Unmanned Aerial Vehicle Computation Task Scheduling Based on Parking Resources in Post-Disaster Rescue
Abstract
:1. Introduction
2. Related Work
3. Motivating Scenario
3.1. System Model
3.2. Disaster Model
3.3. Cluster Construction
4. Task Execution Cost Analysis
4.1. Task Execution Latency
4.2. Energy Comsumption
5. Data Offloading Solution
5.1. Estimating the Amount of Resources
5.2. Task Offloading Decision
Algorithm 1: Task Performer Allocation Based on DRL. |
1. Input:iteration number, step, batch-size, the action set A, attenuation factor γ |
2. Output: |
3. for episode from 1 to iteration number |
4. Initialize s0 and then obtain the feature vector ϕ (s0); |
5. for t from 1 to step |
6. chose action according to constrain (17); |
7. take action , obtain reward value and alter st by st←st+1; |
8. store {ϕ (st);;st; ϕ (st+1);} in memory; |
9. if st+1 is the terminal state |
10. end the iteration; |
11. else |
12. continue; |
13. end for |
14. sample batch-size of transitions randomly for training; |
15.update the objective function according to the gradient descent; |
16. end for |
6. Simulation Result
6.1. Evaluation Results of the Learning Rate and the Attenuation Factor
6.2. Evaluation Results of Modifying Computational Complexity
6.3. Evaluation Results of Modifying the Generated Tasks
6.4. Evaluation Results of Modifying the Amount of Parking Resources
6.5. Evaluation Results of Modifying λ and Evaluation Test on Task Allocation Time
6.6. Evaluation Results of Modifying Cth
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pu, C.; Zhou, X. Smartphone-Based Self Rescue System for Disaster Rescue. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019. [Google Scholar] [CrossRef]
- Yin, S.; Zhao, Y.; Li, L. UAV-Assisted Cooperative Communications with Time-Sharing SWIPT. IEEE Trans. Veh. Technol. 2020, 69. [Google Scholar] [CrossRef]
- Dridi, A.; Laroui, M.; Boucetta, C.; Afifi, H.; Moungla, H. Reinforcement Learning Vs ILP Optimization in IoT support of Drone assisted Cellular Networks. In Proceedings of the ICC 2022-IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 4589–4594. [Google Scholar]
- Chen, Q.; Zhu, H.; Yang, L.; Chen, X.; Pollin, S.; Vinogradov, E. Edge computing assisted autonomous flight for uav: Synergies between vision and communications. IEEE Commun. Mag. 2011, 59, 28–33. [Google Scholar] [CrossRef]
- Qiu, T.; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge computing in industrial internet of things: Architecture advances and challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2462–2488. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, P.; Niyato, D.; Suankaewmanee, K. Auction mechanismsin cloud/fog computing resource allocation for public blockchain networks. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 1975–1989. [Google Scholar] [CrossRef] [Green Version]
- Bai, T.; Wang, J.; Ren, Y.; Hanzo, L. Energy-efficient computation offloading for secure uav-edge-computing systems. IEEE Trans. Veh. Technol. 2019, 68, 6074–6087. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Su, Z.; Xu, Q.; Luan, T.H.; Li, R. VFC-Based Cooperative UAV Computation Task Offloading for Post-disaster Rescue. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 1–9. [Google Scholar]
- Young, C.; Man, L.; Koonjul, Y.; Nagowah, L. A low cost autonomous unmanned ground vehicle. Future Comput. Inform. J. 2018, 3, 304–320. [Google Scholar]
- Zhou, F.; Wu, Y.; Hu, R.Q.; Qian, Y. Computation Rate Maximization in UAV-Enabled Wireless-Powered Mobile-Edge Computing Systems. IEEE J. Sel. Areas Commun. 2018, 36, 1927–1941. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Pan, C.; Wang, K.; Shikh-Bahaei, M. Energy Efficient Resource Allocation in UAV-Enabled Mobile Edge Computing Networks. IEEE Trans. Wirel. Commun. 2019, 18, 4576–4589. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, L.; Tang, Q.; Ngai, E.C.H.; Hu, X.; Zhao, H.; Wei, J. Stochastic Computation Offloading and Trajectory Scheduling for UAV-Assisted Mobile Edge Computing. IEEE Internet Things J. 2019, 6, 3688–3699. [Google Scholar] [CrossRef]
- Jeong, S.; Simeone, O.; Kang, J. Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning. IEEE Trans. Veh. Technol. 2017, 67, 2049–2063. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, K.; Ni, Q.; Fan, P.; Letaief, K.B. UAV-Assisted Wireless Powered Cooperative Mobile Edge Computing: Joint Offloading, CPU Control, and Trajectory Optimization. IEEE Internet Things J. 2019, 7, 2777–2790. [Google Scholar] [CrossRef]
- Hu, X.; Wong, K.K.; Yang, K.; Zheng, Z. UAV-Assisted Relaying and Edge Computing: Scheduling and Trajectory Optimization. IEEE Trans. Wirel. Commun. 2019, 18, 4738–4752. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, B.; Zhang, X.; Yu, Y.; Sha, K.; Shi, W. FlexEdge: Dynamic Task Scheduling for a UAV-Based on-Demand Mobile Edge Server. IEEE Internet Things J. 2022, 9, 15983–16005. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, Y.; Loo, J.; Yang, D.; Xiao, L. Joint Computation and Communication Design for UAV-Assisted Mobile Edge Computing in IoT. IEEE Trans. Ind. Inform. 2020, 16, 5505–5516. [Google Scholar] [CrossRef] [Green Version]
- Garg, S.; Singh, A.; Batra, S.; Kumar, N.; Yang, L.T. UAV-Empowered Edge Computing Environment for Cyber-Threat Detection in Smart Vehicles. IEEE Netw. 2018, 32, 42–51. [Google Scholar] [CrossRef]
- Han, R.; Wen, Y.; Bai, L. Rate Splitting on Mobile Edge Computing for UAV-aided IoT Systems. IEEE Trans. Cogn. Commun. Netw. 2021, 6, 1193–1203. [Google Scholar] [CrossRef]
- Alsenwi, M.; Tun, Y.K.; Pandey, S.R.; Ei, N.N.; Hong, C.S. UAV-Assisted Multi-Access Edge Computing System: An Energy-Efficient Resource Management Framework. In Proceedings of the 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 7–10 January 2020. [Google Scholar] [CrossRef]
- Xujie, L.I.; Zhou, L.; Sun, Y. Multi-task offloading scheme for UAV-Enabled Fog Computing networks. EURASIP J. Wirel. Commun. Netw. 2020, 4, 230. [Google Scholar] [CrossRef]
- Zhan, C.; Hu, H.; Sui, X.; Liu, Z.; Niyato, D. Completion Time and Energy Optimization in the UAV-Enabled Mobile-Edge Computing System. IEEE Internet Things J. 2020, 7, 7808–7822. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Luo, S.; Wang, Q.; Cao, B.; Li, X. An intelligent task offloading algorithm (iTOA) for UAV edge computing network. Digit. Commun. Netw. 2022, 6, 433–443. [Google Scholar] [CrossRef]
- Wang, G.; Yu, X.; Xu, F.; Cai, J. Task offloading and resource allocation for UAV-assisted mobile edge computing with imperfect channel estimation over Rician fading channels. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 169–180. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, N.; Lu, N.; Shen, X.S. Multi-uav-aided networks:Aerial-ground cooperative vehicular networking architecture. IEEE Veh. Technol. Mag. 2015, 10, 36–44. [Google Scholar] [CrossRef]
- Liu, N.; Liu, M.; Chen, G.; Cao, J. The The sharing at roadside: Vehicular content distribution using parked vehicles. In Proceedings of the 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 1–9. [Google Scholar]
- Huang, X.; Yu, R.; Liu, J.; Shu, L. Parked Vehicle Edge Computing: Exploiting Opportunistic Resources for Distributed Mobile Applications. IEEE Access 2018, 6, 66649–66663. [Google Scholar] [CrossRef]
- Ma, C.; Zhu, J.; Liu, M.; Zhao, H.; Liu, N.; Zou, X. Parking Edge Computing: Parked-Vehicle-Assisted Task Offloading for Urban VANETs. IEEE Internet Things 2022, 8, 9344–9358. [Google Scholar] [CrossRef]
- Su, Z.; Hui, Y.; Guo, S. D2D-based content delivery with parked vehicles in vehicular social networks. IEEE Wirel. Commun. 2016, 23, 90–95. [Google Scholar] [CrossRef]
- Liu, C.H.; Chen, Z.; Tang, J.; Xu, J.; Piao, C. Energy-Efficient UAV Control for Effective and Fair Communication Coverage: A Deep Reinforcement Learning Approach. IEEE J. Sel. Areas Commun. 2022, 36, 2059–2070. [Google Scholar] [CrossRef]
- Liu, M.; Gong, H.; Wen, Y.; Chen, G.; Cao, J. The last minute: Efficient Data Evacuation strategy for sensor networks in post-disaster applications. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 291–295. [Google Scholar]
- Tang, C.; Wei, X.; Xiao, S.; Chen, W.; Fang, W.; Zhang, W.; Hao, M. A mobile cloud based scheduling strategy for industrial internet of things. IEEE Access 2018, 6, 7262–7275. [Google Scholar] [CrossRef]
- Yan, J.; Bi, S.; Huang, L.; Zhang, Y.J.A. Deep reinforcement learning based offloading for mobile edge computing with general task graph. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–7. [Google Scholar]
- He, Y.; Zhai, D.; Jiang, Y.; Zhang, R. Relay Selection for UAV-Assisted Urban Vehicular Ad Hoc Networks. IEEE Wirel. Commun. Lett. 2020, 9, 1379–1383. [Google Scholar] [CrossRef]
- Dynamic Programming. Available online: https://web.stanford.edu/class/cs97si/04-dynamic-programming.pdf (accessed on 13 May 2022).
- Hu, J.; Ma, C.; Liu, N.; Liu, M.; Feng, W. VPOD: Virtual parking overlay network based data delivery in urban VANETs. Int. J. Ad Hoc Ubiquitous Comput. 2017, 26, 250–262. [Google Scholar]
- Huang, W.; Guo, H.; Liu, J. Task Offloading in UAV Swarm-Based Edge Computing: Grouping and Role Division. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar]
Parameter | Value | Description |
---|---|---|
Bu,n | 10 MHz | the bandwidth from UAV u to vehicle n |
Pu | 10 W | the transfer power of UAV u |
Pn | 1 W | the fixed transfer power of vehicle n |
Bu,u′ | 50 MHz | the bandwidth between neighboring UAVs |
σ2 | −95 dBm | the power spectral density of Gaussian Noise |
β | 2 | path loss exponent |
ff | 2 GHZ | carrier frequency |
τ | 100 | coefficient according to gradient descent |
λ | 0.6 | weight value |
batch-size | 80 | the number of units manufactured in a production run |
γ | 0.8 | attenuation factor |
step | 80 | step in the DRL model |
learning rate | 0.0001 | learning rate in training |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Zhao, H.; Wei, Y.; Ma, C.; Lv, Q. Unmanned Aerial Vehicle Computation Task Scheduling Based on Parking Resources in Post-Disaster Rescue. Appl. Sci. 2023, 13, 289. https://doi.org/10.3390/app13010289
Zhu J, Zhao H, Wei Y, Ma C, Lv Q. Unmanned Aerial Vehicle Computation Task Scheduling Based on Parking Resources in Post-Disaster Rescue. Applied Sciences. 2023; 13(1):289. https://doi.org/10.3390/app13010289
Chicago/Turabian StyleZhu, Jinqi, Hui Zhao, Yanmin Wei, Chunmei Ma, and Qing Lv. 2023. "Unmanned Aerial Vehicle Computation Task Scheduling Based on Parking Resources in Post-Disaster Rescue" Applied Sciences 13, no. 1: 289. https://doi.org/10.3390/app13010289
APA StyleZhu, J., Zhao, H., Wei, Y., Ma, C., & Lv, Q. (2023). Unmanned Aerial Vehicle Computation Task Scheduling Based on Parking Resources in Post-Disaster Rescue. Applied Sciences, 13(1), 289. https://doi.org/10.3390/app13010289