Human-Centered AI in Placemaking: A Review of Technologies, Practices, and Impacts
Abstract
Featured Application
Abstract
1. Introduction
2. Foundations of Human-Centered AI: Principles, Applications, and Relevance to Urban Design
Background and Context of HCAI in Placemaking
3. Integrating HCAI into Placemaking: Tools, Technologies, and Community Engagement
3.1. AI for Community Engagement in Urban Design
3.2. AI Models and Technologies for Smarter Urban Spaces
4. AI Understanding of Human Activity in Urban Environments
4.1. Behavior Analysis with AI
4.2. How Public Space Design Shapes Human Behavior
5. Placemaking for All Ages and Genders
5.1. Designing for All Ages: Multigenerational Approaches to Inclusive Placemaking
5.2. Equity by Design: Feminist and Gender-Inclusive Approaches to Public Space
6. Synthesis and Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AR | Augmented Reality |
GDPR | General Data Protection Regulation |
HCAI | Human-Centered Artificial Intelligence |
HCLA | Human-Centered Learning Analytics |
HCXAI | Human-Centered Explainable Artificial Intelligence |
IoT | Internet of Things |
NLP | Natural Language Processing |
VR | Virtual Reality |
RGB-D | Red Green Blue and Depth |
CNN | Convolutional Neural Network |
GAN | Generative Adversarial Network |
MCDA | Multi-Criteria Decision Analysis |
DRL | Deep Reinforcement Learning |
MARL | Multi-Agent Reinforcement Learning |
GNN | Graph Neural Network |
PLPS | Public Life in Public Space |
AFLE | Age-Friendly Living Ecosystem |
References
- Aelbrecht, P.; Arefi, M. What is new in Placemaking research and practice? Urban Des. Int. 2024, 29, 1–3. [Google Scholar] [CrossRef]
- Ellery, P.J.; Ellery, J.; Borkowsky, M. Toward a Theoretical Understanding of Placemaking. Int. J. Community Well-Being 2020, 4, 55–76. [Google Scholar] [CrossRef]
- Hurtig, M.; Mosquera, J.; Habibi, R.; Szabó, Á. Essencology of Placemaking: In Quest of an Inclusive System Dynamics Between Power and Communities in the Urban Development Process; Technical Report; Social Science Research Network: Rochester, NY, USA, 2025. [Google Scholar]
- Othengrafen, F.; Sievers, L.; Reinecke, E. From Vision to Reality: The Use of Artificial Intelligence in Different Urban Planning Phases. Urban Plan. 2025, 10, 1–18. [Google Scholar] [CrossRef]
- Luusua, A.; Ylipulli, J.; Foth, M.; Aurigi, A. Urban AI: Understanding the emerging role of artificial intelligence in smart cities. AI Soc. 2022, 38, 1039–1044. [Google Scholar] [CrossRef]
- Andrews, C.; Cooke, K.; Gomez, A.; Hurtado, P.; Sanchez, T.; Shah, S.; Wright, N. AI in Planning: Opportunities and Challenges and How to Prepare; (White Paper); American Planning Association National: Chicago, IL, USA, 2022. [Google Scholar]
- Wang, L.; He, W. Analysis of Community Outdoor Public Spaces Based on Computer Vision Behavior Detection Algorithm. Appl. Sci. 2023, 13, 10922. [Google Scholar] [CrossRef]
- Shneiderman, B. Human-Centered AI: A New Synthesis. In Human-Computer Interaction—INTERACT 2021; Ardito, C., Lanzilotti, R., Malizia, A., Petrie, H., Piccinno, A., Desolda, G., Inkpen, K., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 3–8. [Google Scholar] [CrossRef]
- Zimmermann, A.; Schmidt, R. Human Centred Intelligent Systems; Zimmermann, A., Schmidt, R., Jain, L.C., Howlett, R.J., Eds.; Springer Nature: Singapore, 2025; pp. 3–6. [Google Scholar] [CrossRef]
- Xu, W.; Dainoff, M.J.; Ge, L.; Gao, Z. Transitioning to human interaction with AI systems: New challenges and opportunities for HCI professionals to enable human-centered AI. Int. J. Hum.-Comput. Interact. 2022, 39, 494–518. [Google Scholar] [CrossRef]
- Ozmen Garibay, O.; Winslow, B.; Andolina, S.; Antona, M.; Bodenschatz, A.; Coursaris, C.; Falco, G.; Fiore, S.M.; Garibay, I.; Grieman, K.; et al. Six human-centered artificial intelligence grand challenges. Int. J. Hum.-Comput. Interact. 2023, 39, 391–437. [Google Scholar] [CrossRef]
- van Leersum, C.M.; Maathuis, C. Human centred explainable AI decision-making in healthcare. J. Responsible Technol. 2025, 21, 100108. [Google Scholar] [CrossRef]
- Le Dinh, T.; Le, T.D.; Uwizeyemungu, S.; Pelletier, C. Human-Centered Artificial Intelligence in Higher Education: A Framework for Systematic Literature Reviews. Information 2025, 16, 240. [Google Scholar] [CrossRef]
- Javaid, S.; Sufian, A.; Pervaiz, S.; Tanveer, M. Smart traffic management system using Internet of Things. In Proceedings of the 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon, Republic of Korea, 11–14 February 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Xie, Y.; Konomi, S. Developing a Human-Centered AI Environment to Enhance Financial Literacy of College Students: A Systematic Review. In Cross-Cultural Design; Rau, P.L.P., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 360–374. [Google Scholar] [CrossRef]
- He, W.; Chen, M. Advancing Urban Life: A Systematic Review of Emerging Technologies and Artificial Intelligence in Urban Design and Planning. Buildings 2024, 14, 835. [Google Scholar] [CrossRef]
- Sanaeipoor, S.; Emami, K.H. Smart [AR] Mini-Application: Engaging Citizens in Digital Placemaking Approach. In Proceedings of the 4th International Conference on Smart City, Internet of Things and Applications (SCIOT), Mashhad, Iran, 16–17 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 84–90. [Google Scholar] [CrossRef]
- Sugianto, N.; Tjondronegoro, D.; Stockdale, R.; Yuwono, E.I. Privacy-preserving AI-enabled video surveillance for social distancing: Responsible design and deployment for public spaces. Inf. Technol. People 2021, 37, 998–1022. [Google Scholar] [CrossRef]
- Kundi, B.; El Morr, C.; Gorman, R.; Dua, E. Artificial Intelligence and Bias: A Scoping Review; Chapman and Hall/CRC: London, UK, 2023; pp. 199–215. [Google Scholar]
- El Morr, C. AI and Society: Tensions and Opportunities; Chapman and Hall/CRC: London, UK, 2022. [Google Scholar] [CrossRef]
- Filion, P.; Moos, M.; Sands, G. Urban neoliberalism, smart city, and Big Tech: The aborted Sidewalk Labs Toronto experiment. J. Urban Aff. 2023, 45, 1625–1643. [Google Scholar] [CrossRef]
- National Recreation and Park Association. Perspectives on Automated Counting Technologies in Parks and Recreation; Technical Report; National Recreation and Park Association: Ashburn, VA, USA, 2023. [Google Scholar]
- Szot, J. Video Games in Civic Engagement in Urban Planning, a Methodology for Effective and Informed Selection of Games for Specific Needs. Sustainability 2024, 16, 10411. [Google Scholar] [CrossRef]
- Mojang Studios. Minecraft (Java Edition) [Video Game]; Mojang Studios: Stockholm, Sweden, 2011. [Google Scholar]
- Colossal Order. Cities: Skylines; Paradox Interactive: Stockholm, Sweden, 2015. [Google Scholar]
- UN-Habitat. Using Minecraft for Youth Participation in Urban Design and Governance; Technical Report; United Nations Human Settlements Programme: Nairobi, Kenya, 2015. [Google Scholar]
- Abbas, M.; Akhai, S.; Abbas, U.; Jafri, R.; Arif, S.M. AI-Enabled Sustainable Urban Planning and Management. In Real-World Applications of AI Innovation; Mallik, S., Mathivanan, S.K., Sangeetha, S., Soufiene, B.O., Eds.; IGI Global: Hershey, PA, USA, 2024; Chapter 12; pp. 233–260. [Google Scholar] [CrossRef]
- Ayuntamiento de Barcelona. Decidim.Barcelona. 2025. Available online: https://www.decidim.barcelona/ (accessed on 16 April 2025).
- Barandiaran, X.E.; Calleja-López, A.; Monterde, A.; Romero, C. Decidim, a Technopolitical Network for Participatory Democracy: Philosophy, Practice and Autonomy of a Collective Platform in the Age of Digital Intelligence; Springer Nature: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Das, D.; Kwek, B. AI and data-driven urbanism: The Singapore experience. Digit. Geogr. Soc. 2024, 7, 100104. [Google Scholar] [CrossRef]
- Orii, L.; Alonso, L.; Larson, K. Methodology for Establishing Well-Being Urban Indicators at the District Level to be Used on the CityScope Platform. Sustainability 2020, 12, 9458. [Google Scholar] [CrossRef]
- Noyman, A. Virtual CityScope Champs-Élysées Is an Interactive and Immersive Platform That Explores the Future of Paris’ Most Important Street. Available online: https://www.media.mit.edu/projects/champscope/ (accessed on 16 April 2025).
- Alonso, L.; Zhang, Y.R.; Grignard, A.; Noyman, A.; Sakai, Y.; ElKatsha, M.; Doorley, R.; Larson, K. CityScope: A Data-Driven Interactive Simulation Tool for Urban Design. Use Case Volpe. In Unifying Themes in Complex Systems IX; Morales, A.J., Gershenson, C., Braha, D., Minai, A.A., Bar-Yam, Y., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 253–261. [Google Scholar] [CrossRef]
- Doorley, R.; Alonso, L.; Grignard, A.; Macia, N.; Larson, K. Travel Demand and Traffic Prediction with Cell Phone Data: Calibration by Mathematical Program with Equilibrium Constraints. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Najafi, P.; Mohammadi, M.; Le Blanc, P.M.; Van Wesemael, P. Experimenting a Healthy Ageing Community in Immersive Virtual Reality Environment: The Case of World’s Longest-lived Populations. In Proceedings of the 2021 17th International Conference on Intelligent Environments (IE), Virtual, 21–24 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Najafi, P.; Mohammadi, M.; van Wesemael, P.; Le Blanc, P.M. A user-centred virtual city information model for inclusive community design: State-of-art. Cities 2023, 134, 104203. [Google Scholar] [CrossRef]
- Saßmannshausen, S.M.; Radtke, J.; Bohn, N.; Hussein, H.; Randall, D.; Pipek, V. Citizen-Centered Design in Urban Planning: How Augmented Reality can be used in Citizen Participation Processes. In Proceedings of the Designing Interactive Systems Conference 2021, Virtual Event, 28 June 2021–2 July 2021; ACM: New York, NY, USA, 2021. DIS ’21. pp. 250–265. [Google Scholar] [CrossRef]
- Najafi, P.; Mohammadi, M.; Le Blanc, P.M.; van Wesemael, P. Insights into placemaking, senior people, and digital technology: A systematic quantitative review. J. Urban. Int. Res. Placemaking Urban Sustain. 2022, 17, 525–554. [Google Scholar] [CrossRef]
- Ahmadi Oloonabadi, S.; Baran, P. Augmented reality participatory platform: A novel digital participatory planning tool to engage under-resourced communities in improving neighborhood walkability. Cities 2023, 141, 104441. [Google Scholar] [CrossRef]
- Ströer, S.; Verheijke, L. Knowledge Base: Citizen Participation for Human Centered AI. 2025. Available online: https://openresearch.amsterdam/en/page/106916/knowledge-base-citizen-participation-for-human-centered-ai (accessed on 17 April 2025).
- Follador, D.; Tremblay-Racicot, F.; Duarte, F.; Carrier, M. Collaborative Governance in Urban Planning: Patterns of Interaction in Curitiba and Montreal. J. Urban Plan. Dev. 2021, 147, 04020056. [Google Scholar] [CrossRef]
- Semeraro, T.; Nicola, Z.; Lara, A.; Sergi Cucinelli, F.; Aretano, R. A Bottom-Up and Top-Down Participatory Approach to Planning and Designing Local Urban Development: Evidence from an Urban University Center. Land 2020, 9, 98. [Google Scholar] [CrossRef]
- Tiwari, R.; Winters, J.; Trivedi, N. Balancing Participatory Design Approaches in Slum Upgradation: When Top-Down Meets Bottom-Up! In Resilient Urban Regeneration in Informal Settlements in the Tropics; García-Villalba, O.C., Ed.; Springer: Singapore, 2020; pp. 127–147. [Google Scholar] [CrossRef]
- Hendawy, M.; da Silva, I.F.K. Hybrid Smartness: Seeking a Balance Between Top-Down and Bottom-Up Smart City Approaches. In Proceedings of the Intelligence for Future Cities; Springer Nature: Cham, Switzerland, 2023; pp. 9–27. [Google Scholar] [CrossRef]
- Zhang, B.; Song, Y.; Liu, D.; Zeng, Z.; Guo, S.; Yang, Q.; Wen, Y.; Wang, W.; Shen, X. Descriptive and Network Post-Occupancy Evaluation of the Urban Public Space through Social Media: A Case Study of Bryant Park, NY. Land 2023, 12, 1403. [Google Scholar] [CrossRef]
- Silva, N.; Cardoso, P.J.S.; Rodrigues, J.M.F. Multimodal Sentiment Classifier Framework for Different Scene Contexts. Appl. Sci. 2024, 14, 7065. [Google Scholar] [CrossRef]
- Oliveira, W.B.d.; Dorini, L.B.; Minetto, R.; Silva, T.H. OutdoorSent: Sentiment Analysis of Urban Outdoor Images by Using Semantic and Deep Features. ACM Trans. Inf. Syst. 2020, 38, 23. [Google Scholar] [CrossRef]
- Chatzistavros, K.; Pistola, T.; Diplaris, S.; Ioannidis, K.; Vrochidis, S.; Kompatsiaris, I. Sentiment analysis on 2D images of urban and indoor spaces using deep learning architectures. In Proceedings of the International Conference on Content-Based Multimedia Indexing (CBMI 2022), Graz, Austria, 14–16 September 2022; ACM: New York, NY, USA, 2022; pp. 43–49. [Google Scholar] [CrossRef]
- Du, Y.; Liu, Y.; Peng, Z.; Jin, X. Gated attention fusion network for multimodal sentiment classification. Knowl.-Based Syst. 2022, 240, 108107. [Google Scholar] [CrossRef]
- Duarte, F.; Ratti, C. Designing cities within emerging geographies: The work of senseable city lab. In The New Companion to Urban Design; Routledge: London, UK, 2019; pp. 561–570. [Google Scholar]
- Miranda, A.S.; Du, G.; Gorman, C.; Duarte, F.; Fajardo, W.; Ratti, C. Favelas 4D: Scalable methods for morphology analysis of informal settlements using terrestrial laser scanning data. Environ. Plan. B 2022, 49, 2345–2362. [Google Scholar] [CrossRef]
- Kim, D.; Guida, G.; García del Castillo y López, J.L. PlacemakingAI: Participatory Urban Design with Generative Adversarial Networks. In Proceedings of the 27th Conference on Computer Aided Architectural Design Research in Asia (CAADRIA 2022), Sydney, Australia, 12–14 April 2022; Volume 2, pp. 485–494. [Google Scholar] [CrossRef]
- Guarini, M.R.; Sica, F.; Segura, A. Artificial Intelligence (AI) Integration in Urban Decision-Making Processes: Convergence and Divergence with the Multi-Criteria Analysis (MCA). Information 2024, 15, 678. [Google Scholar] [CrossRef]
- Wang, J.; Biljecki, F. Unsupervised machine learning in urban studies: A systematic review of applications. Cities 2022, 129, 103925. [Google Scholar] [CrossRef]
- Marasinghe, R.; Yigitcanlar, T.; Mayere, S.; Washington, T.; Limb, M. Computer vision applications for urban planning: A systematic review of opportunities and constraints. Sustain. Cities Soc. 2024, 100, 105047. [Google Scholar] [CrossRef]
- Naik, N.; Kominers, S.D.; Raskar, R.; Glaeser, E.L.; Hidalgo, C.A. Computer vision uncovers predictors of physical urban change. Proc. Natl. Acad. Sci. USA 2017, 114, 7571–7576. [Google Scholar] [CrossRef]
- Salazar-Miranda, A.; Zhang, F.; Sun, M.; Leoni, P.; Duarte, F.; Ratti, C. Smart curbs: Measuring street activities in real-time using computer vision. Landsc. Urban Plan. 2023, 234, 104715. [Google Scholar] [CrossRef]
- Ibrahim, M.R.; Haworth, J.; Cheng, T. Understanding cities with machine eyes: A review of deep computer vision in urban analytics. Cities 2020, 96, 102481. [Google Scholar] [CrossRef]
- Vanky, A.; Le, R. Urban-semantic computer vision: A framework for contextual understanding of people in urban spaces. AI Soc. 2023, 38, 1193–1207. [Google Scholar] [CrossRef]
- Fu, X. Natural Language Processing in Urban Planning: A Research Agenda. J. Plan. Lit. 2024, 39, 395–407. [Google Scholar] [CrossRef]
- Consalter Diniz, M.L.; Polverini Boeing, L.; dos Santos Carvalho, W.; Bertola Duarte, R. Natural Language Processing, Sentiment Analysis, and Urban Studies: A Systematic Review. In Proceedings of the Blucher Design Proceedings; Editora Blucher: São Paulo, Brazil, 2024; SIGraDi 2023; pp. 1740–1751. [Google Scholar] [CrossRef]
- Cai, M. Natural language processing for urban research: A systematic review. Heliyon 2021, 7, e06322. [Google Scholar] [CrossRef]
- Aman, J.; Matisziw, T.C. Urban sentiment mapping using language and vision models in spatial analysis. Front. Comput. Sci. 2025, 7. [Google Scholar] [CrossRef]
- Zheng, Y.; Lin, Y.; Zhao, L.; Wu, T.; Jin, D.; Li, Y. Spatial planning of urban communities via deep reinforcement learning. Nat. Comput. Sci. 2023, 3, 748–762. [Google Scholar] [CrossRef]
- Khelifa, B.; Laouar, M.R. Multi-agent Reinforcement Learning for Urban Projects Planning. In Proceedings of the 7th International Conference on Software Engineering and New Technologies, Hammamet, Tunisia, 26–28 December 2018; ACM: New York, NY, USA, 2018. ICSENT 2018. pp. 1–5. [Google Scholar] [CrossRef]
- Qian, K.; Mao, L.; Liang, X.; Ding, Y.; Gao, J.; Wei, X.; Guo, Z.; Li, J. AI Agent as Urban Planner: Steering Stakeholder Dynamics in Urban Planning via Consensus-based Multi-Agent Reinforcement Learning. arXiv 2023, arXiv:2310.16772. [Google Scholar]
- Nweye, K.; Kaspar, K.; Buscemi, G.; Fonseca, T.; Pinto, G.; Ghose, D.; Duddukuru, S.; Pratapa, P.; Li, H.; Mohammadi, J.; et al. CityLearn v2: Energy-flexible, resilient, occupant-centric, and carbon-aware management of grid-interactive communities. J. Build. Perform. Simul. 2024, 18, 17–38. [Google Scholar] [CrossRef]
- Gilman, E.; Bugiotti, F.; Khalid, A.; Mehmood, H.; Kostakos, P.; Tuovinen, L.; Ylipulli, J.; Su, X.; Ferreira, D. Addressing Data Challenges to Drive the Transformation of Smart Cities. ACM Trans. Intell. Syst. Technol. 2024, 15, 88. [Google Scholar] [CrossRef]
- Ameer, S.; Shah, M.A. Exploiting Big Data Analytics for Smart Urban Planning. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Higashino, T.; Yamaguchi, H.; Hiromori, A.; Uchiyama, A.; Yasumoto, K. Edge Computing and IoT Based Research for Building Safe Smart Cities Resistant to Disasters. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1729–1737. [Google Scholar] [CrossRef]
- Liu, Q.; Gu, J.; Yang, J.; Li, Y.; Sha, D.; Xu, M.; Shams, I.; Yu, M.; Yang, C. Cloud, Edge, and Mobile Computing for Smart Cities. In Urban Informatics; Springer: Singapore, 2021; pp. 757–795. [Google Scholar] [CrossRef]
- Purushothaman, K.E.; Ragavendran, N.; Ramesh, S.P.; Karthikeyan, V.G.; Uma Maheswari, G.; Saravanakumar, R. Innovative Urban Planning for Harnessing Blockchain and Edge Artificial Intelligence for Smart City Solutions. In Proceedings of the 2024 Second International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI), Coimbatore, India, 20–30 August 2024; pp. 65–68. [Google Scholar] [CrossRef]
- Talebkhah, M.; Sali, A.; Marjani, M.; Gordan, M.; Hashim, S.J.; Rokhani, F.Z. IoT and Big Data Applications in Smart Cities: Recent Advances, Challenges, and Critical Issues. IEEE Access 2021, 9, 55465–55484. [Google Scholar] [CrossRef]
- Rasoulzadeh Aghdam, S.; Bababei Morad, B.; Ghasemzadeh, B.; Irani, M.; Huovila, A. Social smart city research: Interconnections between participatory governance, data privacy, artificial intelligence and ethical sustainable development. Front. Sustain. Cities 2025, 6. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, E. City laboratory: Embracing new data, new elements, and new pathways to invent new cities. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 1068–1072. [Google Scholar] [CrossRef]
- Catlett, C.E.; Beckman, P.H.; Sankaran, R.; Galvin, K.K. Array of things: A scientific research instrument in the public way: Platform design and early lessons learned. In Proceedings of the 2nd International Workshop on Science of Smart City Operations and Platforms Engineering, Pittsburgh, PA, USA, 18–21 April 2017; ACM: New York, NY, USA, 2017. CPS Week ’17. pp. 26–33. [Google Scholar] [CrossRef]
- Catlett, C.; Beckman, P.; Ferrier, N.; Papka, M.E.; Sankaran, R.; Solin, J.; Taylor, V.; Pancoast, D.; Reed, D. Hands-On Computer Science: The Array of Things Experimental Urban Instrument. Comput. Sci. Eng. 2022, 24, 57–63. [Google Scholar] [CrossRef]
- Takhtkeshha, N.; Mandlburger, G.; Remondino, F.; Hyyppä, J. Multispectral Light Detection and Ranging Technology and Applications: A Review. Sensors 2024, 24, 1669. [Google Scholar] [CrossRef] [PubMed]
- Ramani, V.; Ignatius, M.; Lim, J.; Biljecki, F.; Miller, C. A Dynamic Urban Digital Twin Integrating Longitudinal Thermal Imagery for Microclimate Studies. In Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Istanbul Turkey, 15–16 November 2023; ACM: New York, NY, USA, 2023. BuildSys ’23. pp. 421–428. [Google Scholar] [CrossRef]
- Lee, S.; Moon, H.; Choi, Y.; Yoon, D.K. Analyzing Thermal Characteristics of Urban Streets Using a Thermal Imaging Camera: A Case Study on Commercial Streets in Seoul, Korea. Sustainability 2018, 10, 519. [Google Scholar] [CrossRef]
- Machin, J.; Batista, E.; Martínez-Ballesté, A.; Solanas, A. Privacy and Security in Cognitive Cities: A Systematic Review. Appl. Sci. 2021, 11, 4471. [Google Scholar] [CrossRef]
- Ismagilova, E.; Hughes, L.; Rana, N.P.; Dwivedi, Y.K. Security, Privacy and Risks Within Smart Cities: Literature Review and Development of a Smart City Interaction Framework. Inf. Syst. Front. 2020, 24, 393–414. [Google Scholar] [CrossRef]
- Fabrègue, B.F.G.; Bogoni, A. Privacy and Security Concerns in the Smart City. Smart Cities 2023, 6, 586–613. [Google Scholar] [CrossRef]
- City of Vancouver. Public Space and Public Life: Downtown Vancouver. 2018. Available online: https://vancouver.ca/placesforpeople (accessed on 31 May 2025).
- Kaseris, M.; Kostavelis, I.; Malassiotis, S. A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition. Mach. Learn. Knowl. Extr. 2024, 6, 842–876. [Google Scholar] [CrossRef]
- Karim, M.; Khalid, S.; Aleryani, A.; Khan, J.; Ullah, I.; Ali, Z. Human Action Recognition Systems: A Review of the Trends and State-of-the-Art. IEEE Access 2024, 12, 36372–36390. [Google Scholar] [CrossRef]
- Gill, K.S.; Sharma, A.; Anand, V.; Sharma, K.; Gupta, R. Human Action Detection using EfficientNetB3 Model. In Proceedings of the 2023 7th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 23–25 February 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 745–750. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, R.; Bisagno, N.; Conci, N.; De Natale, F.G.B.; Liu, H. Where Are They Going? Predicting Human Behaviors in Crowded Scenes. ACM Trans. Multimed. Comput. Commun. Appl. 2021, 17, 123. [Google Scholar] [CrossRef]
- Qing, L.; Li, L.; Xu, S.; Huang, Y.; Liu, M.; Jin, R.; Liu, B.; Niu, T.; Wen, H.; Wang, Y.; et al. Public Life in Public Space (PLPS): A multi-task, multi-group video dataset for public life research. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 3611–3620. [Google Scholar] [CrossRef]
- Corbetta, A.; Toschi, F. Physics of Human Crowds. Annu. Rev. Condens. Matter Phys. 2023, 14, 311–333. [Google Scholar] [CrossRef]
- Nicolas, A.; Hassan, F.H. Social groups in pedestrian crowds: Review of their influence on the dynamics and their modelling. Transp. A Transp. Sci. 2021, 19, 1970651. [Google Scholar] [CrossRef]
- Ye, Z.; Cao, X.; Gao, X.; Wang, K. Optimization of Neighborhood Public Space Design Based on Physical Environment Simulation and Crowd Simulation—A Case Study of Xiaomi’s Changping Campus. Buildings 2024, 14, 3390. [Google Scholar] [CrossRef]
- Ashima, G. The Role of Crowd in the Shaping of Urban Space. J. Prog. Civ. Eng. 2022, 4, 34–37. [Google Scholar] [CrossRef]
- Song, Y.; Fernandez, J.; Wang, T. Understanding Perceived Site Qualities and Experiences of Urban Public Spaces: A Case Study of Social Media Reviews in Bryant Park, New York City. Sustainability 2020, 12, 8036. [Google Scholar] [CrossRef]
- Luo, Z.; Marchi, L.; Gaspari, J. A Systematic Review of Factors Affecting User Behavior in Public Open Spaces Under a Changing Climate. Sustainability 2025, 17, 2724. [Google Scholar] [CrossRef]
- Froehlich, J.E.; Li, C.; Hosseini, M.; Miranda, F.; Sevtsuk, A.; Eisenberg, Y. The Future of Urban Accessibility: The Role of AI. In Proceedings of the 26th International ACM SIGACCESS Conference on Computers and Accessibility, St. John’s, NL, Canada, 27–30 October 2024; ACM: New York, NY, USA, 2024. ASSETS ’24. pp. 1–6. [Google Scholar] [CrossRef]
- Cimini, A.; De Fioravante, P.; Marinosci, I.; Congedo, L.; Cipriano, P.; Dazzi, L.; Marchetti, M.; Scarascia Mugnozza, G.; Munafò, M. Green Urban Public Spaces Accessibility: A Spatial Analysis for the Urban Area of the 14 Italian Metropolitan Cities Based on SDG Methodology. Land 2024, 13, 2174. [Google Scholar] [CrossRef]
- Valera, S.; Casakin, H. Integrating Observation and Network Analysis to Identify Patterns of Use in the Public Space: A Gender Perspective. Front. Psychol. 2022, 13, 898809. [Google Scholar] [CrossRef]
- Loo, B.P.; Fan, Z. Social interaction in public space: Spatial edges, moveable furniture, and visual landmarks. Environ. Plan. B Urban Anal. City Sci. 2023, 50, 2510–2526. [Google Scholar] [CrossRef]
- Fatahi, N.; Bahrami, B.; Aminpour, F. From the perspective of children and parents: What makes communal open spaces in multi-story residential neighborhoods child-friendly? Cities 2025, 158, 105605. [Google Scholar] [CrossRef]
- Manunza, A.; Giliberto, G.; Muroni, E.; Mosca, O.; Fornara, F.; Blečić, I.; Lauriola, M. “Build It and They Will Stay”: Assessing the Social Impact of Self-Build Practices in Urban Regeneration. Urban Sci. 2025, 9, 30. [Google Scholar] [CrossRef]
- Song, Y.; Yang, R.; Lu, H.; Fernandez, J.; Wang, T. Why do we love the high line? A case study of understanding long-term user experiences of urban greenways. Comput. Urban Sci. 2023, 3, 18. [Google Scholar] [CrossRef]
- Ascher, K.; Uffer, S. The high line effect. In Global Interchanges: Resurgence of the Skyscraper City; Council on Tall Buildings and Urban Habitat: Chicago, IL, USA, 2015; pp. 224–229. [Google Scholar]
- Li, Z.; Ma, J. Discussing street tree planning based on pedestrian volume using machine learning and computer vision. Build. Environ. 2022, 219, 109178. [Google Scholar] [CrossRef]
- Gibson, J.M.; Rodriguez, D.; Dennerlein, T.; Mead, J.; Hasch, T.; Meacci, G.; Levin, S. Predicting urban design effects on physical activity and public health: A case study. Health Place 2015, 35, 79–84. [Google Scholar] [CrossRef]
- Garden, F.L.; Jalaludin, B.B. Impact of Urban Sprawl on Overweight, Obesity, and Physical Activity in Sydney, Australia. J. Urban Health 2008, 86, 19–30. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Mavoa, S.; Villanueva, K.; Sugiyama, T.; Badland, H.; Kaczynski, A.T.; Owen, N.; Giles-Corti, B. Public open space, physical activity, urban design and public health: Concepts, methods and research agenda. Health Place 2015, 33, 75–82. [Google Scholar] [CrossRef]
- Carmona, M. The existential crisis of traditional shopping streets: The sun model and the place attraction paradigm. J. Urban Des. 2021, 27, 1–35. [Google Scholar] [CrossRef]
- Merten, L.; Kuhnimhof, T. Impacts of parking and accessibility on retail-oriented city centres. J. Transp. Geogr. 2023, 113, 103733. [Google Scholar] [CrossRef]
- Hagen, O.H. The relationship of the city centre to its surroundings: Correlations between urban spatial structures and inhabitants’ frequency of city-centre visits in four Norwegian cities. Cities 2025, 156, 105499. [Google Scholar] [CrossRef]
- Liu, S.; Su, C.; Zhang, J.; Takeda, S.; Liu, J.; Yang, R. Cross-Cultural Comparison of Urban Green Space through Crowdsourced Big Data: A Natural Language Processing and Image Recognition Approach. Land 2023, 12, 767. [Google Scholar] [CrossRef]
- Bull, C.; Boontharm, D.; Parin, C.; Radovic, D. (Eds.) Cross-Cultural Urban Design; Routledge: London, UK, 2007. [Google Scholar] [CrossRef]
- Jansson, M.; Herbert, E.; Zalar, A.; Johansson, M. Child-Friendly Environments—What, How and by Whom? Sustainability 2022, 14, 4852. [Google Scholar] [CrossRef]
- Derr, V.; Sitzoglou, M.; Gülgönen, T.; Corona, Y. Integrating Children and Youth Participation into Resilience Planning: Lessons from Three Resilient Cities. Can. J. Child. Rights/Rev. Can. Droits Enfants 2018, 5, 173–199. [Google Scholar] [CrossRef]
- McKoy, D.L.; Eppley, A.; Buss, S. Planning Cities with Young People and Schools: Forging Justice, Generating Joy; Routledge: London, UK, 2021. [Google Scholar] [CrossRef]
- Loebach, J.; Little, S.; Cox, A.; Owens, P.E. The Routledge Handbook of Designing Public Spaces for Young People: Processes, Practices and Policies for Youth Inclusion; Routledge: London, UK, 2020. [Google Scholar]
- Wong, Y.; Neo, X.S. Smart Cities for Aging Populations: Future Trends in Age-Friendly Public Health Policies. J. Foresight Public Health 2025, 2, 11–20. [Google Scholar]
- Boavida, J.; Ayanoglu, H.; Pereira, C.V.; Hernandez-Ramirez, R. Active Aging and Smart Public Parks. Geriatrics 2023, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.; Saunders, N. A Design for Life; Manchester Metropolitan University: Manchester, UK, 2021. [Google Scholar]
- Katz, I.; Kaplan, M. Intergenerational Community Planning; PAS Report 603; American Planning Association: Chicago, IL, USA, 2022. [Google Scholar]
- Fang, M.L.; Sixsmith, J.; Hamilton-Pryde, A.; Rogowsky, R.; Scrutton, P.; Pengelly, R.; Woolrych, R.; Creaney, R. Co-creating inclusive spaces and places: Towards an intergenerational and age-friendly living ecosystem. Front. Public Health 2023, 10, 996520. [Google Scholar] [CrossRef] [PubMed]
- Galaviz, K.I.; Zytnick, D.; Kegler, M.C.; Cunningham, S.A. Parental Perception of Neighborhood Safety and Children’s Physical Activity. J. Phys. Act. Health 2016, 13, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- National Association of City Transportation Officials; Global Designing Cities Initiative. Designing Streets for Kids; Island Press: Washington, DC, USA, 2019. [Google Scholar]
- Zysk, E. Identification of Determinants That Reduce Women’s Safety and Comfort in Urban Public Spaces (UPS). Sustainability 2024, 16, 10075. [Google Scholar] [CrossRef]
- Anneroth, E.; Ferlander, S.; Jukkala, T. Public Spaces are Failing Girls and Women: How Feminist Planning can Learn from Social Innovation. J. Public Space 2024, 9, 109–114. [Google Scholar] [CrossRef]
- Isha, A.; Raheja, G. Creating Gender-Inclusive Urban Public Spaces: Case Studies from India, Myanmar and Sweden. TJDSR 2022, 2, 80–111. [Google Scholar]
- Chu, C. Planning for Gender Inclusion: Gender-Inclusive Planning and Design Recommendations for Los Angeles Parks. Master’s Thesis, University of California, Los Angeles, CA, USA, 2022. [Google Scholar]
- Podestà, L. Gender Equality in Urban Planning: A Crucial Factor for Real Inclusive Development; Technical Report; Malmö University: Malmö, Sweden, 2023. [Google Scholar]
AI Tool | Placemaking Function | Application | Example Project | Outcome |
---|---|---|---|---|
Sentiment Analysis [28,29] | Community engagement | Analyzing public opinion from social media, surveys, forums | Decidim (Barcelona) | Prioritized 70,000+ citizen proposals |
Participatory Design Platforms [19,26] | Co-creation | Real-time design feedback and scenario testing | Block by Block (UN-Habitat + Minecraft) | Enabled youth and non-experts to co-design spaces |
Virtual/Augmented Reality (VR/AR) [31,32,33,34] | Immersive engagement | Simulating proposed urban changes | CityScopeAR (MIT Media Lab) | Improved understanding and feedback in urban projects |
Computer Vision [57] | Behavior analysis | Monitoring movement, social interaction, space usage | High Line (NYC) | Increased social interaction and leisure activities |
Multimodal Sentiment Classification [45,46,47,48] | Emotional mapping | Combining image and text to assess public perception | OutdoorSent | Deeper understanding of emotional responses |
Reinforcement Learning [67] | Design optimization | Simulating and optimizing urban layouts | CityLearn, MARL for 15-min cities | Improved energy efficiency and accessibility |
IoT + Edge Computing [76,77] | Real-time sensing | Environmental and behavioral monitoring | Array of Things (Chicago) | Privacy-preserving monitoring of urban metrics |
Generative AI (GANs) [52] | Participatory design | Generating synthetic urban design scenarios | PlacemakingAI | Enabled real-time visual co-design |
Thermal Imaging & LiDAR [78,79,80] | Accessibility & safety | Analyzing microclimates, crowd density, spatial barriers | MIT Senseable City Lab, Seoul | Improved accessibility and climate-adaptive design |
Multimodal Data Fusion [75] | Holistic urban analysis | Integrating sensors, social media, and surveys | Beijing City Lab | Comprehensive understanding of urban dynamics |
AI Method (Ref.) | Function | Application in Placemaking | Example or Dataset |
---|---|---|---|
Computer Vision (CNN, LSTM) [85,86,87,88] | Human Activity Recognition (HAR) | Detecting and classifying actions like walking, sitting, talking in public spaces | PLPS Dataset |
Crowd Behavior Modeling [90,91] | Social formation analysis | Identifying groups, pairs, and crowd dynamics | Physics of Human Crowds, Social Groups in Pedestrian Crowds |
Spatiotemporal Pattern Mining [94,95] | Temporal behavior trends | Analyzing seasonal and daily usage patterns of public spaces | Bryant Park longitudinal study |
Gesture Recognition (Thermal Imaging) [79,80] | Privacy-preserving interaction analysis | Detecting gestures, proximity, and movement patterns without facial data | Thermal cameras in parks |
Accessibility Detection (CV + GIS) [96,97] | Barrier identification | Mapping walkability, infrastructure gaps, and inclusive access | AI for accessibility, Italian green space study |
Emotion & Social Relation Recognition [89] | Affective computing | Understanding emotional states and social ties in public space use | PLPS Dataset |
Simulation-based Modeling (DRL, MARL) [92,93] | Predictive behavior modeling | Optimizing space design for movement, interaction, and resilience | Crowd simulation for healing spaces |
Target Group | Design Needs/ Priorities | Barriers to Access | Recommended Strategies |
---|---|---|---|
Children (e.g., [96,113,114,122]) | Play, safety, sensory engagement | Traffic, stranger danger, lack of play areas | Biophilic design, soft surfaces, participatory planning |
Adolescents (e.g., [116]) | Social interaction, autonomy | Over-surveillance, lack of informal spaces | Flexible, unsupervised zones, co-design |
Adults (e.g., [117,118]) | Multifunctional use, restoration | Time constraints, caregiving roles | Green spaces, seating, walkability |
Older Adults (e.g., [117,118,123]) | Accessibility, comfort, social connection | Fear of falling, isolation, poor infrastructure | Shaded seating, fitness equipment, age-friendly design |
Women & Girls (e.g., [124,125,126]) | Safety, caregiving support, inclusivity | Poor lighting, lack of restrooms, male-dominated spaces | Gender-sensitive design, participatory planning |
Gender-diverse/LGBTQ+ (e.g., [127,128]) | Belonging, visibility, safety | Exclusion, lack of representation | Inclusive programming, co-creation, flexible design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, P.J.S.; Rodrigues, J.M.F. Human-Centered AI in Placemaking: A Review of Technologies, Practices, and Impacts. Appl. Sci. 2025, 15, 9245. https://doi.org/10.3390/app15179245
Cardoso PJS, Rodrigues JMF. Human-Centered AI in Placemaking: A Review of Technologies, Practices, and Impacts. Applied Sciences. 2025; 15(17):9245. https://doi.org/10.3390/app15179245
Chicago/Turabian StyleCardoso, Pedro J. S., and João M. F. Rodrigues. 2025. "Human-Centered AI in Placemaking: A Review of Technologies, Practices, and Impacts" Applied Sciences 15, no. 17: 9245. https://doi.org/10.3390/app15179245
APA StyleCardoso, P. J. S., & Rodrigues, J. M. F. (2025). Human-Centered AI in Placemaking: A Review of Technologies, Practices, and Impacts. Applied Sciences, 15(17), 9245. https://doi.org/10.3390/app15179245