Interplanetary Mission Performance Assessment of a TANDEM Electric Thruster-Based Spacecraft
Abstract
1. Introduction
2. Simplified Thrust Modeling of TEPS for Preliminary Trajectory Analysis

3. Mission Overview and Spacecraft Mass Breakdown Model
| Cel. Body | a [AU] | e | i [deg] | [deg] | [deg] |
|---|---|---|---|---|---|
| Earth | 1 | ||||
| Venus | |||||
| Mars | |||||
| 2024 YR4 |
4. Simulation Results and Parametric Analysis of Mission Performance
4.1. Earth-Mars Mission
4.2. Earth-Venus Mission




4.3. Earth-Asteroid 2024 YR4 Mission


| Term | Value |
|---|---|


5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Acronyms | |
| BVP | Boundary value problem |
| COMPASS | Collaborative Modeling for Parametric Assessment of Space Systems |
| DC | Dual channel |
| ESA | European Space Agency |
| IC | Inner channel |
| JAXA | Japan Aerospace Exploration Agency |
| JPL | Jet Propulsion Laboratory |
| NASA | National Aeronautics and Space Administration |
| NEXT | NASA’s Evolutionary Xenon Thruster |
| OC | Outer channel |
| PPU | Power Processing Unit |
| RTN | Radial–transverse–normal reference frame |
| SEP | Solar electric propulsion |
| TEPS | TANDEM electric propulsion system |
| State matrix; see Equation (A1) | |
| a | Semimajor axis [AU] |
| Best-fit coefficient [kg] | |
| Best-fit coefficient | |
| Vector; see Equation (A1) | |
| e | Eccentricity |
| Hamiltonian function | |
| Thruster’s operating point | |
| Specific impulse [s] | |
| i | Orbital inclination [deg] |
| m | Spacecraft mass [kg] |
| Bus mass [kg] | |
| Mass of the command and data handling subsystem [kg] | |
| Mass of the communications subsystem [kg] | |
| Dry mass [kg] | |
| Mass of the guidance, navigation, and control subsystem [kg] | |
| Propellant mass [kg] | |
| Payload mass [kg] | |
| Mass of the power subsystem [kg] | |
| Mass of the propulsion subsystem [kg] | |
| Structure mass [kg] | |
| Mass of the thermal subsystem [kg] | |
| Propellant mass flow rate [mg/s] | |
| P | PPU input power [kW] |
| Solar array output power at [kW] | |
| Available electric power for the thruster [kW] | |
| Electric power allocated to other subsystems [kW] | |
| Modified equinoctial elements | |
| r | Sun–spacecraft radial distance [AU] |
| T | Thrust magnitude [mN] |
| t | Time [days] |
| Thrust unit vector | |
| Flight time [days] | |
| Duty cycle | |
| Adjoint vector | |
| Generic adjoint variables | |
| Argument of perihelion [deg] | |
| Right ascension of the ascending node [deg] | |
| Subscripts | |
| 0 | initial |
| DC | related to the DC mode |
| f | final |
| IC | related to the IC mode |
| OC | related to the OC mode |
| Superscripts | |
| · | temporal derivative |
| T | transpose |
Appendix A
References
- Rayman, M.D. The successful conclusion of the Deep Space 1 mission: Important results without a flashy title. Space Technol. 2003, 23, 185–196. [Google Scholar]
- Sengupta, A.; Anderson, J.A.; Gamer, C.; Brophy, J.R.; De Groh, K.K.; Banks, B.A.; Thomas, T.A.K. Deep space 1 flight spare ion thruster 30,000-hour life test. J. Propuls. Power 2009, 25, 105–117. [Google Scholar] [CrossRef]
- Brophy, J.R. Perspectives on the success of electric propulsion. J. Electr. Propuls. 2022, 1, 9. [Google Scholar] [CrossRef]
- Kawaguchi, J.; Fujiwara, A.; Uesugi, T. Hayabusa—Its technology and science accomplishment summary and Hayabusa-2. Acta Astronaut. 2008, 62, 639–647. [Google Scholar] [CrossRef]
- Baker, J. The Falcon Has Landed. Science 2006, 312, 1327. [Google Scholar] [CrossRef]
- Benkhoff, J.; van Casteren, J.; Hayakawa, H.; Fujimoto, M.; Laakso, H.; Novara, M.; Ferri, P.; Middleton, H.R.; Ziethe, R. BepiColombo-Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci. 2010, 58, 2–20. [Google Scholar] [CrossRef]
- Wallace, N. Testing of the Qinetiq T6 Thruster in Support of the ESA BepiColombo Mercury Mission for the ESA BepiColombo Mission. In Proceedings of the 4th International Spacecraft Propulsion Conference, Chia Laguna, Italy, 2–9 June 2004. [Google Scholar]
- Boretti, A. A narrative review of solar electric propulsion for space missions: Technological progress, market opportunities, geopolitical considerations, and safety challenges. J. Space Saf. Eng. 2025, in press. [Google Scholar] [CrossRef]
- Choudhury, S.; Dutt, P.; Negi, D.; Kumar, A.; Ashok, V. Analysis of Direct Interplanetary Transfers Using Solar-Electric Propulsion. In Advances in Multidisciplinary Analysis and Optimization; Pradeep Pratapa, P., Saravana Kumar, G., Ramu, P., Amit, R.K., Eds.; Springer Nature: Singapore, 2022; Chapter 5; pp. 45–56. [Google Scholar] [CrossRef]
- Prussing, J.E. Optimal Spacecraft Trajectories; Oxford University Press: Oxford, UK, 2018; Chapter 4; pp. 32–40. [Google Scholar]
- Kluever, C.A. Efficient Computation of Optimal Interplanetary Trajectories Using Solar Electric Propulsion. J. Guid. Control Dyn. 2015, 38, 821–830. [Google Scholar] [CrossRef]
- Lawden, D.F. Optimal Trajectories for Space Navigation; Butterworths & Co.: London, UK, 1963; Chapter 6; pp. 106–110. [Google Scholar]
- Betts, J.T. Survey of Numerical Methods for Trajectory Optimization. J. Guid. Control Dyn. 1998, 21, 193–207. [Google Scholar] [CrossRef]
- Paganucci, F.; Becatti, G.; Burgalassi, F.; Giammarinaro, G.; Marconcini, F.; Pasini, A.; Saravia, M.; Dini, F.; Scortecci, F.; Estublier, D. Development of a High Power, Magnetically Shielded, Dual Channel Hall Thruster in The Framework of the TANDEM Project. In Proceedings of the 8th International Conference on Space Propulsion, Estoril, Portufal, 9–13 May 2022. [Google Scholar]
- Paganucci, F.; Becatti, G.; Burgalassi, F.; Giammarinaro, G.; Marconcini, F.; Pasini, A.; Poli, D.; Saravia, M.; Dini, F.; Scortecci, F.; et al. TANDEM: A High Power, Magnetically Shielded Hall Thruster with a Nested Configuration. In Proceedings of the 37th International Electric Propulsion Conference, Cambridge, MA, USA, 19–23 June 2022. [Google Scholar]
- Bolin, B.T.; Hanuš, J.; Denneau, L.; Bonamico, R.; Abron, L.M.; Delbo, M.; Ďurech, J.; Jedicke, R.; Alcorn, L.Y.; Cikota, A.; et al. The Discovery and Characterization of Earth-crossing Asteroid 2024 YR4. Astrophys. J. Lett. 2025, 984, L25. [Google Scholar] [CrossRef]
- Wiegert, P.; Brown, P.; Lopes, J.; Connors, M. The Potential Danger to Satellites due to Ejecta from a 2032 Lunar Impact by Asteroid 2024 YR4. Astrophys. J. Lett. 2025, 990, L20. [Google Scholar] [CrossRef]
- Giammarinaro, G.; Marconcini, F.; Becatti, G.; Saravia, M.M.; Andrenucci, M.; Paganucci, F. A scaling methodology for high-power magnetically shielded Hall thrusters. J. Electr. Propuls. 2023, 2, 17. [Google Scholar] [CrossRef]
- Marconcini, F.; Giammarinaro, G.; Becatti, G.; Saravia, M.; Guidi, C.; Paganucci, F.; Dini, F.; Scortecci, F.; Estublier, D. A 20 kW Magnetically Shielded Nested Hall Thruster: Status and Perspectives of the TANDEM Project. In Proceedings of the Space Propulsion 2024, Glasgow, UK, 20–23 May 2024. [Google Scholar]
- Paganucci, F.; Andrenucci, M. Electric Propulsion Activities at the University of Pisa. In Proceedings of the 38th International Electric Propulsion Conference, Toulouse, France, 23–28 June 2024. [Google Scholar]
- Paganucci, F.; Becatti, G.; Saravia, M.; Giammarinaro, G.; Marconcini, F.; Camarri, S.; Razionale, A.V. Electric Propulsion Activities at DICI-Unipi. In Proceedings of the 8th International Conference on Space Propulsion, Estoril, Portugal, 9–13 May 2022. [Google Scholar]
- Scaranzin, S.; Scortecci, F.; Bonelli, E.; Sestini, L.; Bartali, M.; Avanzi, F.; Cesari, U.; Dini, F.; Cannelli, F.; Giammarinaro, G.; et al. Characterisation of a 20 kW Dual Channel HET in the Framework of the ESA TANDEM Project. In Proceedings of the 38th International Electric Propulsion Conference (IEPC2024), Toulouse, France, 23–28 June 2024. [Google Scholar]
- Quarta, A.A.; Izzo, D.; Vasile, M. Time-Optimal Trajectories to Circumsolar Space Using Solar Electric Propulsion. Adv. Space Res. 2013, 51, 411–422. [Google Scholar] [CrossRef]
- Patterson, M.; Benson, S.W. NEXT ion propulsion system developmentstatus and performance. In Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, USA, 8–11 July 2007. [Google Scholar] [CrossRef]
- Quarta, A.A. Effects of Discrete Thrust Levels on the Trajectory Design of the BIT-3 RF Ion Thruster-Equipped CubeSat. Appl. Sci. 2025, 15, 6314. [Google Scholar] [CrossRef]
- Tsay, M. 3,500-Hour Wear Test Result of BIT-3 RF Ion Propulsion System. In Proceedings of the 37th International Electric Propulsion Conference, Cambridge, MA, USA, 19–23 June 2022. [Google Scholar]
- Busek Co., Inc. BIT-3: Compact and Efficient Iodine Gridded ion Thruster. 2025. Available online: https://www.busek.com/bit3 (accessed on 6 April 2025).
- Rovey, J.L.; Lyne, C.T.; Mundahl, A.J.; Rasmont, N.; Glascock, M.S.; Wainwright, M.J.; Berg, S.P. Review of multimode space propulsion. Prog. Aerosp. Sci. 2020, 118, 100627. [Google Scholar] [CrossRef]
- Quarta, A.A.; Bassetto, M.; Becatti, G. Optimal Heliocentric Orbit Raising of CubeSats with a Monopropellant Electrospray Multimode Propulsion System. Appl. Sci. 2025, 15, 9169. [Google Scholar] [CrossRef]
- Gerberich, M.; Oleson, S.R. Estimation Model of Spacecraft Parameters and Cost Based on a Statistical Analysis of COMPASS System Designs. In Proceedings of the AIAA SPACE 2013 Conference and Exposition, San Diego, CA, USA, 10–12 September 2013. [Google Scholar] [CrossRef]
- Rayman, M.D.; Williams, S.N. Design of the First Interplanetary Solar Electric Propulsion Mission. J. Spacecr. Rocket. 2002, 39, 589–595. [Google Scholar] [CrossRef]
- Nurre, N.P.; Taheri, E. Duty-cycle-aware low-thrust trajectory optimization using embedded homotopy. Acta Astronaut. 2023, 212, 630–642. [Google Scholar] [CrossRef]
- Moiseev, Y.A.; Emelyanov, N.V. Ephemeris Theories JPL DE, INPOP, and EPM. Astron. Rep. 2024, 68, 1098–1118. [Google Scholar] [CrossRef]
- Quarta, A.A. Using Solar Sails to Rendezvous with Asteroid 2024 YR4. Technologies 2025, 13, 373. [Google Scholar] [CrossRef]
- Berthet, M.; Schalkwyk, J.; Çelik, O.; Sengupta, D.; Fujino, K.; Hein, A.M.; Tenorio, L.; Cardoso dos Santos, J.; Worden, S.P.; Mauskopf, P.D.; et al. Space sails for achieving major space exploration goals: Historical review and future outlook. Prog. Aerosp. Sci. 2024, 150, 101047. [Google Scholar] [CrossRef]
- Walker, M.J.H.; Ireland, B.; Owens, J. A set of modified equinoctial orbit elements. Celest. Mech. 1985, 36, 409–419. [Google Scholar] [CrossRef]
- Quarta, A.A.; Mengali, G.; Bassetto, M. Rapid orbit-to-orbit transfer to asteroid 4660 Nereus using Solar Electric Propulsion. Universe 2023, 9, 459. [Google Scholar] [CrossRef]
- Bryson, A.E.; Ho, Y.C. Applied Optimal Control; Hemisphere Publishing Corporation: New York, NY, USA, 1975; Chapter 2; pp. 71–89. ISBN 0-891-16228-3. [Google Scholar]
- Shampine, L.F.; Reichelt, M.W. The MATLAB ODE Suite. SIAM J. Sci. Comput. 1997, 18, 1–22. [Google Scholar] [CrossRef]
- Yang, W.Y.; Cao, W.; Kim, J.; Park, K.W.; Park, H.H.; Joung, J.; Ro, J.S.; Hong, C.H.; Im, T. Applied Numerical Methods Using MATLAB; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; Chapters 3 and 6; pp. 158–165, 312. [Google Scholar]


| Id | Operating Mode | T [mN] | P [kW] | [mg/s] | [s] |
|---|---|---|---|---|---|
| 1 | IC | 181 | 3.3 | 12.2 | 1508 |
| 2 | IC | 271 | 4.8 | 16.4 | 1687 |
| 3 | OC | 569 | 10.7 | 33.0 | 1758 |
| 4 | DC | 816 | 15.3 | 44.1 | 1888 |
| 5 | IC | 329 | 6.3 | 17.3 | 1938 |
| 6 | OC | 644 | 14.3 | 32.8 | 1999 |
| 7 | DC | 957 | 20.5 | 45.2 | 2160 |
| 8 | DC | 1090 | 20.2 | 49.4 | 2250 |
| 9 | IC | 346 | 7.3 | 16.6 | 2119 |
| 10 | OC | 786 | 18.5 | 34.1 | 2348 |
| 11 | DC | 1093 | 25.3 | 46.0 | 2421 |
| 12 | off | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quarta, A.A. Interplanetary Mission Performance Assessment of a TANDEM Electric Thruster-Based Spacecraft. Appl. Sci. 2025, 15, 11711. https://doi.org/10.3390/app152111711
Quarta AA. Interplanetary Mission Performance Assessment of a TANDEM Electric Thruster-Based Spacecraft. Applied Sciences. 2025; 15(21):11711. https://doi.org/10.3390/app152111711
Chicago/Turabian StyleQuarta, Alessandro A. 2025. "Interplanetary Mission Performance Assessment of a TANDEM Electric Thruster-Based Spacecraft" Applied Sciences 15, no. 21: 11711. https://doi.org/10.3390/app152111711
APA StyleQuarta, A. A. (2025). Interplanetary Mission Performance Assessment of a TANDEM Electric Thruster-Based Spacecraft. Applied Sciences, 15(21), 11711. https://doi.org/10.3390/app152111711

