://doi.org/10.3390/app152111792
Li C, Shi X, Zhao L, Fang X, Yang X, Li J. Development of a 140 MPa Deep In Situ Pressure-Preserved Coring Controller. Applied Sciences. 2025; 15(21):11792. https://doi.org/10.3390/app152111792
Chicago/Turabian StyleLi, Cong, Xiaojun Shi, Le Zhao, Xin Fang, Xun Yang, and Jianan Li. 2025. "Development of a 140 MPa Deep In Situ Pressure-Preserved Coring Controller" Applied Sciences 15, no. 21: 11792. https://doi.org/10.3390/app152111792
APA StyleLi, C., Shi, X., Zhao, L., Fang, X., Yang, X., & Li, J. (2025). Development of a 140 MPa Deep In Situ Pressure-Preserved Coring Controller. Applied Sciences, 15(21), 11792. https://doi.org/10.3390/app152111792

