Body Cell Mass from Bioelectrical Impedance Analysis in Patients with Stroke Undergoing Rehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Rehabilitation Treatment
2.3. Clinical Assessment and Anthropometric Measurements
2.4. Bioelectrical Impedance Analysis
2.5. Functional Mobility Assessment: Performance in Activity of Daily Living
2.6. Statistical Analysis
3. Results
3.1. Participants and Baseline Characteristics
3.2. Change in Body Composition
3.3. Body Composition and Performance in ADL
3.4. Body Composition and Recovery
3.5. The Role of BCM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Thayabaranathan, T.; Donnan, G.A.; Howard, G.; Howard, V.J.; Rothwell, P.M.; Feigin, V.; Norrving, B.; Owolabi, M.; Pandian, J.; et al. Global Stroke Statistics 2019. Int. J. Stroke 2020, 15, 819–838. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yin, M.; Cai, Z. Research and Application Advances in Rehabilitation Assessment of Stroke. J. Zhejiang Univ. Sci. B 2022, 23, 625–641. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, E.R.; Shih, M. Stroke Rehabilitation: Recent Progress and Future Promise. OTJR 2022, 42, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Prabhakaran, S.; Zarahn, E.; Riley, C.; Speizer, A.; Chong, J.Y.; Lazar, R.M.; Marshall, R.S.; Krakauer, J.W. Inter-Individual Variability in the Capacity for Motor Recovery after Ischemic Stroke. Neurorehabil. Neural Repair 2008, 22, 64–71. [Google Scholar] [CrossRef]
- Kwakkel, G.; Wagenaar, R.C.; Kollen, B.J.; Lankhorst, G.J. Predicting Disability in Stroke—A Critical Review of the Literature. Age Ageing 1996, 25, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Huppertz, V.; Guida, S.; Holdoway, A.; Strilciuc, S.; Baijens, L.; Schols, J.M.G.A.; van Helvoort, A.; Lansink, M.; Muresanu, D.F. Impaired Nutritional Condition After Stroke From the Hyperacute to the Chronic Phase: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 780080. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chiu, E.-C. Nutritional Status as a Predictor of Comprehensive Activities of Daily Living Function and Quality of Life in Patients with Stroke. NeuroRehabilitation 2021, 48, 337–343. [Google Scholar] [CrossRef]
- Nishioka, S.; Wakabayashi, H.; Nishioka, E.; Yoshida, T.; Mori, N.; Watanabe, R. Nutritional Improvement Correlates with Recovery of Activities of Daily Living among Malnourished Elderly Stroke Patients in the Convalescent Stage: A Cross-Sectional Study. J. Acad. Nutr. Diet. 2016, 116, 837–843. [Google Scholar] [CrossRef]
- Shimazu, S.; Yoshimura, Y.; Kudo, M.; Nagano, F.; Bise, T.; Shiraishi, A.; Sunahara, T. Frequent and Personalized Nutritional Support Leads to Improved Nutritional Status, Activities of Daily Living, and Dysphagia after Stroke. Nutrition 2021, 83, 111091. [Google Scholar] [CrossRef]
- Sabbouh, T.; Torbey, M.T. Malnutrition in Stroke Patients: Risk Factors, Assessment, and Management. Neurocrit. Care 2018, 29, 374–384. [Google Scholar] [CrossRef]
- Di Vincenzo, O.; Luisi, M.L.E.; Alicante, P.; Ballarin, G.; Biffi, B.; Gheri, C.F.; Scalfi, L. The Assessment of the Risk of Malnutrition (Undernutrition) in Stroke Patients. Nutrients 2023, 15, 683. [Google Scholar] [CrossRef] [PubMed]
- Scherbakov, N.; von Haehling, S.; Anker, S.D.; Dirnagl, U.; Doehner, W. Stroke Induced Sarcopenia: Muscle Wasting and Disability after Stroke. Int. J. Cardiol. 2013, 170, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Okura, K.; Okamura, M.; Nawata, K.; Shinohara, A.; Tanaka, K.; Katayama, S. Measuring and Monitoring Skeletal Muscle Mass after Stroke: A Review of Current Methods and Clinical Applications. J. Stroke Cerebrovasc. Dis. 2021, 30, 105736. [Google Scholar] [CrossRef]
- Kim, S.; Won, C.W. Sex-Different Changes of Body Composition in Aging: A Systemic Review. Arch. Gerontol. Geriatr. 2022, 102, 104711. [Google Scholar] [CrossRef]
- English, C.; Thoirs, K.; Coates, A.; Ryan, A.; Bernhardt, J. Changes in Fat Mass in Stroke Survivors: A Systematic Review. Int. J. Stroke 2012, 7, 491–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherbakov, N.; Sandek, A.; Doehner, W. Stroke-Related Sarcopenia: Specific Characteristics. J. Am. Med. Dir. Assoc. 2015, 16, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, K.; Watanabe, M.; Nosaki, Y.; Hara, T.; Iwai, K.; Mokuno, K. Correlation Between Skeletal Muscle Mass Deficit and Poor Functional Outcome in Patients with Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2020, 29, 104623. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, T.; Nishioka, S.; Taguchi, S.; Yamanouchi, A. Sarcopenia as a Predictor of Activities of Daily Living Capability in Stroke Patients Undergoing Rehabilitation. Geriatr. Gerontol. Int. 2019, 19, 1124–1128. [Google Scholar] [CrossRef]
- Siotto, M.; Germanotta, M.; Guerrini, A.; Pascali, S.; Cipollini, V.; Cortellini, L.; Ruco, E.; Khazrai, Y.M.; De Gara, L.; Aprile, I. Relationship between Nutritional Status, Food Consumption and Sarcopenia in Post-Stroke Rehabilitation: Preliminary Data. Nutrients 2022, 14, 4825. [Google Scholar] [CrossRef]
- Matsushita, T.; Nishioka, S.; Taguchi, S.; Yamanouchi, A.; Okazaki, Y.; Oishi, K.; Nakashima, R.; Fujii, T.; Tokunaga, Y.; Onizuka, S. Effect of Improvement in Sarcopenia on Functional and Discharge Outcomes in Stroke Rehabilitation Patients. Nutrients 2021, 13, 2192. [Google Scholar] [CrossRef]
- Borga, M.; West, J.; Bell, J.D.; Harvey, N.C.; Romu, T.; Heymsfield, S.B.; Dahlqvist Leinhard, O. Advanced Body Composition Assessment: From Body Mass Index to Body Composition Profiling. J. Investig. Med. 2018, 66, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical Impedance Analysis—Part I: Review of Principles and Methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Park, J.G.; Lee, K.W.; Kim, S.B.; Lee, J.H.; Kim, Y.H. Effect of Decreased Skeletal Muscle Index and Hand Grip Strength on Functional Recovery in Subacute Ambulatory Stroke Patients. Ann. Rehabil. Med. 2019, 43, 535–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irisawa, H.; Mizushima, T. Correlation of Body Composition and Nutritional Status with Functional Recovery in Stroke Rehabilitation Patients. Nutrients 2020, 12, 1923. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Kim, Y.; Kim, M.-W. Correlation of Body Composition via Bioelectrical Impedance Analysis and Motor Function and Recovery of Upper Extremity in Patients Undergoing Stroke Rehabilitation. Brain Neurorehabil. 2022, 15, e20. [Google Scholar] [CrossRef]
- Bise, T.; Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Kido, Y.; Shimazu, S.; Shiraishi, A.; Matsumoto, A. Association between BIA-Derived Phase Angle and Sarcopenia and Improvement in Activities of Daily Living and Dysphagia in Patients Undergoing Post-Stroke Rehabilitation. J. Nutr. Health Aging 2022, 26, 590–597. [Google Scholar] [CrossRef]
- Abe, T.; Yoshimua, Y.; Imai, R.; Sato, Y. A Combined Assessment Method of Phase Angle and Skeletal Muscle Index to Better Predict Functional Recovery after Acute Stroke. J. Nutr. Health Aging 2022, 26, 445–451. [Google Scholar] [CrossRef]
- Abe, T.; Yoshimura, Y.; Imai, R.; Yoneoka, Y.; Tsubaki, A.; Sato, Y. Impact of Phase Angle on Physical Function in Patients with Acute Stroke. J. Stroke Cerebrovasc. Dis. 2021, 30, 105941. [Google Scholar] [CrossRef]
- Matsushita, T.; Nishioka, S.; Yamanouchi, A.; Okazaki, Y.; Oishi, K.; Nakashima, R.; Tokunaga, Y.; Onizuka, S. Predictive Ability of Hand-Grip Strength and Muscle Mass on Functional Prognosis in Patients Rehabilitating from Stroke. Nutrition 2022, 102, 111724. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Bise, T.; Tanoue, M. Prevalence of Sarcopenia and Its Association with Activities of Daily Living and Dysphagia in Convalescent Rehabilitation Ward Inpatients. Clin. Nutr. 2018, 37, 2022–2028. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Savalle, M.; Gillaizeau, F.; Maruani, G.; Puymirat, E.; Bellenfant, F.; Houillier, P.; Fagon, J.-Y.; Faisy, C. Assessment of Body Cell Mass at Bedside in Critically Ill Patients. Am. J. Physiol.-Endocrinol. Metab. 2012, 303, E389–E396. [Google Scholar] [CrossRef] [PubMed]
- Moonen, H.P.F.X.; Van Zanten, A.R.H. Bioelectric Impedance Analysis for Body Composition Measurement and Other Potential Clinical Applications in Critical Illness. Curr. Opin. Crit. Care 2021, 27, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Aprile, I.; Cruciani, A.; Germanotta, M.; Gower, V.; Pecchioli, C.; Cattaneo, D.; Vannetti, F.; Padua, L.; Gramatica, F. Upper Limb Robotics in Rehabilitation: An Approach to Select the Devices, Based on Rehabilitation Aims, and Their Evaluation in a Feasibility Study. Appl. Sci. 2019, 9, 3920. [Google Scholar] [CrossRef] [Green Version]
- Aprile, I.; Germanotta, M.; Cruciani, A.; Loreti, S.; Pecchioli, C.; Cecchi, F.; Montesano, A.; Galeri, S.; Diverio, M.; Falsini, C.; et al. Upper Limb Robotic Rehabilitation After Stroke: A Multicenter, Randomized Clinical Trial. J. Neurol. Phys. Ther. 2020, 44, 3–14. [Google Scholar] [CrossRef]
- Hudon, C.; Fortin, M.; Vanasse, A. Cumulative Illness Rating Scale Was a Reliable and Valid Index in a Family Practice Context. J. Clin. Epidemiol. 2005, 58, 603–608. [Google Scholar] [CrossRef]
- Chumlea, W.C.; Roche, A.F.; Steinbaugh, M.L. Estimating Stature from Knee Height for Persons 60 to 90 Years of Age. J. Am. Geriatr. Soc. 1985, 33, 116–120. [Google Scholar] [CrossRef]
- Khalil, S.F.; Mohktar, M.S.; Ibrahim, F. The Theory and Fundamentals of Bioimpedance Analysis in Clinical Status Monitoring and Diagnosis of Diseases. Sensors 2014, 14, 10895–10928. [Google Scholar] [CrossRef] [Green Version]
- Di Vincenzo, O.; Marra, M.; Di Gregorio, A.; Pasanisi, F.; Scalfi, L. Bioelectrical Impedance Analysis (BIA)-Derived Phase Angle in Sarcopenia: A Systematic Review. Clin. Nutr. 2021, 40, 3052–3061. [Google Scholar] [CrossRef]
- Shah, S.; Vanclay, F.; Cooper, B. Improving the Sensitivity of the Barthel Index for Stroke Rehabilitation. J. Clin. Epidemiol. 1989, 42, 703–709. [Google Scholar] [CrossRef]
- Castiglia, S.F.; Galeoto, G.; Lauta, A.; Palumbo, A.; Tirinelli, F.; Viselli, F.; Santilli, V.; Sacchetti, M.L. The Culturally Adapted Italian Version of the Barthel Index (IcaBI): Assessment of Structural Validity, Inter-Rater Reliability and Responsiveness to Clinically Relevant Improvements in Patients Admitted to Inpatient Rehabilitation Centers. Funct. Neurol. 2017, 22, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Serón-Arbeloa, C.; Labarta-Monzón, L.; Puzo-Foncillas, J.; Mallor-Bonet, T.; Lafita-López, A.; Bueno-Vidales, N.; Montoro-Huguet, M. Malnutrition Screening and Assessment. Nutrients 2022, 14, 2392. [Google Scholar] [CrossRef]
- Irisawa, H.; Mizushima, T. Assessment of Changes in Muscle Mass, Strength, and Quality and Activities of Daily Living in Elderly Stroke Patients. Int. J. Rehabil. Res. 2022, 45, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Przysada, G.; Czenczek-Lewandowska, E.; Wyszyńska, J.; Weres, A.; Baran, J.; Kwolek, A.; Leszczak, J. Effect of Post-Stroke Rehabilitation on Body Mass Composition in Relation to Socio-Demographic and Clinical Factors. Int. J. Environ. Res. Public Health 2020, 17, 5134. [Google Scholar] [CrossRef]
- Ogawa, T.; Suenaga, M. Elderly Patients after Stroke Increase Skeletal Muscle Mass by Exercise Therapy in Rehabilitation Wards. J. Stroke Cerebrovasc. Dis. 2021, 30, 105958. [Google Scholar] [CrossRef]
- Vahlberg, B.; Lindmark, B.; Zetterberg, L.; Hellström, K.; Cederholm, T. Body Composition and Physical Function after Progressive Resistance and Balance Training among Older Adults after Stroke: An Exploratory Randomized Controlled Trial. Disabil. Rehabil. 2017, 39, 1207–1214. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Bise, T.; Shimazu, S.; Tanoue, M.; Tomioka, Y.; Araki, M.; Nishino, T.; Kuzuhara, A.; Takatsuki, F. Effects of a Leucine-Enriched Amino Acid Supplement on Muscle Mass, Muscle Strength, and Physical Function in Post-Stroke Patients with Sarcopenia: A Randomized Controlled Trial. Nutrition 2019, 58, 1–6. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Sample Group (n = 66) |
---|---|
Age (years) | 69 ± 12 |
Women (%) | 37 (56%) |
Men (%) | 29 (44%) |
Antropometric value | |
Weight (kg) | 69.4 ± 15.6 |
Height (m) | 1.66 ± 0.10 |
BMI (kg/m2) | 25.0 ± 4.9 |
Index stroke type | |
Ischemic | 51 (77%) |
Hemorrhagic | 15 (23%) |
Affected side | |
Right | 33 (50%) |
Left | 33 (50%) |
Smoking | 32 (49%) |
Comorbidities | |
Hypertension | 54 (82%) |
Type 2 Diabetes | 18 (27%) |
Dyslipidemia | 28 (42%) |
Heart disease | 18 (27%) |
Dysphagia | 21 (32%) |
Cumulative Illness Rating Scale (CIRS) | |
CIRS severity | 1.9 ± 0.8 |
CIRS comorbidity | 5.6 ± 1.7 |
Time from stroke onset (days) | 103 ± 51 |
Activity of daily living (ADL) Assessment | |
Modified Barthel Index T0 (0–100) | 45 ± 19 |
Body Composition of the Sample (n = 66) | |||
---|---|---|---|
T0 | T1 | p | |
Body Fat composition | |||
FM (kg) | 18.6 ± 9.2 | 17.9 ± 8.3 | 0.220 |
FMI (kg/m2) | 6.8 ± 3.4 | 6.5 ± 3.1 | 0.155 |
Body lean mass composition | |||
FFM (kg) | 50.7 ± 10.1 | 51.2 ± 10.6 | 0.221 |
FFMI (kg/m2) | 18.3 ± 2.7 | 18.4 ± 2.8 | 0.279 |
ASMM (Kg) | 18.9 ± 5.2 | 19.0 ± 5.2 | 0.289 |
SMI (kg/m2) | 6.8 ± 1.4 | 6.8 ± 1.4 | 0.253 |
BCM (kg) | 23.3 ± 7.1 | 23.8 ± 7.6 | 0.257 |
BCMI (kg/m2) | 8.4 ± 2.3 | 8.6 ± 2.5 | 0.217 |
Muscle quality | |||
PhA (degree) | 4.6 ± 1.1 | 4.7 ± 1.2 | 0.097 |
Barthel Index T0 | ||
---|---|---|
Spearman’s Rho | p-Value | |
Body Fat composition | ||
FM T0 | 0.155 | 0.356 |
FMI T0 | 0.076 | 0.543 |
Body lean mass composition | ||
FFM T0 | 0.375 ** | 0.002 |
FFMI T0 | 0.366 ** | 0.003 |
ASMM T0 | 0.395 ** | 0.001 |
SMI T0 | 0.399 *** | <0.001 |
BCM T0 | 0.414 *** | <0.001 |
BCMI T0 | 0.386 *** | 0.001 |
Muscle quality | ||
PhA T0 | 0.354 ** | 0.004 |
BI T0 | B | 95% CI | SE B | p | R2 | ΔR2 | |
---|---|---|---|---|---|---|---|
LL | UL | ||||||
0.23 | 0.24 | ||||||
BCM T0 | 0.78 | 0.03 | 1.52 | 0.37 | 0.041 * | ||
Age | −0.38 | −0.77 | 0.02 | 0.20 | 0.060 | ||
Sex | −6.15 | −16.16 | 3.87 | 5.01 | 0.224 |
B | SE | p | Z | 95% CI | ||
---|---|---|---|---|---|---|
LL | UL | |||||
BCM T0 | 0.10 | 0.05 | 0.038 * | 2.08 | 0.01 | 0.19 |
BI T0 | 0.00 | 0.01 | 0.916 | 0.11 | −0.03 | 0.03 |
sex | −0.23 | 0.60 | 0.700 | −0.39 | −1.41 | 0.95 |
Paresis on dominant arm | 1.02 | 0.51 | 0.046 * | 1.99 | 0.02 | 2.01 |
Intercept | −4.80 | 2.01 | 0.017 * | −2.01 | −8.74 | −0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrini, A.; Siotto, M.; Germanotta, M.; Schirru, M.; Pavan, A.; Cipollini, V.; Insalaco, S.; Aprile, I. Body Cell Mass from Bioelectrical Impedance Analysis in Patients with Stroke Undergoing Rehabilitation. Appl. Sci. 2023, 13, 3965. https://doi.org/10.3390/app13063965
Guerrini A, Siotto M, Germanotta M, Schirru M, Pavan A, Cipollini V, Insalaco S, Aprile I. Body Cell Mass from Bioelectrical Impedance Analysis in Patients with Stroke Undergoing Rehabilitation. Applied Sciences. 2023; 13(6):3965. https://doi.org/10.3390/app13063965
Chicago/Turabian StyleGuerrini, Alessandro, Mariacristina Siotto, Marco Germanotta, Mirko Schirru, Arianna Pavan, Valeria Cipollini, Sabina Insalaco, and Irene Aprile. 2023. "Body Cell Mass from Bioelectrical Impedance Analysis in Patients with Stroke Undergoing Rehabilitation" Applied Sciences 13, no. 6: 3965. https://doi.org/10.3390/app13063965
APA StyleGuerrini, A., Siotto, M., Germanotta, M., Schirru, M., Pavan, A., Cipollini, V., Insalaco, S., & Aprile, I. (2023). Body Cell Mass from Bioelectrical Impedance Analysis in Patients with Stroke Undergoing Rehabilitation. Applied Sciences, 13(6), 3965. https://doi.org/10.3390/app13063965