Physical and Antioxidant Properties of Innovative Gluten-Free Bread with the Addition of Hemp Inflorescence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Process of Making the Gluten-Free Bread
2.3. Determination of the Basic Physical Parameters of the Bread
2.4. Determination of the Texture and Sensory Parameters of the Bread
2.5. Determination of Antioxidants
2.5.1. Preparation of the Extracts for the Chemical Analyses
2.5.2. Determination of the Total Phenolic Content (TPC)
2.5.3. Determination of the Flavonoid Content (TFC)
2.5.4. Determination of the Antioxidant Activity (DPPH and FRAP)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Basic Physical Properties of the Gluten-Free Bread with the Addition of Hemp Inflorescence
3.2. Texture and Sensory Analysis of Gluten-Free Bread with the Addition of Hemp Inflorescence
3.3. The Bioactive Compound Content of Gluten-Free Bread with Hemp Inflorescence Addition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Ingredients | 0 | 1% | 2% | 3% | 4% | 5% |
---|---|---|---|---|---|---|
Rice flour (g) | 300 | 297 | 294 | 291 | 288 | 285 |
Hemp inflorescence (g) | 0 | 3 | 6 | 9 | 12 | 15 |
Water (mL) | 360 | 370 | 380 | 390 | 400 | 410 |
Guar gum (g) | 6 | 6 | 6 | 6 | 6 | 6 |
Dry instant yeast (g) | 4 | 4 | 4 | 4 | 4 | 4 |
Salt (g) | 6 | 6 | 6 | 6 | 6 | 6 |
References
- Rupasinghe, H.P.V.; Davis, A.; Kumar, S.K.; Murray, B.; Zheljazkov, V.D. Industrial Hemp (Cannabis sativa subsp. sativa) as an Emerging Source for Value-Added Functional Food Ingredients and Nutraceuticals. Molecules 2020, 25, 4078. [Google Scholar] [CrossRef] [PubMed]
- Spano, M.; Di Matteo, G.; Ingallina, C.; Botta, B.; Quaglio, D.; Ghirga, F.; Balducci, S.; Cammarone, S.; Campiglia, E.; Giusti, A.M.; et al. A Multimethodological Characterization of Cannabis sativa L. Inflorescences from Seven Dioecious Cultivars Grown in Italy: The Effect of Different Harvesting Stages. Molecules 2021, 26, 2912. [Google Scholar] [CrossRef]
- Iftikhar, A.; Zafar, U.; Ahmed, W.; Shabbir, M.A.; Sameen, A.; Sahar, A.; Bhat, Z.F.; Kowalczewski, P.Ł.; Jarzębski, M.; Aadil, R.M. Applications of Cannabis Sativa L. in Food and Its Therapeutic Potential: From a Prohibited Drug to a Nutritional Supplement. Molecules 2021, 26, 7699. [Google Scholar] [CrossRef] [PubMed]
- Ranalli, P.M.; Di Candilo, G.; Mandolino, G.; Grassi, A.; Carboni. Hemp for sustainable agricultural systems. Agro-Food Ind. Hi-Tech. 1999, 2, 33–3899. [Google Scholar]
- Nissen, L.; Casciano, F.; Babini, E.; Gianotti, A. Chapter 10—Industrial Hemp Foods and Beverages and Product Properties; Industrial Hemp; Academic Press: Cambridge, MA, USA, 2022; pp. 219–246. [Google Scholar]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 1999, 140, 65–72. [Google Scholar] [CrossRef]
- Ranalli, P.; Venturi, G. Hemp as a raw material for industrial applications. Euphytica 2004, 140, 1–5. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environ Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Lewis-Bakker, M.M.; Yang, Y.; Vyawahare, R.; Kotra, L.P. Extractions of Medical Cannabis Cultivars and the Role of Decarboxylation in Optimal Receptor Responses. Cannabis Cannabinoid Res. 2019, 4, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Fiorini, D.; Molle, A.; Nabissi, M.; Santini, G.; Benelli, G.; Maggi, F. Valorizing industrial hemp (Cannabis sativa L.) by-products: Cannabidiol enrichment in the inflorescence essential oil optimizing sample pre-treatment prior to distillation. Ind. Crops Prod. 2019, 128, 581–589. [Google Scholar] [CrossRef]
- Jin, D.; Dai, K.; Xie, Z.; Chen, J. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Sci. Rep. 2020, 10, 3309. [Google Scholar] [CrossRef] [Green Version]
- Spano, M.; Di Matteo, G.; Ingallina, C.; Sobolev, A.P.; Giusti, A.M.; Vinci, G.; Cammarone, S.; Tortora, C.; Lamelza, L.; Prencipe, S.A.; et al. Industrial Hemp (Cannabis sativa L.) Inflorescences as Novel Food: The Effect of Different Agronomical Practices on Chemical Profile. Foods 2022, 11, 3658. [Google Scholar] [CrossRef]
- Nagy, D.U.; Cianfaglione, K.; Maggi, F.; Sut, S.; Dall’Acqua, S. Chemical Characterization of Leaves, Male and Female Flowers from Spontaneous Cannabis (Cannabis sativa L.) Growing in Hungary. Chem Biodivers 2019, 9, 90. [Google Scholar]
- Izzo, L.; Castaldo, L.; Narváez, A.; Graziani, G.; Gaspari, A.; Rodríguez-Carrasco, Y.; Ritieni, A. Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giupponi, L.; Leoni, V.; Pavlovic, R.; Giorgi, A. Influence of Altitude on Phytochemical Composition of Hemp Inflorescence: A Metabolomic Approach. Molecules 2020, 25, 1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanuš, L.O.; Meyer, S.M.; Muñoz, E.; Taglialatela-Scafati, O.; Appendino, G. Phytocannabinoids: A unified critical inventory. Nat. Prod. Rep. 2016, 33, 1357–1392. [Google Scholar] [CrossRef] [Green Version]
- Da Porto, C.; Decorti, D.; Natolino, A. Separation of aroma compounds from industrial hemp inflorescences (Cannabis sativa L.) by supercritical CO2 extraction and on-line fractionation. Ind. Crops Prod. 2014, 58, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Bertoli, A.; Tozzi, S.; Pistelli, L.; Angelini, L.G. Fibre hemp inflorescences: From crop-residues to essential oil production. Ind. Crops Prod. 2010, 32, 329–337. [Google Scholar] [CrossRef]
- Bakro, F.; Jedryczka, M.; Wielgusz, K.; Sgorbini, B.; Inchingolo, R.; Cardenia, V. Simultaneous determination of terpenes and cannabidiol in hemp (Cannabis sativa L.) by fast gas chromatography with flame ionization detection. J. Sep. Sci. 2020, 43, 2817–2826. [Google Scholar] [CrossRef]
- Mikulec, A.; Kowalski, S.; Sabat, R.; Skoczylas, Ł.; Tabaszewska, M.; Wywrocka-Gurgul, A. Hemp flour as a valuable component for enriching physicochemical and antioxidant properties of wheat bread. LWT 2019, 102, 64–172. [Google Scholar] [CrossRef]
- Švec, I.; Hrušková, M. Properties and nutritional value of wheat bread enriched by hemp products. Potravin. Slovak J. Food Sci. 2015, 9, 304–308. [Google Scholar] [CrossRef]
- Švec, I.; Hrušková, M.; Jurinová, I. Technological and nutritional aspect of different hemp types addition: Comparison of flour and whole meal effect. Croat. J. Food Sci. Technol. 2015, 7, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Hrušková, M.; Švec, I.; Jurinová, I. Composite Flours-Characteristics of Wheat/Hemp and Wheat/Teff Models. Food Sci. Nutr. 2012, 3, 1484–1490. [Google Scholar] [CrossRef] [Green Version]
- Bădărău, C.L.; Apostol, L.; Mihăilă, L. Effects of Hemp Flour, Seeds and Oil Additions on Bread Quality. Int. J. Eng. Res. Appl. 2018, 8, 73–78. [Google Scholar]
- Rusu, I.E.; Marc (Vlaic), R.A.; Mureşan, C.C.; Mureşan, A.E.; Mureşan, V.; Pop, C.R.; Chiş, M.S.; Man, S.M.; Filip, M.R.; Onica, B.-M.; et al. Hemp (Cannabis sativa L.) Flour-Based Wheat Bread as Fortified Bakery Product. Plants 2021, 10, 1558. [Google Scholar] [CrossRef] [PubMed]
- Wiedemair, V.; Gruber, K.; Knöpfle, N.; Bach, K.E. Technological Changes in Wheat-Based Breads Enriched with Hemp Seed Press Cakes and Hemp Seed Grit. Molecules 2022, 27, 1840. [Google Scholar] [CrossRef] [PubMed]
- Jagelaviciute, J.; Cizeikiene, D. The influence of non-traditional sourdough made with quinoa, hemp and chia flour on the characteristics of gluten-free maize/rice bread. LWT 2021, 137, 110457. [Google Scholar] [CrossRef]
- Hayward, L.; McSweeney, M.B. Acceptability of bread made with hemp (Cannabis sativa subsp. sativa) flour evaluated fresh and following a partial bake method. J. Food Sci 2020, 85, 2915–2922. [Google Scholar] [CrossRef]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. Hemp (Cannabis sativa subsp. sativa) flour and protein preparation as natural nutrients and structure forming agents in starch based gluten-free bread. LWT 2017, 84, 143–150. [Google Scholar] [CrossRef]
- Bugarín, R.; Gómez, M. Can Citrus Fiber Improve the Quality of Gluten-Free Breads? Foods 2023, 12, 1357. [Google Scholar] [CrossRef]
- Aguiar, E.V.; Santos, F.G.; Krupa-Kozak, U.; Capriles, V.D. Nutritional facts regarding commercially available gluten-free bread worldwide: Recent advances and future challenges. Crit. Rev. Food Sci. Nutr. 2023, 63, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Kowalczewski, P.Ł.; Baranowska, H.M.; Masewicz, Ł.; Amarowicz, R.; Krupa-Kozak, U. Effect of Flaxseed Oil Cake Extract on the Microbial Quality, Texture and Shelf Life of Gluten-Free Bread. Foods 2023, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Rybicka, I.; Doba, K.; Bińczak, O. Improving the sensory and nutritional value of gluten-free bread. Int. J. Food Sci. Technol. 2019, 54, 2661–2667. [Google Scholar] [CrossRef]
- Cantero, L.; Salmerón, J.; Miranda, J.; Larretxi, I.; Fernández-Gil, M.d.P.; Bustamante, M.Á.; Matias, S.; Navarro, V.; Simón, E.; Martínez, O. Performance of Apple Pomace for Gluten-Free Bread Manufacture: Effect on Physicochemical Characteristics and Nutritional Value. Appl. Sci. 2022, 12, 5934. [Google Scholar] [CrossRef]
- Różańska, M.B.; Kokolus, P.; Królak, J.; Jankowska, P.; Osoś, A.; Romanowska, M.; Szala, Ł.; Kowalczewski, P.Ł.; Lewandowicz, J.; Masewicz, Ł.; et al. Insight into the Gluten-Free Dough and Bread Properties Obtained from Extruded Rice Flour: Physicochemical, Mechanical, and Molecular Studies. Appl. Sci. 2023, 13, 4033. [Google Scholar] [CrossRef]
- Różyło, R.; Rudy, S.; Krzykowski, A.; Dziki, D. Novel Application of Freeze-Dried Amaranth Sourdough in Gluten-Free Bread Production. J. Food Process Eng. 2015, 38, 135–143. [Google Scholar] [CrossRef]
- Ziemichód, A.; Wójcik, M.; Różyło, R. Seeds of Plantago psyllium and Plantago ovata: Mineral composition, grinding, and use for gluten-free bread as substitutes for hydrocolloids. J. Food Process Eng. 2019, 42, e12931. [Google Scholar] [CrossRef]
- Różyło, R.; Piekut, J.; Wójcik, M.; Kozłowicz, K.; Smolewska, M.; Krajewska, M.; Szmigielski, M.; Bourekoua, H. Black cumin pressing waste material as a functional additive for starch bread. Materials 2021, 14, 4560. [Google Scholar] [CrossRef]
- Różyło, R.; Wójcik, M.; Dziki, D.; Biernacka, B.; Cacak-Pietrzak, G.; Gawłowski, S.; Zdybel, A. Freeze-dried elderberry and chokeberry as natural colorants for gluten-free wafer sheets. Int. Agroph. 2019, 33, 217–225. [Google Scholar] [CrossRef]
- Lim, H.S.; Park, S.H.; Ghafoor, K.; Hwang, S.Y.; Park, J. Quality and antioxidant properties of bread containing turmeric (Curcuma longa L.) cultivated in South Korea. Food Chem. 2011, 124, 1577–1582. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Kobus, Z.; Krzywicka, M.; Pecyna, A.; Buczaj, A. Process efficiency and energy consumption during the ultrasound-assisted extraction of bioactive substances from hawthorn berries. Energies 2021, 14, 7638. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Benzie, I.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power: The FRAP Assay”. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Kobus, Z.; Buczaj, A.; Pecyna, A.; Kapica, J.; Findura, P.; Kocira, S. Application of Response Surface Method in Pulsed Ultrasound-Assisted Extraction of Complex Plant Materials—A Case Study on Cannabis sativa L. Appl. Sci. 2023, 13, 760. [Google Scholar] [CrossRef]
- Kobus, Z.; Krzywicka, M.; Starek-Wójcicka, A.; Sagan, A. Effect of the duty cycle of the ultrasonic processor on the efficiency of extraction of phenolic compounds from Sorbus intermedia. Sci. Rep. 2022, 12, 8311. [Google Scholar] [CrossRef]
- Hrušková, M.; Švec, I. Hemp products for food and medicine using. In Proceedings of the 8th International Congress FLOUR-BREAD 2015—10th Croatian Congress of Cereal Technologists, Opatija, Croatia, 28–30 October 2015; pp. 106–112. [Google Scholar]
- Wang, Y.Y.; Norajit, K.; Ryu, G.H. Influence of Extruded Hemp-Rice Flour Addition on the Physical Properties of Wheat Bread. Prev. Nutr. Food Sci. 2011, 16, 62–66. [Google Scholar] [CrossRef]
- Pojić, M.; Dapčević Hadnađev, T.; Hadnađev, M.; Rakita, S.; Brlek, T. Hemp Seed Cake in Bread Making. J. Food Qual. 2015, 38, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Ertaş, N.; Aslan, M. Antioxidant and physicochemical properties of cookies containing raw and roasted hemp flour. Acta Sci. Pol. Technol. Aliment. 2020, 19, 177–184. [Google Scholar]
- Apostol, L.; Popa, M.; Mustatea, G. Cannabis sativa L. partially skimmed flour as source of bio-compounds in the bakery industry. Rom. Biotechnol. Lett. 2015, 20, 10835–10844. [Google Scholar]
- Frassinetti, S.; Moccia, E.; Caltavuturo, L.; Gabriele, M.; Longo, V.; Bellani, L.; Giorgi, G.; Giorgetti, L. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem. 2018, 262, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Mkpenie, V.; Essien, E.; Udoh, I. Effect of extraction conditions on total polyphenol contents, antioxidant and antimicrobial activities of Cannabis sativa L. Electron. J. Environ. Agric. Food Chem. 2012, 11, 300–307. [Google Scholar]
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.L.; Sorrentino, G.; Di Stasio, M.; La Cara, F.; Volpe, M.G. Comparative Study of Chemical, Biochemical Characteristic and ATR-FTIR Analysis of Seeds, Oil and Flour of the Edible Fedora Cultivar Hemp (Cannabis sativa L.). Molecules 2018, 24, 83. [Google Scholar] [CrossRef] [Green Version]
- Vonapartis, E.; Aubin, M.-P.; Seguin, P.; Mustafa, A.F.; Charron, J.-B. Seed composition of ten industrial hemp cultivars approved for production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Moccia, S.; Siano, F.; Russo, G.L.; Volpe, M.G.; La Cara, F.; Pacifico, S.; Piccolella, S.; Picariello, G. Antiproliferative and antioxidant effect of polar hemp extracts (Cannabis sativa L., Fedora cv.) in human colorectal cell lines. Int. J. Food Sci. Nutr. 2020, 71, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Kobus, Z.; Pecyna, A.; Buczaj, A.; Krzywicka, M.; Przywara, A.; Nadulski, R. Optimization of the Ultrasound-Assisted Extraction of Bioactive Compounds from Cannabis sativa L. Leaves and Inflorescences Using Response Surface Methodology. Appl. Sci. 2022, 12, 6747. [Google Scholar] [CrossRef]
Addition of Hemp Inflorescence (%) | Crumb Color Values | |||||
---|---|---|---|---|---|---|
L*-Value | a*-Value | b*-Value | C*-Value | h°-Value | ΔE | |
0 | 75.17 ± 0.63 d | −0.02 ± 0.03 a | 13.59 ± 0.20 a | 13.59 ± 0.20 a | 90.10 ± 0.12 b | |
1 | 65.83 ± 0.26 c,* | 0.79 ± 0.09 b,* | 19.39 ± 0.39 b,* | 19.41 ± 0.39 b,* | 87.68 ± 0.24 a,* | 11.0 |
2 | 64.98 ± 0.64 c,* | 0.86 ± 0.06 b,* | 21.34 ± 0.33 c,* | 21.36 ± 0.33 c,* | 87.69 ± 0.09 a,* | 12.8 |
3 | 57.78 ± 0.64 b,* | 1.64 ± 0.06 c,* | 24.95 ± 0.33 d,* | 25.01 ± 0.33 d,* | 86.24 ± 0.09 a,* | 20.8 |
4 | 56.35 ± 0.86 b,* | 1.79 ± 0.10 c,* | 26.54 ± 0.26 e,* | 26.60 ± 0.26 e,* | 86.15 ± 0.17 a,* | 22.9 |
5 | 51.53 ± 0.61 a,* | 2.14 ± 0.10 d,* | 28.22 ± 0.42 f,* | 28.31 ± 0.42 f,* | 85.66 ± 0.17 a,* | 27.9 |
Addition of Hemp Inflorescence (%) | Hardness (N) | Springiness (−) | Cohesiveness (−) | Chewiness (N) |
---|---|---|---|---|
0 | 15.17 ± 0.08 b | 0.75 ± 0.01 a | 0.34 ± 0.01 a,b | 3.89 ± 0.17 b |
1 | 13.11 ± 0.61 a,* | 0.74 ± 0.02 a | 0.33 ± 0.02 a | 3.18 ± 0.22 a,* |
2 | 13.84 ± 0.89 a,* | 0.77 ± 0.02 a | 0.32 ± 0.01 a | 3.45 ± 0.07 a,b |
3 | 14.82 ± 0.51 a,b | 0.79 ± 0.02 a,b | 0.33 ± 0.01 a | 3.85 ± 0.16 b |
4 | 15.76 ± 0.74 b | 0.84 ± 0.04 b,* | 0.32 ± 0.01 a | 4.23 ± 0.18 c,* |
5 | 14.59 ± 0.52 b | 0.82 ± 0.02 b,* | 0.35 ± 0.01 b | 4.17 ± 0.10 c,* |
Addition of Hemp Inflorescence (%) | TPC (mg GAE·g−1 d.m.) | TFC (mg QE·g−1 d.m.) | DPPH (µM TE·g−1 d.m.) | FRAP (µM TE·g−1 d.m.) |
---|---|---|---|---|
0 | 0.22 ± 0.0 a | 0.03 ± 0.0 a | 1.12 ± 0.08 a | 1.25 ± 0.06 a |
1 | 0.30 ± 0.01 b,* | 0.06 ± 0.0 b,* | 1.66 ± 0.12 b,* | 1.25 ± 0.18 a |
2 | 0.41 ± 0.01 c,* | 0.08 ± 0.0 c,* | 2.08 ± 0.16 c,* | 1.60 ± 0.08 b,* |
3 | 0.44 ± 0.01 c,* | 0.10 ± 0.0 d,* | 2.38 ± 0.06 d,* | 2.09 ± 0.16 c,* |
4 | 0.58 ± 0.01 d,* | 0.13 ± 0.01 e,* | 2.92 ± 0.02 e,* | 2.27 ± 0.06 c,* |
5 | 0.65 ± 0.00 e,* | 0.16 ± 0.01 f,* | 3.23 ± 0.06 f,* | 3.00 ± 0.06 d,* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecyna, A.; Buczaj, A.; Różyło, R.; Kobus, Z. Physical and Antioxidant Properties of Innovative Gluten-Free Bread with the Addition of Hemp Inflorescence. Appl. Sci. 2023, 13, 4889. https://doi.org/10.3390/app13084889
Pecyna A, Buczaj A, Różyło R, Kobus Z. Physical and Antioxidant Properties of Innovative Gluten-Free Bread with the Addition of Hemp Inflorescence. Applied Sciences. 2023; 13(8):4889. https://doi.org/10.3390/app13084889
Chicago/Turabian StylePecyna, Anna, Agnieszka Buczaj, Renata Różyło, and Zbigniew Kobus. 2023. "Physical and Antioxidant Properties of Innovative Gluten-Free Bread with the Addition of Hemp Inflorescence" Applied Sciences 13, no. 8: 4889. https://doi.org/10.3390/app13084889
APA StylePecyna, A., Buczaj, A., Różyło, R., & Kobus, Z. (2023). Physical and Antioxidant Properties of Innovative Gluten-Free Bread with the Addition of Hemp Inflorescence. Applied Sciences, 13(8), 4889. https://doi.org/10.3390/app13084889