Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (486)

Search Parameters:
Keywords = disaster relief

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2731 KiB  
Article
Flood Hazard Assessment and Monitoring in Bangladesh: An Integrated Approach for Disaster Risk Mitigation
by Kashfia Nowrin Choudhury and Helmut Yabar
Earth 2025, 6(3), 90; https://doi.org/10.3390/earth6030090 - 5 Aug 2025
Viewed by 51
Abstract
Floods are among the most devastating hydrometeorological natural disasters worldwide, causing massive infrastructure and economic loss in low-lying, flood-prone developing countries like Bangladesh. Effective disaster mitigation relies on organized and detailed flood damage information to facilitate emergency evacuation, coordinate relief distribution, and formulate [...] Read more.
Floods are among the most devastating hydrometeorological natural disasters worldwide, causing massive infrastructure and economic loss in low-lying, flood-prone developing countries like Bangladesh. Effective disaster mitigation relies on organized and detailed flood damage information to facilitate emergency evacuation, coordinate relief distribution, and formulate an effective disaster management policy. Nevertheless, the nation confronts considerable obstacles due to insufficient historical flood damage data and the underdevelopment of near-real-time (NRT) flood monitoring systems. This study addresses this issue by developing a replicable methodology for flood damage assessment and NRT monitoring systems. Using the Google Earth Engine (GEE) platform, we analyzed flood events from 2019 to 2023, integrating geospatial layers such as roads, cropland, etc. Analysis of flood events over the five-year period revealed substantial impacts, with 21.60% of the total area experiencing inundation. This flooding affected 6.92% of cropland and 4.16% of the population. Furthermore, 18.10% of the road network, spanning over 21,000 km within the study area, was also affected. This system has the potential to enhance emergency response capabilities during flood events and inform more effective disaster mitigation policies. Full article
Show Figures

Figure 1

28 pages, 3832 KiB  
Article
Design of Message Formatting and Utilization Strategies for UAV-Based Pseudolite Systems Compatible with GNSS Receivers
by Guanbing Zhang, Yang Zhang, Hong Yuan, Yi Lu and Ruocheng Guo
Drones 2025, 9(8), 526; https://doi.org/10.3390/drones9080526 - 25 Jul 2025
Viewed by 244
Abstract
This paper proposes a GNSS-compatible method for characterizing the motion of UAV-based navigation enhancement platforms, designed to provide reliable navigation and positioning services in emergency scenarios where GNSS signals are unavailable or severely degraded. The method maps UAV trajectories into standard GNSS navigation [...] Read more.
This paper proposes a GNSS-compatible method for characterizing the motion of UAV-based navigation enhancement platforms, designed to provide reliable navigation and positioning services in emergency scenarios where GNSS signals are unavailable or severely degraded. The method maps UAV trajectories into standard GNSS navigation messages by establishing a correspondence between ephemeris parameters and platform positions through coordinate transformation and Taylor series expansion. To address modeling inaccuracies, the approach incorporates truncation error analysis and motion-assumption compensation via parameter optimization. This design enables UAV-mounted pseudolite systems to broadcast GNSS-compatible signals without modifying existing receivers, significantly enhancing rapid deployment capabilities in complex or degraded environments. Simulation results confirm precise positional representation in static scenarios and robust error control under dynamic motion through higher-order modeling and optimized broadcast strategies. UAV flight tests demonstrated a theoretical maximum error of 0.4262 m and an actual maximum error of 3.1878 m under real-world disturbances, which is within operational limits. Additional experiments confirmed successful message parsing with standard GNSS receivers. The proposed method offers a lightweight, interoperable solution for integrating UAV platforms into GNSS-enhanced positioning systems, supporting timely and accurate navigation services in emergency and disaster relief operations. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles for Enhanced Emergency Response)
Show Figures

Figure 1

24 pages, 2803 KiB  
Article
AKI2ALL: Integrating AI and Blockchain for Circular Repurposing of Japan’s Akiyas—A Framework and Review
by Manuel Herrador, Romi Bramantyo Margono and Bart Dewancker
Buildings 2025, 15(15), 2629; https://doi.org/10.3390/buildings15152629 - 25 Jul 2025
Viewed by 588
Abstract
Japan’s 8.5 million vacant homes (Akiyas) represent a paradox of scarcity amid surplus: while rural depopulation leaves properties abandoned, housing shortages and bureaucratic inefficiencies hinder their reuse. This study proposes AKI2ALL, an AI-blockchain framework designed to automate the circular repurposing of Akiyas into [...] Read more.
Japan’s 8.5 million vacant homes (Akiyas) represent a paradox of scarcity amid surplus: while rural depopulation leaves properties abandoned, housing shortages and bureaucratic inefficiencies hinder their reuse. This study proposes AKI2ALL, an AI-blockchain framework designed to automate the circular repurposing of Akiyas into ten high-value community assets—guesthouses, co-working spaces, pop-up retail and logistics hubs, urban farming hubs, disaster relief housing, parking lots, elderly daycare centers, exhibition spaces, places for food and beverages, and company offices—through smart contracts and data-driven workflows. By integrating circular economy principles with decentralized technology, AKI2ALL streamlines property transitions, tax validation, and administrative processes, reducing operational costs while preserving embodied carbon in existing structures. Municipalities list properties, owners select uses, and AI optimizes assignments based on real-time demand. This work bridges gaps in digital construction governance, proving that automating trust and accountability can transform systemic inefficiencies into opportunities for community-led, low-carbon regeneration, highlighting its potential as a scalable model for global vacant property reuse. Full article
(This article belongs to the Special Issue Advances in the Implementation of Circular Economy in Buildings)
Show Figures

Figure 1

29 pages, 8706 KiB  
Article
An Integrated Risk Assessment of Rockfalls Along Highway Networks in Mountainous Regions: The Case of Guizhou, China
by Jinchen Yang, Zhiwen Xu, Mei Gong, Suhua Zhou and Minghua Huang
Appl. Sci. 2025, 15(15), 8212; https://doi.org/10.3390/app15158212 - 23 Jul 2025
Viewed by 239
Abstract
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is [...] Read more.
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is crucial for safeguarding the lives and travel of residents. This study evaluates highway rockfall risk through three key components: susceptibility, hazard, and vulnerability. Susceptibility was assessed using information content and logistic regression methods, considering factors such as elevation, slope, normalized difference vegetation index (NDVI), aspect, distance from fault, relief amplitude, lithology, and rock weathering index (RWI). Hazard assessment utilized a fuzzy analytic hierarchy process (AHP), focusing on average annual rainfall and daily maximum rainfall. Socioeconomic factors, including GDP, population density, and land use type, were incorporated to gauge vulnerability. Integration of these assessments via a risk matrix yielded comprehensive highway rockfall risk profiles. Results indicate a predominantly high risk across Guizhou Province, with high-risk zones covering 41.19% of the area. Spatially, the western regions exhibit higher risk levels compared to eastern areas. Notably, the Bijie region features over 70% of its highway mileage categorized as high risk or above. Logistic regression identified distance from fault lines as the most negatively correlated factor affecting highway rockfall susceptibility, whereas elevation gradient demonstrated a minimal influence. This research provides valuable insights for decision-makers in formulating highway rockfall prevention and control strategies. Full article
Show Figures

Figure 1

14 pages, 690 KiB  
Article
Hybrid Forecasting Framework for Emergency Material Demand in Post-Earthquake Scenarios Integrating the Grey Model and Bayesian Dynamic Linear Models
by Chenglong Chu and Guoping Huang
Sustainability 2025, 17(15), 6701; https://doi.org/10.3390/su17156701 - 23 Jul 2025
Viewed by 242
Abstract
Earthquakes are sudden and highly destructive events that severely disrupt infrastructure and logistics systems, making accurate and timely emergency material demand forecasting a critical challenge in disaster response. However, the scarcity of reliable data during the early stages of an earthquake limits the [...] Read more.
Earthquakes are sudden and highly destructive events that severely disrupt infrastructure and logistics systems, making accurate and timely emergency material demand forecasting a critical challenge in disaster response. However, the scarcity of reliable data during the early stages of an earthquake limits the effectiveness of traditional forecasting methods. To address this issue, this study proposes a hybrid forecasting framework that integrates the Grey Model (GM(1,1)) with Bayesian Dynamic Linear Models (BDLMs), aiming to improve both the accuracy and adaptability of demand predictions. The approach operates in two phases: first, GM(1,1) generates preliminary forecasts using limited initial observations; second, BDLMs dynamically update these forecasts in real time as new data become available. The model is validated through a case study of the 2010 M7.1 Yushu earthquake in Qinghai Province, China. The results indicate that the hybrid method produces reliable forecasts even at the earliest stages of the disaster, with increasing accuracy as more observational data are incorporated. Our case study demonstrates that the integrated GM(1,1)-BDLM framework substantially reduces prediction errors compared to standalone GM(1,1). Using the first five days’ data to forecast fatalities and emergency material demand for days 6–10, the hybrid model achieves a 4.01% error rate—a 19.62 percentage point improvement over GM(1,1)’s 23.63% error rate. This adaptive forecasting mechanism offers robust support for evidence-based decision-making in emergency material allocation, enhancing the efficiency and responsiveness of post-disaster relief operations. Full article
Show Figures

Figure 1

25 pages, 6969 KiB  
Article
An Analysis of the Design and Kinematic Characteristics of an Octopedic Land–Air Bionic Robot
by Jianwei Zhao, Jiaping Gao, Mingsong Bao, Hao Zhai, Xu Pei and Zheng Jiang
Sensors 2025, 25(14), 4502; https://doi.org/10.3390/s25144502 - 19 Jul 2025
Viewed by 465
Abstract
The urgent need for complex terrain adaptability in industrial automation and disaster relief has highlighted the great potential of octopedal wheel-legged robots. However, their design complexity and motion control challenges must be addressed. In this study, an innovative design approach is employed to [...] Read more.
The urgent need for complex terrain adaptability in industrial automation and disaster relief has highlighted the great potential of octopedal wheel-legged robots. However, their design complexity and motion control challenges must be addressed. In this study, an innovative design approach is employed to construct a highly adaptive robot architecture capable of intelligently adjusting the wheel-leg configuration to cope with changing environments. An advanced kinematic analysis and simulation techniques are combined with inverse kinematic algorithms and dynamic planning to achieve a typical ‘Step-Wise Octopedal Dynamic Coordination Gait’ and different gait planning and optimization. The effectiveness of the design and control strategy is verified through the construction of an experimental platform and field tests, significantly improving the robot’s adaptability and mobility in complex terrain. Additionally, an optional integrated quadrotor module with a compact folding mechanism is incorporated, enabling the robot to overcome otherwise impassable obstacles via short-distance flight when ground locomotion is impaired. This achievement not only enriches the theory and methodology of the multi-legged robot design but also establishes a solid foundation for its widespread application in disaster rescue, exploration, and industrial automation. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

51 pages, 9150 KiB  
Review
A Comprehensive Review of Propeller Design and Propulsion Systems for High-Altitude Pseudo-Satellites
by Eleonora Riccio, Filippo Alifano, Vincenzo Rosario Baraniello and Domenico Coiro
Appl. Sci. 2025, 15(14), 8013; https://doi.org/10.3390/app15148013 - 18 Jul 2025
Viewed by 550
Abstract
In both scientific and industrial fields, there has been a notable increase in attention toward High-Altitude Pseudo-Satellites (HAPSs) in recent years. This surge is driven by their distinct advantages over traditional satellites and Remotely Piloted Aircraft Systems (RPASs). These benefits are particularly evident [...] Read more.
In both scientific and industrial fields, there has been a notable increase in attention toward High-Altitude Pseudo-Satellites (HAPSs) in recent years. This surge is driven by their distinct advantages over traditional satellites and Remotely Piloted Aircraft Systems (RPASs). These benefits are particularly evident in critical areas such as intelligent transportation systems, surveillance, remote sensing, traffic and environmental monitoring, emergency communications, disaster relief efforts, and the facilitation of large-scale temporary events. This review provides an overview of key aspects related to the propellers and propulsion systems of HAPSs. To date, propellers remain the most efficient means of propulsion for high-altitude applications. However, due to the unique operational conditions at stratospheric altitudes, propeller design necessitates specific approaches that differ from those applied in conventional applications. After a brief overview of the propulsion systems proposed in the literature or employed by HAPSs, focusing on both the technical challenges and advancements in this emerging field, this review integrates theoretical foundations, historical design approaches, and the latest multi-fidelity optimization techniques to provide a comprehensive comparison of propeller design methods for HAPSs. It identifies key trends, including the growing use of CFD-based simulations methodologies, which contribute to notable performance improvements. Additionally, the review includes a critical assessment of experimental methods for performance evaluation. These developments have enabled the design of propellers with efficiencies exceeding 85%, offering valuable insights for the next generation of high-endurance, high-altitude platforms. Full article
Show Figures

Figure 1

32 pages, 2992 KiB  
Article
An Inter-Regional Lateral Transshipment Model to Massive Relief Supplies with Deprivation Costs
by Shuanglin Li, Na Zhang and Jin Qin
Mathematics 2025, 13(14), 2298; https://doi.org/10.3390/math13142298 - 17 Jul 2025
Viewed by 346
Abstract
Massive relief supplies inter-regional lateral transshipment (MRSIRLT) can significantly enhance the efficiency of disaster response, meet the needs of affected areas (AAs), and reduce deprivation costs. This paper develops an integrated allocation and intermodality optimization model (AIOM) to address the MRSIRLT challenge. A [...] Read more.
Massive relief supplies inter-regional lateral transshipment (MRSIRLT) can significantly enhance the efficiency of disaster response, meet the needs of affected areas (AAs), and reduce deprivation costs. This paper develops an integrated allocation and intermodality optimization model (AIOM) to address the MRSIRLT challenge. A phased interactive framework incorporating adaptive differential evolution (JADE) and improved adaptive large neighborhood search (IALNS) is designed. Specifically, JADE is employed in the first stage to allocate the volume of massive relief supplies, aiming to minimize deprivation costs, while IALNS optimizes intermodal routing in the second stage to minimize the weighted sum of transportation time and cost. A case study based on a typhoon disaster in the Chinese region of Bohai Rim demonstrates and verifies the effectiveness and applicability of the proposed model and algorithm. The results and sensitivity analysis indicate that reducing loading and unloading times and improving transshipment efficiency can effectively decrease transfer time. Additionally, the weights assigned to total transfer time and costs can be balanced depending on demand satisfaction levels. Full article
Show Figures

Figure 1

17 pages, 3406 KiB  
Article
Deep Reinforcement Learning-Based Deployment Method for Emergency Communication Network
by Bo Huang, Yiwei Lu, Hao Ma, Changsheng Yin, Ruopeng Yang, Yongqi Shi, Yu Tao, Yongqi Wen and Yihao Zhong
Appl. Sci. 2025, 15(14), 7961; https://doi.org/10.3390/app15147961 - 17 Jul 2025
Viewed by 248
Abstract
Emergency communication networks play a crucial role in disaster relief operations. Current automated deployment strategies based on rule-driven or heuristic algorithms struggle to adapt to the dynamic and heterogeneous network environments in disaster scenarios, while manual command deployment is constrained by personnel expertise [...] Read more.
Emergency communication networks play a crucial role in disaster relief operations. Current automated deployment strategies based on rule-driven or heuristic algorithms struggle to adapt to the dynamic and heterogeneous network environments in disaster scenarios, while manual command deployment is constrained by personnel expertise and response time requirements, leading to suboptimal trade-offs between deployment efficiency and reliability. To address these challenges, this study proposes a novel deep reinforcement learning framework with a fully convolutional value network architecture, which achieves breakthroughs in multi-dimensional spatial decision-making through end-to-end feature extraction. This design effectively mitigates the “curse of dimensionality” inherent in traditional reinforcement learning methods for topology planning. Experimental results demonstrate that the proposed method effectively accomplishes the planning tasks of emergency communication hub elements, significantly improving deployment efficiency while maintaining robustness in complex environments. Full article
Show Figures

Figure 1

14 pages, 6691 KiB  
Article
Remote Sensing Extraction of Damaged Buildings in the Shigatse Earthquake, 2025: A Hybrid YOLO-E and SAM2 Approach
by Zhimin Wu, Chenyao Qu, Wei Wang, Zelang Miao and Huihui Feng
Sensors 2025, 25(14), 4375; https://doi.org/10.3390/s25144375 - 12 Jul 2025
Viewed by 374
Abstract
In January 2025, a magnitude 6.8 earthquake struck Dingri County, Shigatse, Tibet, causing severe damage. Rapid and precise extraction of damaged buildings is essential for emergency relief and rebuilding efforts. This study proposes an approach integrating YOLO-E (Real-Time Seeing Anything) and the Segment [...] Read more.
In January 2025, a magnitude 6.8 earthquake struck Dingri County, Shigatse, Tibet, causing severe damage. Rapid and precise extraction of damaged buildings is essential for emergency relief and rebuilding efforts. This study proposes an approach integrating YOLO-E (Real-Time Seeing Anything) and the Segment Anything Model 2 (SAM2) to extract damaged buildings with multi-source remote sensing images, including post-earthquake Gaofen-7 imagery (0.80 m), Beijing-3 imagery (0.30 m), and pre-earthquake Google satellite imagery (0.15 m), over the affected region. In this hybrid approach, YOLO-E functions as the preliminary segmentation module for initial segmentation. It leverages its real-time detection and segmentation capability to locate potential damaged building regions and generate coarse segmentation masks rapidly. Subsequently, SAM2 follows as a refinement step, incorporating shapefile information from pre-disaster sources to apply precise, pixel-level segmentation. The dataset used for training contained labeled examples of damaged buildings, and the model optimization was carried out using stochastic gradient descent (SGD), with cross-entropy and mean squared error as the selected loss functions. Upon evaluation, the model reached a precision of 0.840, a recall of 0.855, an F1-score of 0.847, and an IoU of 0.735. It successfully extracted 492 suspected damaged building patches within a radius of 20 km from the earthquake epicenter, clearly showing the distribution characteristics of damaged buildings concentrated in the earthquake fault zone. In summary, this hybrid YOLO-E and SAM2 approach, leveraging multi-source remote sensing imagery, delivers precise and rapid extraction of damaged buildings with a precision of 0.840, recall of 0.855, and IoU of 0.735, effectively supporting targeted earthquake rescue and post-disaster reconstruction efforts in the Dingri County fault zone. Full article
Show Figures

Figure 1

19 pages, 7524 KiB  
Article
Surface Reconstruction Planning with High-Quality Satellite Stereo Pairs Searching
by Jinwen Li, Guangli Ren, Youmei Pan, Jing Sun, Peng Wang, Fanjiang Xu and Zhaohui Liu
Remote Sens. 2025, 17(14), 2390; https://doi.org/10.3390/rs17142390 - 11 Jul 2025
Viewed by 336
Abstract
Advancements in remote sensing technology have remarkably enhanced the 3D Earth surface reconstruction, which is pivotal for applications such as disaster relief, emergency management, and urban planning, etc. Although satellite imagery offers a cost-effective and extensive coverage solution for 3D reconstruction, the quality [...] Read more.
Advancements in remote sensing technology have remarkably enhanced the 3D Earth surface reconstruction, which is pivotal for applications such as disaster relief, emergency management, and urban planning, etc. Although satellite imagery offers a cost-effective and extensive coverage solution for 3D reconstruction, the quality of the resulted digital surface model (DSM) heavily relies on the choice of stereo image pairs. However, current approaches of stereo Earth observation still employ a post-acquisition manner without sophisticated planning in advance, causing inefficiencies and low reconstruction quality. This paper introduces a novel quality-driven planning method for satellite stereo imaging, aiming at optimizing the search of stereo pairs to achieve high-quality 3D reconstruction. Moreover, a regression model is customized and incorporated to estimate the reconstructed point cloud geopositioning quality, based on the enhanced features of possible Earth-imaging opportunities. Experiments conducted on both real satellite images and simulated constellation data demonstrate the efficacy of the proposed method in estimating reconstruction quality beforehand and searching for optimal stereo pair combinations as the final satellite imaging schedule, which can improve the stereo quality significantly. Full article
Show Figures

Figure 1

22 pages, 6123 KiB  
Article
Real-Time Proprioceptive Sensing Enhanced Switching Model Predictive Control for Quadruped Robot Under Uncertain Environment
by Sanket Lokhande, Yajie Bao, Peng Cheng, Dan Shen, Genshe Chen and Hao Xu
Electronics 2025, 14(13), 2681; https://doi.org/10.3390/electronics14132681 - 2 Jul 2025
Viewed by 517
Abstract
Quadruped robots have shown significant potential in disaster relief applications, where they have to navigate complex terrains for search and rescue or reconnaissance operations. However, their deployment is hindered by limited adaptability in highly uncertain environments, especially when relying solely on vision-based sensors [...] Read more.
Quadruped robots have shown significant potential in disaster relief applications, where they have to navigate complex terrains for search and rescue or reconnaissance operations. However, their deployment is hindered by limited adaptability in highly uncertain environments, especially when relying solely on vision-based sensors like cameras or LiDAR, which are susceptible to occlusions, poor lighting, and environmental interference. To address these limitations, this paper proposes a novel sensor-enhanced hierarchical switching model predictive control (MPC) framework that integrates proprioceptive sensing with a bi-level hybrid dynamic model. Unlike existing methods that either rely on handcrafted controllers or deep learning-based control pipelines, our approach introduces three core innovations: (1) a situation-aware, bi-level hybrid dynamic modeling strategy that hierarchically combines single-body rigid dynamics with distributed multi-body dynamics for modeling agility and scalability; (2) a three-layer hybrid control framework, including a terrain-aware switching MPC layer, a distributed torque controller, and a fast PD control loop for enhanced robustness during contact transitions; and (3) a multi-IMU-based proprioceptive feedback mechanism for terrain classification and adaptive gait control under sensor-occluded or GPS-denied environments. Together, these components form a unified and computationally efficient control scheme that addresses practical challenges such as limited onboard processing, unstructured terrain, and environmental uncertainty. A series of experimental results demonstrate that the proposed method outperforms existing vision- and learning-based controllers in terms of stability, adaptability, and control efficiency during high-speed locomotion over irregular terrain. Full article
(This article belongs to the Special Issue Smart Robotics and Autonomous Systems)
Show Figures

Figure 1

25 pages, 1467 KiB  
Article
A Dual-Uncertainty Multi-Scenario Multi-Period Facility Location Model for Post-Disaster Humanitarian Logistics
by Le Xu, Liliang Dong, Fangqiong Luo, Weiweo Xiao, Xiaoyang Wang and Yu Liang
Symmetry 2025, 17(7), 999; https://doi.org/10.3390/sym17070999 - 25 Jun 2025
Viewed by 236
Abstract
The frequent occurrence of natural disasters creates a symmetry-breaking scenario between pre-disaster planning and post-disaster rescue operations, such as post-disaster supply–demand mismatches for materials and the risk of potential facility failures. Thus, we propose a dual-uncertainty multi-scenario multi-period facility location allocation model for [...] Read more.
The frequent occurrence of natural disasters creates a symmetry-breaking scenario between pre-disaster planning and post-disaster rescue operations, such as post-disaster supply–demand mismatches for materials and the risk of potential facility failures. Thus, we propose a dual-uncertainty multi-scenario multi-period facility location allocation model for humanitarian rescue. The model employs two polyhedral uncertainty sets to represent facility failure risks and demand uncertainty at disaster points. Moreover, by constructing diverse disaster scenarios, it simulates material distribution schemes across different relief periods, enhancing its realism. Given that the model integrates three subproblems—facility location, supply–demand matching analysis, and emergency material allocation—we design a hybrid algorithm (DCSA-MA) that combines the discrete crow search algorithm (DCSA) and the material allocation (MA) method for its solution. Experimental results demonstrate that the model maintains a relatively high material satisfaction rate even under significant demand fluctuations. The number of facility failures has a direct bearing on emergency rescue effectiveness. The DCSA-MA method achieves a superior material satisfaction rate compared to other algorithms across various disaster scenarios and multiple rescue periods. Furthermore, DCSA-MA outperforms other algorithms in terms of solution quality, convergence, computational time, and stability. These findings indicate that DCSA-MA is an effective and highly stable approach. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

19 pages, 744 KiB  
Article
Three-Dimensional Trajectory Optimization for UAV-Based Post-Disaster Data Collection
by Renkai Zhao and Gia Khanh Tran
J. Sens. Actuator Netw. 2025, 14(3), 63; https://doi.org/10.3390/jsan14030063 - 16 Jun 2025
Viewed by 602
Abstract
In Japan, natural disasters occur frequently. Serious disasters may cause damage to traffic networks and telecommunication infrastructures, leading to the occurrence of isolated disaster areas. In this article, unmanned aerial vehicles (UAVs) are used for data collection instead of unavailable ground-based stations in [...] Read more.
In Japan, natural disasters occur frequently. Serious disasters may cause damage to traffic networks and telecommunication infrastructures, leading to the occurrence of isolated disaster areas. In this article, unmanned aerial vehicles (UAVs) are used for data collection instead of unavailable ground-based stations in isolated disaster areas. Detailed information about the damage situation will be collected from the user equipment (UE) by a UAV through a fly–hover–fly procedure, and then will be sent to the disaster response headquarters for disaster relief. However, mission completion time minimization becomes a crucial task, considering the requirement of rapid response and the battery constraint of UAVs. Therefore, the author proposed a three-dimensional UAV flight trajectory, discussing the optimal flight altitude and placement of hovering points by transforming the original problem of K-means clustering into a location set cover problem (LSCP) that can be solved via a genetic algorithm (GA) approach. The simulation results have shown the feasibility of the proposed method to reduce the mission completion time. Full article
Show Figures

Figure 1

19 pages, 4044 KiB  
Article
A Deep Reinforcement Learning-Driven Seagull Optimization Algorithm for Solving Multi-UAV Task Allocation Problem in Plateau Ecological Restoration
by Lijing Qin, Zhao Zhou, Huan Liu, Zhengang Yan and Yongqiang Dai
Drones 2025, 9(6), 436; https://doi.org/10.3390/drones9060436 - 14 Jun 2025
Viewed by 435
Abstract
The rapid advancement of unmanned aerial vehicle (UAV) technology has enabled the coordinated operation of multi-UAV systems, offering significant applications in agriculture, logistics, environmental monitoring, and disaster relief. In agriculture, UAVs are widely utilized for tasks such as ecological restoration, crop monitoring, and [...] Read more.
The rapid advancement of unmanned aerial vehicle (UAV) technology has enabled the coordinated operation of multi-UAV systems, offering significant applications in agriculture, logistics, environmental monitoring, and disaster relief. In agriculture, UAVs are widely utilized for tasks such as ecological restoration, crop monitoring, and fertilization, providing efficient and cost-effective solutions for improved productivity and sustainability. This study addresses the collaborative task allocation problem for multi-UAV systems, using ecological grassland restoration as a case study. A multi-objective, multi-constraint collaborative task allocation problem (MOMCCTAP) model was developed, incorporating constraints such as UAV collaboration, task completion priorities, and maximum range restrictions. The optimization objectives include minimizing the maximum task completion time for any UAV and minimizing the total time for all UAVs. To solve this model, a deep reinforcement learning-based seagull optimization algorithm (DRL-SOA) is proposed, which integrates deep reinforcement learning with the seagull optimization algorithm (SOA) for adaptive optimization. The algorithm improves both global and local search capabilities by optimizing key phases of seagull migration, attack, and post-attack refinement. Evaluation against five advanced swarm intelligence algorithms demonstrates that the DRL-SOA outperforms the alternatives in convergence speed and solution diversity, validating its efficacy for solving the MOMCCTAP. Full article
Show Figures

Figure 1

Back to TopTop