Assessing Vulnerability in Flood Prone Areas Using Analytic Hierarchy Process—Group Decision Making and Geographic Information System: A Case Study in Portugal
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.4. Hierarchy Structure of the Vulnerability Method
2.5. Online Expert Survey
2.6. Analytic Hierarchy Process—Group Decision-Making
2.7. Flood Vulnerability Index Mapping
3. Results and Discussion
3.1. Individual Criteria Weights
3.2. Group Criteria Weights
3.3. Final AHP-GDM Weights
3.4. Flood Vulnerability Index for Flood-Prone Areas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, P.P.; Pereira, S.; Zêzere, J.L.; Tavares, A.O.; Reis, E.; Garcia, R.A.C.; Oliveira, S.C. A comprehensive approach to understanding flood risk drivers at the municipal level. J. Environ. Manag. 2020, 260, 110127. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Mukhopadhyay, S. Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): Application in Coochbehar district of West Bengal, India. Nat. Hazards 2019, 99, 247–274. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Tang, Z.; Zeng, G. A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China. Water Resour. Manag. 2011, 25, 3465–3484. [Google Scholar] [CrossRef]
- Roy, D.C.; Blaschke, T. Spatial vulnerability assessment of floods in the coastal regions of Bangladesh. Geomat. Nat. Hazards Risk 2015, 6, 21–44. [Google Scholar] [CrossRef]
- Hoque, M.A.; Tasfia, S.; Ahmed, N.; Pradhan, B. Assessing Spatial Flood Vulnerability at Kalapara Upazila in Bangladesh Using an Analytic Hierarchy Process. Sensors 2019, 19, 1302. [Google Scholar] [CrossRef] [PubMed]
- Tate, E. Social vulnerability indices: A comparative assessment using uncertainty and sensitivity analysis. Nat. Hazards 2012, 63, 325–347. [Google Scholar] [CrossRef]
- Remo, J.W.F.; Pinter, N.; Mahgoub, M. Assessing Illinois’s flood vulnerability using Hazus-MH. Nat. Hazards 2015, 81, 265–287. [Google Scholar] [CrossRef]
- Tavares, A.O.; Santos, P.P.d.; Freire, P.; Fortunato, A.B.; Rilo, A.; Sá, L. Flooding hazard in the Tagus estuarine area: The challenge of scale in vulnerability assessments. Environ. Sci. Policy 2015, 51, 238–255. [Google Scholar] [CrossRef]
- Fernandez, P.; Mourato, S.; Moreira, M.; Pereira, L. A new approach for computing a flood vulnerability index using cluster analysis. Phys. Chem. Earth 2016, 94, 47–55. [Google Scholar] [CrossRef]
- Hu, S.; Cheng, X.; Zhou, D.; Zhang, H. GIS-based flood risk assessment in suburban areas: A case study of the Fangshan District, Beijing. Nat. Hazards 2017, 87, 1525–1543. [Google Scholar] [CrossRef]
- Roder, G.; Sofia, G.; Wu, Z.; Tarolli, P. Assessment of Social Vulnerability to Floods in the Floodplain of Northern Italy. Weather Clim. Soc. 2017, 9, 717–737. [Google Scholar] [CrossRef]
- de Brito, M.M.; Evers, M.; Almoradie, A.D.S. Participatory flood vulnerability assessment: A multi-criteria approach. Hydrol. Earth Syst. Sci. 2018, 22, 373–390. [Google Scholar] [CrossRef]
- Fekete, A. Social vulnerability change assessment: Monitoring longitudinal demographic indicators of disaster risk in Germany from 2005 to 2015. Nat. Hazards 2019, 95, 585–614. [Google Scholar] [CrossRef]
- Xie, W.; Meng, Q. An Integrated PCA–AHP Method to Assess Urban Social Vulnerability to Sea Level Rise Risks in Tampa, Florida. Sustainability 2023, 15, 2400. [Google Scholar] [CrossRef]
- Saaty, T. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- De Brito, M.M.; Evers, M. Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Karatzas, G.P. Flood management and a GIS modelling method to assess flood-hazard areas—A case study. Hydrol. Sci. J. 2011, 56, 212–225. [Google Scholar] [CrossRef]
- Stefanidis, S.; Stathis, D. Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Nat. Hazards 2013, 68, 569–585. [Google Scholar] [CrossRef]
- Lyu, H.-M.; Zhou, W.-H.; Shen, S.-L.; Zhou, A.-N. Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustain. Cities Soc. 2020, 56, 102103. [Google Scholar] [CrossRef]
- Gacu, J.G.; Monjardin, C.E.F.; Senoro, D.B.; Tan, F.J. Flood Risk Assessment Using GIS-Based Analytical Hierarchy Process in the Municipality of Odiongan, Romblon, Philippines. Appl. Sci. 2022, 12, 9456. [Google Scholar] [CrossRef]
- Pathan, A.I.; Girish Agnihotri, P.; Said, S.; Patel, D. AHP and TOPSIS based flood risk assessment—A case study of the Navsari City, Gujarat, India. Environ. Monit. Assess. 2022, 194, 509. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-R.; Yeh, C.-H.; Yu, B. Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Nat. Hazards 2011, 59, 1261–1276. [Google Scholar] [CrossRef]
- Zou, Q.; Zhou, J.; Zhou, C.; Song, L.; Guo, J. Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stoch. Environ. Res. Risk Assess. 2013, 27, 525–546. [Google Scholar] [CrossRef]
- Ganji, K.; Gharechelou, S.; Ahmadi, A.; Johnson, B.A. Riverine flood vulnerability assessment and zoning using geospatial data and MCDA method in Aq’Qala. Int. J. Disaster Risk Reduct. 2022, 82, 103345. [Google Scholar] [CrossRef]
- Mishra, K.; Sinha, R. Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology 2020, 350, 106861. [Google Scholar] [CrossRef]
- Renard, F. Flood risk management centred on clusters of territorial vulnerability. Geomat. Nat. Hazards Risk 2016, 8, 525–543. [Google Scholar] [CrossRef]
- Papaioannou, G.; Vasiliades, L.; Loukas, A. Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water Resour. Manag. 2015, 29, 399–418. [Google Scholar] [CrossRef]
- European Parliament and the Council of the European Union. Directive 2007/60/EC on the Assessment and Management of Flood Risks; Official Journal of the European Union: Brussels, Belgium, 2007. [Google Scholar]
- Fernandez, P.; Mourato, S.; Moreira, M. Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia (Portugal). Geomat. Nat. Hazards Risk 2015, 7, 1367–1389. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, G.; Hong, W.-C.; Xu, Y. Consensus models for AHP group decision making under row geometric mean prioritization method. Decis. Support Syst. 2010, 49, 281–289. [Google Scholar] [CrossRef]
- Aguarón, J.; Escobar, M.T.; Moreno-Jiménez, J.M.; Turón, A. AHP-Group Decision Making Based on Consistency. Mathematics 2019, 7, 242. [Google Scholar] [CrossRef]
- Srdevic, Z.; Blagojevic, B.; Srdjevic, B. AHP based group decision making in ranking loan applicants for purchasing irrigation equipment: A case study. Bulg. J. Agric. Sci. 2011, 17, 531–543. [Google Scholar]
- DGT. Carta de Uso e Ocupação do Solo. Registo Nacional de Dados Geográficos. SNIG; Direção-Geral do Território: Lisboa, Portugal, 2018. Available online: https://geo2.dgterritorio.gov.pt/geoserver/COS2018/wms?service=wms&version=1.3.0&request=GetCapabilities (accessed on 5 September 2022).
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Fekete, A. Validation of a social vulnerability index in context to river-floods in Germany. Nat. Hazards Earth Syst. Sci. 2009, 9, 393–403. [Google Scholar] [CrossRef]
- Kuhlicke, C.; Scolobig, A.; Tapsell, S.; Steinführer, A.; Marchi, B. Contextualizing social vulnerability: Findings from case studies across Europe. Nat. Hazards 2011, 58, 789–810. [Google Scholar] [CrossRef]
- Martins, V.N.; Silva, D.S.; Cabral, P. Social vulnerability assessment to seismic risk using multicriteria analysis: The case study of Vila Franca do Campo (São Miguel Island, Azores, Portugal). Nat. Hazards 2012, 62, 385–404. [Google Scholar] [CrossRef]
- Hewitt, K. Regions of Risk: A Geographical Introduction to Disasters; Themes in Resource Management Addison Wesley Longman: Essex, UK, 1997; p. 416. [Google Scholar]
- Simonovic, S.P.; McBean, G.; Prodanovic, P.; Burn, D.H.; Wey, K.; Kay, P.; Emerson, A.; Mortsch, L.; Hebb, A.; Goldt, R.; et al. Floods: Mapping Vulnerability in the Upper Thames Watershed under a Changing Climate; University of Waterloo, Environment Canada and Upper Thames River Conservation Authority: Waterloo, ON, Canada, 2007. [Google Scholar]
- Schneiderbauer, S. Risk and Vulnerability to Natural Disasters—From Broad View to Focused Perspective; University Berlin: Berlin, Germany, 2007. [Google Scholar]
- Tapsell, S.M.; Penning-Rowsell, E.C.; Tunstall, S.M.; Wilson, T.L. Vulnerability to flooding: Health and social dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2002, 360, 1511–1525. [Google Scholar] [CrossRef]
- Balica, S.F.; Wright, N.G.; Meulen, F. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat. Hazards 2012, 64, 73–105. [Google Scholar] [CrossRef]
- Morris, J.; Brewin, P. The impact of seasonal flooding on agriculture: The spring 2012 floods in Somerset, England. J. Flood Risk Manag. 2013, 7, 128–140. [Google Scholar] [CrossRef]
- Whitlow, T.H.; Harris, R.W. Flood Tolerance in Plants: A State-of-the-Art Review; Tech. Report E-92; U.S. Army Engineer Waterways: Vicksburg, MS, USA, 1979.
- Cardona, O.D. Indicators of Disaster Risk and Risk Management: Summary Report; Inter-American Development Bank: Washington, DC, USA, 2005. [Google Scholar]
- Masozera, M.; Bailey, M.; Kerchner, C. Distribution of impacts of natural disasters across income groups: A case study of New Orleans. Ecol. Econ. 2007, 63, 299–306. [Google Scholar] [CrossRef]
- Krueger, T.; Page, T.; Hubacek, K.; Smith, L.; Hiscock, K. The role of expert opinion in environmental modelling. Environ. Model. Softw. 2012, 36, 4–18. [Google Scholar] [CrossRef]
- Wedley, W.C. Consistency prediction for incomplete AHP matrices. Math. Comput. Model. 1993, 17, 151–161. [Google Scholar] [CrossRef]
- Ho, D.; Newell, G.; Walker, A. The importance of property-specific attributes in assessing CBD office building quality. J. Prop. Invest. Financ. 2005, 23, 424–444. [Google Scholar] [CrossRef]
- Rygel, L.; O’sullivan, D.; Yarnal, B. A Method for Constructing a Social Vulnerability Index: An Application to Hurricane Storm Surges in a Developed Country. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 741–764. [Google Scholar] [CrossRef]
- Flanagan, B.E.; Gregory, E.W.; Hallisey, E.J.; Heitgerd, J.L.; Lewis, B. A Social Vulnerability Index for Disaster Management. J. Homel. Secur. Emerg. Manag. 2011, 8. [Google Scholar] [CrossRef]
P | Population | B | Buildings |
P1 | Age structure | B1 | Building year |
P11 | Percent of residents under 14 years old | B11 | Percent of constructions built before 1980 |
P12 | Percent of residents over 65 years old | B12 | Percent of constructions built after 1980 |
P13 | Percent of residents between 14 and 65 years old | B2 | Floors |
P2 | Gender | B21 | Percent of buildings with one or two floors |
P21 | Percent of male residents | B22 | Percent of buildings with three or more floors |
P22 | Percent of female residents | B3 | Function |
P3 | Family Number | B31 | Percent of buildings that are exclusively or mainly houses |
P31 | Percent of households over 5 individuals | B32 | Percent of buildings that have a non-residential function |
P32 | Percent of households under 4 individuals | B4 | Percent of buildings that are a collective accommodation |
S | Socio Economy | E | Exposed elements |
S1 | Level of education | E1 | Land use |
S11 | Percent of individuals who completed junior high school | E11 | Percent of urban area |
S12 | Percent of individuals who completed high school | E12 | Percent of agricultural area |
S13 | Percent of individuals who completed university | E13 | Percent of forestry area |
S2 | Housing occupancy | E2 | Population density (Inhab/km2) |
S21 | Percent of homes owned | E3 | Building density (buildings/km2) |
S22 | Percent of homes rented | ||
S3 | Percent of unemployment rate | ||
S4 | Percent of illiteracy rate |
Less Important | More Important | |||||||
---|---|---|---|---|---|---|---|---|
Extremely | Very Strongly | Strongly | Moderately | Equally | Moderately | Strongly | Very Strongly | Extremely |
1/9 | 1/7 | 1/5 | 1/3 | 1 | 3 | 5 | 7 | 9 |
Statistics | CR | ED |
---|---|---|
Minimum | 0.00 | 0.00 |
Maximum | 0.73 | 20.79 |
Median | 0.08 | 2.63 |
Quartile 75 | 0.16 | 4.44 |
Percentile 90 | 0.28 | 7.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourato, S.; Fernandez, P.; Pereira, L.G.; Moreira, M. Assessing Vulnerability in Flood Prone Areas Using Analytic Hierarchy Process—Group Decision Making and Geographic Information System: A Case Study in Portugal. Appl. Sci. 2023, 13, 4915. https://doi.org/10.3390/app13084915
Mourato S, Fernandez P, Pereira LG, Moreira M. Assessing Vulnerability in Flood Prone Areas Using Analytic Hierarchy Process—Group Decision Making and Geographic Information System: A Case Study in Portugal. Applied Sciences. 2023; 13(8):4915. https://doi.org/10.3390/app13084915
Chicago/Turabian StyleMourato, Sandra, Paulo Fernandez, Luísa Gomes Pereira, and Madalena Moreira. 2023. "Assessing Vulnerability in Flood Prone Areas Using Analytic Hierarchy Process—Group Decision Making and Geographic Information System: A Case Study in Portugal" Applied Sciences 13, no. 8: 4915. https://doi.org/10.3390/app13084915
APA StyleMourato, S., Fernandez, P., Pereira, L. G., & Moreira, M. (2023). Assessing Vulnerability in Flood Prone Areas Using Analytic Hierarchy Process—Group Decision Making and Geographic Information System: A Case Study in Portugal. Applied Sciences, 13(8), 4915. https://doi.org/10.3390/app13084915