
Citation: Zhu, J.; Zhao, H.; Wei, Y.;

Ma, C.; Lv, Q. Unmanned Aerial

Vehicle Computation Task

Scheduling Based on Parking

Resources in Post-Disaster Rescue.

Appl. Sci. 2023, 13, 289. https://

doi.org/10.3390/app13010289

Academic Editor: Dimitris Mourtzis

Received: 18 November 2022

Revised: 8 December 2022

Accepted: 21 December 2022

Published: 26 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Unmanned Aerial Vehicle Computation Task Scheduling Based
on Parking Resources in Post-Disaster Rescue
Jinqi Zhu 1 , Hui Zhao 2,*, Yanmin Wei 1, Chunmei Ma 1 and Qing Lv 1

1 School of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
2 School of Cyberspace Security, Dongguan University of Technology, Dongguan 523106, China
* Correspondence: zhaoh@dgut.edu.cn; Tel.: +86-13929225512

Abstract: Natural disasters bring huge loss of life and property to human beings. Unmanned aerial
vehicles (UAVs) own the advantages of high mobility, high flexibility, and rapid deployment, and are
important equipment during post-disaster rescue. However, UAVs usually have restricted battery
and computing power. They are not fit for performing compute-intensive tasks during rescue. Since
there are widespread parking resources in a city, multiple parked vehicles working together to
compute the applications from UAVs in a post-disaster rescue is investigated to ensure the quality
of experience (QoE) of the UAVs. To execute uploaded task effectively, surviving parked vehicles
within the monitoring range of an UAV are arranged into a cluster as much as possible. Then, the task
execution cost is analyzed. Furthermore, a deep reinforcement learning (DRL)-based offloading policy
is constructed, which interacts with the environment in an intelligent way to achieve optimization
goals. The simulation experiments show that the proposed offloading scheme has a higher task
completion rate and a lower task execution cost than other baselines schemes.

Keywords: disaster relief; deep reinforcement learning; unmanned aerial vehicles; task offloading;
parking resources

1. Introduction

Natural disasters bring great harm to people and damage the places where people
live. As described in the literature [1], in recent decades, the number of natural disasters
has increased significantly compared to before. In order to diminish the losses due to
natural disasters, in addition to disaster prevention measures, valid post-disaster rescue
is quite significant. Since science and technology have developed rapidly in recent years,
unmanned aerial vehicles (UAVs) have become important equipment for post-disaster
rescue [2]. Compared to traditional rescue instruments, UAVs own the advantages of fast
mobility, small cost, easy installation, and flexible deployment, and they are able to simply
access some disaster places that are previously inaccessible to humans. In addition, an
UAV can be equipped with a variety of sensors, communication modules, and computing
modules. The sensors can sense the disaster area and the sensed data can then be analyzed
or delivered through wireless links. The combination of UAVs and the rapidly developing
artificial intelligence (AI) science presents a new and efficient rescue mode for disaster
rescue [3]. For example, in July 2021, due to heavy rainfall, many cities in Henan, China,
suffered from serious floods. In this case, UAVs, which overcame adverse weather condition
and cooperated with ground staff to carry out environmental reconnaissance and rescue
missions, had achieved good rescue results.

Nevertheless, the participation of UAVs in disaster relief brings many challenges.
Firstly, the battery power of an UAV is restricted because of the strict limitations on both the
size and the weight of the UAV [4], which limits both the coverage range and the monitoring
duration. Secondly, the processing power of an UAV is also not enough, which means that
the UAV cannot complete AI applications, such as image processing, speech recognition,

Appl. Sci. 2023, 13, 289. https://doi.org/10.3390/app13010289 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010289
https://doi.org/10.3390/app13010289
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4546-3917
https://doi.org/10.3390/app13010289
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010289?type=check_update&version=1


Appl. Sci. 2023, 13, 289 2 of 17

and behavior recognition, in a timely manner. The reason is that AI applications, which
generally demand complicated operations, are compute-intensive tasks. Besides, most of
the AI applications often have response-time constraints. The resulting response timeout
will render the task invalid. Hence, the application data from UAVs during a relief process
should be uploaded in a timely manner, with the aim of prolonging the service duration of
the UAVs.

Cloud computing, which is based on on-demand access via the Internet, is capable of
offering reliable services for UAVs according to usage. This is because cloud computing
offers various kinds of resources on demand. However, the geographical distance from
the users to the cloud servers in the data center can be very long, which makes the quality
of experience (QoE) of the users hard to be ensured. To assure a better QoE for UAVs,
some studies described the transfer of data from UAVs to the edge server through multi-
access edge computing (MEC) [5,6]. Compared to cloud-assisted methods, offloading
using MEC servers is more appropriate for delay-sensitive and compute-intensive tasks.
The computation capacity of a MEC server, however, is much more restricted than that of
centralized clouds, and many tasks may face the problem of not being carried out in a timely
manner once the workload of the MEC server is heavy [7]. To resolve the vital problem of
designing an efficient uploading strategy for UAVs, reference [8] employed a large number
of mobile unmanned ground vehicles (UGVs) to take part in UAVs’ task calculation in a
post-disaster rescue. However, unmanned ground vehicles are expensive [9], and the cost
of employing a large number of UGVs to perform a task is very high.

Parked vehicles can be found everywhere in a city, and most automobiles have on-
board units (OBUs) that provide computational and storage capabilities. Even if a disaster
occurs, there are still some parked vehicles that are not damaged after the disaster. These
parking resources can easily be utilized in task execution to satisfy the resource needs of
UAVs. Therefore, we place emphasis on ground parked vehicles working together in order
to efficiently perform the AI applications from UAVs. Specifically, to achieve a rational
allocation of resources, undamaged vehicles that park outside within the monitoring range
of a UAV are firstly formed into a cluster as much as possible. Then, we analyze the
task execution cost, which considers both the time duration for finishing the task and
the task performers’ energy cost for performing the task. Finally, a deep reinforcement
learning (DRL)-based uploading policy is constructed. By interacting with the environment
in a smart manner, the task completion rate is maximized while the task execution cost
is minimized. The simulation experiments show that our algorithm achieves a great
improvement in task completion rate and task execution cost. The contributions of this
paper are presented as follows:

Undamaged parked vehicles are arranged and then applied to help UAVs during a
post-disaster rescue. The use of parked cars makes full use of a city’s useful resources.

We arrange undamaged vehicles that park outside within the communication range of
a UAV into a cluster as much as possible. The cluster architecture facilitates the management
of parked vehicles and the allocation of the offloaded tasks.

Taking the advantages of DRL, we propose to build a task-scheduling model based on
DRL to tackle the offloading issue of multiple tasks to meet the strict quality of experience
(QoE) of UAVs.

The rest of this paper is organized as follows: Related works are discussed in Section 2.
The motivating scenario is introduced in Section 3. Section 4 presents the task execution
cost analysis, and we discuss the offloading solution in Section 5. In Section 6, we evaluate
the performance of our scheme. Finally, the conclusions are presented in Section 7.

2. Related Work

Research on task offloading of UAVs can be divided into two types. Studies of the first
type equip UAVs with process units to handle the tasks from user equipment. In [10], a
UAV-enabled computing system is considered in which the UAV not only provides energy
supply to end users, but also provides edge computing services for the uploaded data



Appl. Sci. 2023, 13, 289 3 of 17

from end users. The problem of how to maximize the MEC computing speed is studied.
Yang et al. [11] investigate a network system with several UAVs, in which not only the
UAVs but also the user equipment can perform tasks generated by the end users. With
the aim of decreasing the energy cost of the UAVs, a method that jointly optimizes energy
control, computing power allocation, and task execution delay is proposed. To provide
sufficient computing resources for ground mobile devices, Zhang et al. [12] suggest that
UAVs should equipped with powerful computing units. In [13], the authors believe that
UAVs can be used as mobile clouds to complete tasks offloaded by mobile terminals with
limited processing capabilities. The evaluation comparisons indicate the high achievement
of the scheme presented in this paper. Liu et al. [14] propose that the tasks generated by
sensor devices can be completed by the cooperation of their nearby idle sensors and the
UAV installed with a MEC server. Hu et al. [15] introduce a system consisting of an access
point, an UAV, and many ground user devices. UAVs can perform the tasks uploaded by
user equipment and can also relay task data to access points for processing. Inspired by the
fact that UAVs can communicate with each other, Ref. [16] proposes a UAV-based wireless
energy transfer system. However, because the energy power of the UAV is restricted, a
continuous growth in the number of tasks leads to a continuous decline in the success ratio
of task execution.

Research studies of the second type aim to execute tasks with the help of remote clouds
or end users’ nearby edge servers. For example, in [17], data are transmitted between the
terminal and the access device via an UAV. The UAV can also transmit task data from
the source device to the edge for timely processing. Ref. [18] combines edge computing
with UAVs. Security problems in the task execution process are presented. The authors
in [7] describe an energy-saving computation offloading scheme for UAV-MEC systems
with emphasis on physical-layer security. The authors in [19] combine an UAV with edge
computing. The UAV collects data from Internet of Thing (IoT) devices and later transmits
data to access points, which perform their best to compute and process data. To minimize
both the energy exhaustion of IoT devices and the energy spent on data offloading of the
UAV, Ref. [20] proposes a UAV-aid MEC paradigm. The experimental results indicate the
paradigm remarkably reduces the energy utilization compared to other existing strategies.
To optimize the task execution latency of the fog computing system with one UAV, Li
et al. [21] present a scheduling algorithm and a multi-task offloading scheme under a multi-
server environment. The authors in [22] jointly optimize computational task offloading
and resource assignment. The authors in [23] suggest that the data collected by UAVs can
be transferred to the edge server which is connected to the base station via high-speed
wired links. A smart uploading mechanism specifically developed for the UAV-assisted
MEC network was designed. In [24], to obtain good system utility, the authors propose that
a single application can be split into multiple tasks and uploaded to the server node for
further analyzing.

To facilitate disaster rescue, the authors in [25] present a network consisting of two
subnetworks, which are an aerial subnetwork formed by multiple UAVs and a ground
vehicular network formed by automobiles. Three kinds of communications are introduced
to deliver data efficiently. Ref. [8] describes the use of mobile unmanned ground vehicles
(UGVs) to perform the tasks of the UAVs in a post-disaster rescue application. Since
unmanned ground vehicles are expensive, they cannot be applied to post-disaster rescue
scenarios on a large scale. Moreover, there are many vehicular applications based on parked
vehicles. In [26], owning to the high contact opportunities with parked cars, the authors
let outside parking distribute multimedia data via Internet of Vehicles (IoV). In [27], the
authors discuss how to make use of computational resources from parked cars to execute
mobile applications for moving vehicles. In [28], the authors arrange parked vehicles to
perform real-time AI tasks, with the aim of meeting the service quality of vehicle users.
The authors in [29] propose that both parked vehicles and their neighboring mobile cars on
the road are able to form vehicular social groups in the city. Efficient content transmission
is achieved based on the formed groups. In this paper, undamaged vehicles that park



Appl. Sci. 2023, 13, 289 4 of 17

outside are rationally arranged to take part in data computation. Furthermore, based on
the superiority of DRL, we construct a DRL model to tackle data offloading from UAVs,
with the aim of minimizing the desired optimization goals.

3. Motivating Scenario
3.1. System Model

The system model in a post-disaster rescue is presented in Figure 1, which mainly
includes two entities: UAVs and exteriorly parked vehicles that have not been damaged
after a disaster.

Figure 1. System model in post-disaster rescue.

UAV: Suppose the set of UAVs in the monitoring area is U = {1, 2, 3, . . . , u}. After
taking off from a random position on the ground, each UAV selects a position at a height H
from the ground and hovers horizontally at this position for area monitoring. H denotes the
minimum altitude fit for area monitoring to prevent recurrent going down and going up.
Suppose the coverage radius of each UAV is R0, and the coverage regions of the UAVs do
not overlap with each other. Multiple UAVs can be organized into a UAV ad hoc network,
and each UAV can transfer data to other UAVs through the network. Suppose that the
communication radius of the UAV in the formed ad hoc network is R. According to [30],
we have R0 < R. The UAVs aim to monitor the disaster area and obtain information from
the target area at the first time.

Parked vehicle: vehicles that park outside can be found everywhere in a city. Parked
vehicles have the characteristics of short radio range, low bandwidth, limited storage
and computational capacities, and wide distribution. Moreover, since parked vehicles are
relatively stable, the end user’s contact time with a parked vehicle is usually much longer
than with a moving vehicle. Hence, compared to mobile vehicles, parked vehicles are more
suitable for uploaded task execution. Suppose the set of parked vehicles in the monitoring
area is N = {1, 2, 3, . . . , n}. Although a number of vehicles parked on the ground have been
damaged in the disaster, a large number of these vehicles have not been damaged. These
undamaged ground parked vehicles can serve as natural roadside computing facilities, and
supply data offloading and computing services for UAVs in a collaborative manner.

Cluster: There may be multiple parked vehicles in the monitoring area of the UAVs.
To ease the management of the parked vehicles and optimize the allocation of parking
resources, undamaged ground parked vehicles form clusters according to the method
presented in Section 3.3. The clusters aim to offer computing service and even storage
service for UAVs if necessary.

Moreover, we assume parked vehicles and UAVs are equipped with OBUs through
which they can send data to one another. UAVs are also equipped with another communi-
cation model (such as IEEE 802.11n) to enable a high rate of task data delivery among the



Appl. Sci. 2023, 13, 289 5 of 17

UAVs. There are four types of wireless communication in our proposed system architecture:
(1) UAV to parked vehicle; (2) parked vehicle to UAV; (3) UAV to UAV; and (4) parked
vehicle to parked vehicle. The first two types of communication can occur if a parked
vehicle is found to be within the communication range of an UAV. An UAV can deliver its
packets to another UAV through the UAV ad hoc network. Furthermore, parked vehicles
are able to transfer data to each other by using the IEEE 802.11p protocol.

3.2. Disaster Model

In this subsection, which sums up the familiar characteristics in many disasters, a
simplified disaster model is shown as follows: suppose a disaster event i is a tuple of four
parameters (Ci, Ki, Ii, and Ai), where Ci denotes the central position of the area that the
disaster event happens, as described by two-dimensional coordinates (xi, yi); Ki is disaster
intensity, which is used to express the risk level of the disaster event at Ci; Ii represents the
attenuation coefficient of this event; and Ai is the affected area of this disaster event. As
described in [31], a disaster is described by a group of disaster events (devastating events).
For each devastating event i, Ii denotes the change of the risk level (intensity) in the affected
area of event i. Apparently, the closer a location is to the center point of the devastating
event, the greater its disaster intensity. We assume Ii decreases linearly from the central
position of the event. For location j, the attenuation coefficient is calculated as follows:

Ii,j =
lj

L
(1)

where L is the farthest distance from Ci to the location affected by the devastating event in
the monitoring area, and lj is the distance from Ci to location j. For parked vehicle n located
at location j, its survival probability can be expressed as follows:

p(n) =
Ii,j × Ki

Kmax
(2)

where Kmax denotes the highest recorded intensity of such devastating events. For example,
for earthquake disasters, the highest earthquake magnitude achieves 12. As shown in
Figure 2, based on the survival probabilities of the parked vehicles, we categorize ground
parked vehicles into different states: safe, sub-safe, and dangerous. We assume there are
two thresholds, Ts and Td (Ts < = Td), which can be predefined in terms of the disaster
scene. Let rank(n) denote the state of parked vehicle n, we then obtain the following:

rank(n) =


sa f e p(n) < Ts

sub sa f e Ts ≤ p(n) ≤ Td

dangerous Td ≤ p(n)

(3)

Figure 2. Disaster model.



Appl. Sci. 2023, 13, 289 6 of 17

Compared to vehicles in a dangerous state, ground vehicles in a safe state and a
sub-safe state are more suitable for offloaded task execution because they are relatively far
away from the center of the disaster event and have less damage. Suppose the cluster head
periodically sends beacon messages to the UAV, from which the UAV learns the current
state of each member node, its ID number, and the total number of surviving parked cars
in the cluster.

3.3. Cluster Construction

To execute the offloaded task efficiently, the surviving parked vehicles within the
monitoring range of a UAV are formed into a cluster as much as possible. The establishment
process of the cluster includes the following steps:

1. Each UAV sends its ID number to the parked vehicles within its coverage range.
The surviving parked vehicles then record the received UAV ID information.

2. A value between 0–1 is randomly chosen by each parked vehicle. For parked vehicle
n, if the selected value rn satisfies the condition that:

rn ≤
p

1− p(k mod 1
p )

(4)

then parked vehicle n becomes the cluster head. p in Equation (4) is the percentage of the
number of cluster heads to the total number of parked vehicles, and k denotes the current
number of rounds. Equation (4) aims to enable each node in the cluster to take turn to
become the cluster head, with the aim of balancing the load.

3. After the cluster head is determined, the cluster head transmits a broadcast message
including its own ID number and its recorded UAV ID to the remaining non-cluster head
nodes. To reduce the delivery overhead of the broadcast message, the dissemination hops
of the broadcast message is specified as Mh. The remaining non-head vehicles decide
whether to join the cluster according to the ID number of the UAV the cluster head belongs.
Specifically, for a parked vehicle, if it receives multiple broadcast messages from different
cluster heads, and the UAV IDs of these broadcast messages are the same, the vehicle
randomly selects a cluster to join in. If the UAV IDs of the received broadcast messages
are different, the parked vehicle joins the cluster whose cluster head owns the same UAV
ID as this parked vehicle. Our aim is to try to keep parked vehicles within the same UAV
coverage range in the same cluster.

4. Repeat steps 2 and 3 if there are still parked vehicles that have not been added to
any cluster. After the above steps, there may still be some isolated vehicles that have not
joined any cluster.

5. When the cluster is too small, the total resources of the cluster may be insufficient for
data processing, so that it is necessary to merge several small clusters into a larger cluster.
For the cluster whose number of members is no more than the threshold Cth, some cluster
heads of these clusters are randomly selected as the upper-level cluster heads according
to step 2. After the upper-level cluster heads are determined, small clusters are merged
according to step 3.

6. Continue to perform step 5 until the remaining small clusters cannot be merged.
Figure 3 shows the cluster establishment process.

After the cluster is formed, each vehicle member in the cluster periodically sends a
message, including its vehicle ID number, its current location coordinates, its remaining
energy power, and its current working status, to the cluster head. If no message is received
from a member node for some time, the head node considers the node to be corrupted or
no long in the cluster.

The advantages of the cluster are as follows: (1) Message binding: small messages
delivered to the same terminal point can be bundled into a larger message by the head
node to decrease the data delivery overhead. (2) Vehicle management: parked vehicles
can be well managed in the cluster. Moreover, computing resources in the cluster can be
allocated uniformly and fairly within the cluster. (3) Results merging: multiple final results



Appl. Sci. 2023, 13, 289 7 of 17

with small amounts of data can first be merged in the cluster and then returned back to the
UAV to reduce the consumption of network resources. In addition, since the probability of
a parked vehicle leaving or joining the cluster in a disaster scenario is considerably lower
than in a normal urban situation, we believe the structure of the cluster is relatively stable.

Figure 3. The formation of the clusters.

4. Task Execution Cost Analysis
4.1. Task Execution Latency

In this subsection, the task execution time, which is a part of task execution cost, is
analyzed. For UAV u, when there are sufficient parking resources in its coverage area, the
tasks from UAV u will be directly delivered to the parked vehicles in its coverage range.
The time cost for finishing task t from UAV u is calculated as follows:

Tt = Tup
u,t + Tcom

u,t + Tdown
u,t (5)

where Tup
u,t denotes the time to upload the whole task; Tcom

u,t indicates the task calculation
time; and Tdown

u,t indicates the result return time. For Tup
u,t , we have the following:

Tup
u,t =

su,t

mru,ave
(6)

where su,t is the total amount of data size; ru,ave is the average throughput between UAV
u and the parked vehicles which will carry out the task; and m denotes the number of
task performers. Here, we consider a parallel task execution mode [32,33]. In other
words, the whole task can be divided up and then carried out by multiple task performers
collaboratively. The throughput between UAV u and parked car n is modeled as follows:

ru,n = Bu,n log2(1 +
Pu|hu,n|2d−β

u,n

σ2 ) (7)

where Bu,n is the channel bandwidth; Pu denotes the fix transmit power of UAV u; σ2 is the
power spectral density of Gaussian Noise; hu,n indicates the channel fading from UAV n to
parked vehicle n; du,n represents the distance between the two when a downlink delivery
occurs; and β indicates the path loss exponent. Assuming that the CPU frequency of the
automobile is fv, then Tcom

u,t is denoted as follows:

Tcom
u,t =

su,tcu,t

m fv
(8)

where cu,t indicates the computational complexity of task t. The task result return duration
is calculated as follows:

Tdown
u,t =

yu,t

rave,u
(9)

where yu,t is the size of the final result, and ru,ave which denotes the average transmission
rate from task performers to UAV n has a similar calculation method as ru,n.



Appl. Sci. 2023, 13, 289 8 of 17

If the parking resources within the coverage range of UAV u are insufficient (computing
resources are occupied) or there is no available resource in the coverage range of UAV
u, UAV u needs to forward the generated application to its neighboring UAV with more
accessible resources. In this case, the required duration for task calculation is as follows:

Tt = Tu,u′ + Tup
u′ ,t + Tcom

u′ ,t + Tdown
u′ ,t + Tu′ ,u (10)

where Tu,u′ is the duration for UAV u to forward the data to its neighbor UAV u′ through
the wireless mode, and Tu′ ,u denotes the wireless delivery delay for UAV u′ to upload
the calculation result to UAV u. Since two neighboring UAVs communicate through an
air-to-air (A2A) link which mainly uses line-of-sight transmission [26], Tu,u′ is described by
the following equation:

Tu,u′ =
su,t

ru,u′
=

su,t

Bu,u′ log2(1 +
Pu10

−Loss(u,u′)
10

σ2 )

(11)

where Loss(u,u′) is the path loss between the two UAVs in free space. According to
study [34], we have the following:

Loss(u, u′) = 32.45 + 20 log f f + 20 log d(u,u′) (12)

where ff represents the carrier frequency, and d(u,u′) is the distance between the two
neighboring UAVs. Moreover, Tu′ ,u is obtained in a similar way as Tu,u′ . Tup

u′ ,t, Tcom
u′ ,t and

Tdown
u,t denote the duration for the task performer to download the task, the time used to

perform the task, and the time to send back the result, respectively, which are calculated
using the same method as Tup

u,t , Tcom
u,t , and Tdown

u,t respectively.

4.2. Energy Comsumption

Since the battery strength of an automobile is restricted, the energy overhead for data
uploading of a parked car must be taken into account. Since the energy consumption of a
vehicle occurs during the task receiving, sub-task performing, and task result transmitting
processes, the total energy overhead for executing task t is expressed as follows:

Et =
m

∑
t=1

Pv,sendTup
u,t + δ f 2

v Tcom
u,t + Pv,recTdown

u,t (13)

where Pv,send and Pv,rec denote the delivery power and the receiving power of the vehicle,
respectively; δ is a coefficient that relies on the chip architecture of the CPU; and m is the
set of task performers. Considering both the time cost for finishing a task and the energy
cost of task execution by parked vehicles, the total task execution cost of task t is modeled
as follows:

cos tt = λTt + (1− λ)Et (14)

where λ represents the weight of the time spent on completing the task.

5. Data Offloading Solution

In this section, the optimal resource assignment is firstly discussed, and then deep
reinforcement learning (DRL) is adopted to explore an optimal offloading policy.

5.1. Estimating the Amount of Resources

As the amount of resources allocated to each task directly determines the efficiency of
task completion, resource allocation becomes a critical issue in high-performance uploading
mechanism devising. Our goal is to minimize the task execution cost. Since the duration for
task performers to perform a task is critical to both the time used for finishing the task and
the energy expenditure of the vehicles, the total task completion duration should be firstly



Appl. Sci. 2023, 13, 289 9 of 17

optimized when assigning the CPU resources of the vehicles. Therefore, the minimization
problem is formulated as follows:

P : min
U
∑

u=1

T
∑

t=1

fmax

∑
m=1

xm
u,t

su,tcu,t
f m
u,t

s.t. C1 : xm
u,t ∈ {0, 1}, ∀u ∈ U, t ∈ T, m ≤ fmax

C2 :
fmax

∑
m=1

xm
u,t = 1, ∀u ∈ U, t ∈ T, m ≤ fmax

C3 :
U
∑

u=1

T
∑

t=1

fmax

∑
m=1

f m
u,t ≤ Rall

(15)

where f max is a pre-defined maximum allocation resource threshold for each task, and xu,tm
is resource choice profile. In P, constraints C1 and C2 guarantee that the resource selection
of each task is binary. C3 limits the tasks to be assigned from the UAVs within the resource
permissible range. Let the resource set of each task be Rset = {0.1, 0.2, . . . , ft, fmax} and let
the maximum weight of the owned parking resources within the monitoring area of the
UAVs be Rall, P is then changed into obtaining the minimum value of the multi-dimensional
knapsack issue, which is tackled here by dynamic programming [35].

5.2. Task Offloading Decision

Once given a certain resource value, the number of task splits is obtained. For example,
if the amount of computing resources assigned to task t is f, this task has d f / fve sub-tasks
that are executed simultaneously. Currently, DRL, which is an extension of the customary
reinforcement learning (RL), has been universally applied to many optimization issues. By
exploring and receiving feedback from the environment, and combining with extensive
state-action space exploration, DRL is good at finding the optimal offloading strategy.
Using DRL for task allocation provides a main advantage. That is, during the learning
phase, DRL learns the reward function which can be reasonably defined to capture multiple
optimization objectives. Because of the advantages of DRL, DRL is adopted to identify
specific task performers in this subsection. The key definitions of DRL are modeled
as follows:

Agent: An agent is able to select the next action based on the current state of the
environment and make decisions through continuous interaction with the environment
according to the observations. In the proposed UAV task offloading scenario, the cluster
head in each UAV’s monitoring scope plays the role of the agent. The agent is responsible
for gathering information and studying the task placement strategy iteratively, so as to
maximize the cumulative reward.

State: Discovering a suitable representation of the input state is important to DRL
model. Since the task uploading decision in our paper relies on the maximum tolerance
delay, the data size of each task, and the locations of the parked cars in the cluster, the
system state of the proposed DRL is represented as a vector St = (st, l1, l2, · · · , ln, Tmax

t ), in
which st is task data size, Tmax

t indicates the maximum tolerance delay threshold, and l1,
l2, . . . , ln is the locations of the member nodes in the cluster within the coverage range of
the UAV.

Action: The cluster head makes the decision on which ground vehicles are allocated to
the uploaded tasks. We use vector At = (at1, at2, · · · , atM) to represent the actions taken in
state St, in which aij ∈ {0, 1} for ∀j ∈ {1, 2, · · · , M}. aij = 1 denotes that vehicle n is chosen

as the task performer. Different from traditional DRL, we have
M
∑

j=1
aij > 1. The reason is

that, for each task, multiple candidates are chosen for task computing. This is because one
vehicle does not have enough resources to meet the task delay requirement.

Reward: At each state, the agent takes an action to receive the immediate reward. Our
goal is to obtain the minimal task execution cost, while the goal of the DRL model is to



Appl. Sci. 2023, 13, 289 10 of 17

maximize the reward. In order to retain consistency with the proposed minimization target,
the reward function is defined as follows:

rt =

{
τ∗rate

λTt+(1−λ)Et
Tt ≤ Tmax

t

0 Tt > Tmax
t

(16)

where rate denotes the current task’s successful ratio, and τ is a coefficient which is exploited
to avoid slow gradient descent speed due to a small reward value.

Policy: Compared to traditional RL, neural network which brings various observations
into the offloading policy is introduced into DRL. The output of the softmax function of the
neural network is taken as the policy in our learning-based model. The policy is presented
as follows:

πθ(st, atn) = P(atn|st, θ) =
eφ(st ,atn)θ

∑M
j=1 eφ(st ,atn)θ

(17)

This policy is used to determine the probability of using parked vehicle n to complete
task t in state st.

The objective function: the optimization is based on the following equation:

J(θ) = −Eπθ [Qπ(st, at) log πθ(st, at)] (18)

where Qπ(st, at) indicates the value acquired when taking action at under state st. We
obtain the following:

Qπ(st, at) =

{
rt + γQπ(st+1, at+1) stis termal state
rt otherwise

(19)

where γ is the attenuation factor, and rt is the reward received by taking the action at state
St. Algorithm 1 summarizes the task performer selection process based on DRL.

Algorithm 1: Task Performer Allocation Based on DRL.

1. Input:iteration number, step, batch-size, the action set A, attenuation factor γ

2. Output: At = (at1, at2, · · · , atM)
3. for episode from 1 to iteration number

4. Initialize s0 and then obtain the feature vector φ (s0);
5. for t from 1 to step
6. chose action at according to constrain (17);
7. take action at, obtain reward value and alter st by st←st+1;
8. store {φ (st);at;st; φ (st+1);} in memory;
9. if st+1 is the terminal state

10. end the iteration;
11. else
12. continue;
13. end for

14. sample batch-size of transitions randomly for training;
15.update the objective function according to the gradient descent;
16. end for

6. Simulation Result

In this section, evaluations are conducted to present the performance of the scheme
proposed in this paper. Pytorch is applied to build the deep learning framework. In the
simulation scenario, we consider a circular area consisting of four UAVs and a number of
parked vehicles, which number varies from 100 to 500 [36]. Suppose the coverage radius
of each UAV is 200 m, and the UAVs are located at a fixed height of 10 m [37]. Each UAV
randomly generates tasks with data size from 2 Mbit to 4 Mbit. The maximum delay
tolerance of the tasks ranges from 4 s to 8 s. The size of the final result is considered as



Appl. Sci. 2023, 13, 289 11 of 17

0.1 Mbit. The transmission range of the vehicle is denoted as 300 m. The local default
CPU frequency of the vehicle is set as 0.4 GHz. The communication radius between
two neighboring UAVs is 300 m. Other parameter values in evaluation are described in
Table 1. Moreover, two hidden layers are constructed in the neural network used in the
proposed DRL model. The numbers of neurons in these two hidden layers are 512 and 256,
respectively. The activation function used is Rectified Linear Activation Function(Relu).

Table 1. The setting of variable values.

Parameter Value Description

Bu,n 10 MHz the bandwidth from UAV u to vehicle n
Pu 10 W the transfer power of UAV u
Pn 1 W the fixed transfer power of vehicle n

Bu,u′ 50 MHz the bandwidth between neighboring UAVs
σ2 −95 dBm the power spectral density of Gaussian Noise
β 2 path loss exponent
ff 2 GHZ carrier frequency
τ 100 coefficient according to gradient descent
λ 0.6 weight value

batch-size 80 the number of units manufactured in a
production run

γ 0.8 attenuation factor
step 80 step in the DRL model

learning rate 0.0001 learning rate in training

For comparisons, other two task offloading schemes are presented to validate the
performance of the scheme described in our paper, where local computing (LC) places all
the tasks in the UAVs for computing and in random offloading scheme (RF), each UAV
randomly selects parked vehicles for task uploading, while the computational resources
are allocated based on the strategy presented in Section 5.1.

6.1. Evaluation Results of the Learning Rate and the Attenuation Factor

The learning rate is critical to maximize the speed of learning. A proper learning rate
could let the objective function converge to the optimal value at the right time. Hence, the
effects of the proposed model at different learning rates are studied and shown in Figure 4a.
In Figure 4a, when the learning rate is 1 × 10−6 and 1 × 10−5, the task completion rate
slowly converges with the increase in iteration numbers. However, the model cannot
achieve the optimal value, but the local optimal value, and no real optimal solution is
found. When the learning rate is 0.001, the model converges very fast in the earlier stage,
but the successful rate fluctuates too much to converge with the iteration process. When
the learning rate is 0.0001, both the optimization rate and the stability of the model are
guaranteed. Therefore, the value of learning rate is chosen as 0.0001 in the process of
model tuning.

Attenuation factor is a key element of the DRL model. The value of the attenuation
factor is usually between 0 and 1. This is because the current reward and all subsequent
rewards have to be considered in DRL. The training effect of the proposed DRL model
under different attenuation factors is shown in Figure 4b, from which we know that when
the attenuation factor is 0.8, the model achieves the best performance compared to other
attenuation factor values.



Appl. Sci. 2023, 13, 289 12 of 17

Figure 4. Evaluation under different parameters of training. (a) Task successful rate under various
learning rates, and (b) task successful rate under various attenuation factors.

6.2. Evaluation Results of Modifying Computational Complexity

In this subsection, the two metrics in term of computational complexity are discussed,
in which the computational complexity denotes the CPU frequency demand for computing
a unit bit of data. Figure 5a,b present the successful ratio and the task execution cost of the
schemes involving uploading. Figure 5a shows that, when increasing the computational
complexity, the task completion rates decrease for all schemes. This is in conformity with
our intuition. We can observe that our learning-based scheme performs the best, while
the LC scheme is the worst in performance. When the computational complexity is set to
1200 rounds/bit, the task completion rate is only 8% for the LC scheme and 32% for the RF
scheme, while the successful rate for the proposed DRL based scheme in this paper is 64%.
Compared to the RF scheme and the LC scheme, the task successful rate of our scheme
increases by 56% and 32%, respectively. The reasons are as follows: Firstly, computational
resources are reasonably allocated by the resource assignment strategy discussed in this
paper. Secondly, both the features of flexibility and long-term planning of DRL are fully
utilized in our scheme. Moreover, when the computational complexity is 900 rounds/bit,
the successful rate of the proposed scheme is up to 83%, which is much higher than other
two schemes involving uploading.

Figure 5. Simulation under diverse computational complexity values. (a) Task successful rate under
various computational complexity, and (b) execution cost under various attenuation factors.



Appl. Sci. 2023, 13, 289 13 of 17

From Figure 5b, we can see that the task execution cost of the LC scheme tends to
increase linearly when the values of the computational complexity are modified due to both
the increase in task execution time and the increase in energy consumption. The proposed
scheme obtains great advantage on the total task execution cost even when the computation
complexity is set to a high value. The main reason is that, in the proposed scheme, task
offloading can be continuously optimized through multiple iterations to maximize the
reward by using the DRL model.

6.3. Evaluation Results of Modifying the Generated Tasks

This subsection discusses the effect of the number of tasks to be processed on the per-
formance of these schemes. When the computational complexity is set as 1000 rounds/bit,
the evaluation results of each offloading scheme are presented in Figure 6a,b as the number
of tasks is gradually increased from 40 to 80. The successful rates for these three offloading
methods decline as we increase the number of tasks. It could be expounded by the fact that,
once the number of compute-intensive tasks from the UAVs is small, parking resources
are sufficient for the assignment. However, since the more tasks there are, the less CPU
resources per task can be obtained with a fixed amount of deployed resources. The success-
ful rates of the three schemes reduce significantly with a large number of tasks. Because of
the advantages of the DRL model, the proposed learning-based scheme shows a higher
successful rate than other two schemes.

Figure 6. Simulation results with diverse number of tasks. (a) Task successful rate under diverse
number of tasks, and (b) execution cost under diverse number of tasks.

Figure 6b shows our scheme greatly decreases the task execution cost. The reason is
that the proposed DRL-based scheme continuously adjusts the offloading strategy through
multiple training processes to achieve the lowest task execution cost, with a relatively high
task successful rate, among the three schemes.

6.4. Evaluation Results of Modifying the Amount of Parking Resources

In Figure 7a, we focus on the task completion rate when modifying the parking
resource value in the disaster area, in which the amount of resources depends on the
number of available parked vehicles. The LC scheme and RF scheme are also set as the
benchmarks. It is obvious that the proposed scheme is significantly superior to both of the
comparison schemes. When increasing the amount of available resources, the gap is even
more apparent. Since the tasks are only performed locally, the curve of task completion
time remains stable for the LC scheme. Once the number of ground parked cars reaches
200, the successful rate of the proposed learning-based scheme is 79%, while the successful



Appl. Sci. 2023, 13, 289 14 of 17

rate of the other two schemes are 9% and 44%, respectively. We can conclude that, under
the same conditions, the proposed learning-based scheme can accomplish more tasks.

Figure 7. Simulation results with diverse deployed resources. (a) Task successful rate under resources,
and (b) execution cost under resources.

Figure 7b certificates that the total task execution cost of our method is much smaller
that of the traditional LC and RF schemes. The reason is that an increase in the number of
parked cars results in an increase in the amount of available resources, which shortens the
time consumption for executing a task. Thus, the total execution cost of the task is reduced.

6.5. Evaluation Results of Modifying λ and Evaluation Test on Task Allocation Time

Since the weight λ in Equation (14) affects the total task execution cost, we evaluate
the execution cost of the three schemes under different value of λ. From Figure 8, we know
that, when changing λ, our proposed scheme always achieves the lowest task execution
cost among the three schemes. Furthermore, to verify the efficiency of task allocation, we
test the task allocation time required to allocate 50, 100, 150, and 200 tasks, respectively,
with the results being shown in Figure 9. As can be seen from this figure, the proposed
DRL-based scheme takes a short time to complete task assignment, which indicates the
efficiency of the proposed DRL model. For example, the total allocation time for assigning
100 offloaded tasks is only 0.057 s.

Figure 8. Simulation results with diverse λ.



Appl. Sci. 2023, 13, 289 15 of 17

Figure 9. Task assignment duration using our proposed model.

6.6. Evaluation Results of Modifying Cth

In this subsection, we also test the task successful rate and task execution cost of our
scheme with diverse Cth value, which is discussed in Section 3.3. In Figure 10, we see that,
when Cth increases from 80 to 200 parked vehicles, the successful rate increases while the
task execution cost decreases. The main reason is that an increase in the number of cluster
members results in an increase in the amount of available computational resources in the
cluster, which shortens the time consumption for executing the tasks.

Figure 10. Simulation results with diverse value of Cth. (a) Task successful rate under Cth, and (b) execution
cost under Cth.

7. Conclusions

In post-disaster scenarios, infrastructures are damaged, but some parked vehicles are
not. Because parked vehicles have computational resources, this paper places emphasis
on reasonably organizing undamaged ground parked vehicles in each UAV’s coverage
area to complete various types of uploading tasks from the UAVs. To tackle the task
scheduling issue, a deep reinforcement learning model is trained periodically, in order to
reduce the task execution cost and the task completion time. Simulation was performed to
investigate the performance of the proposed scheme from multiple aspects. A large number
of experimental results prove that the scheme in this paper achieves both higher successful
rate and lower task execution cost than baselines policies. In addition, the time of task
assignment is short and the convergence of the results is guaranteed. In the future, task



Appl. Sci. 2023, 13, 289 16 of 17

offloading performance will be further improved and new applications based on parked
vehicles will be studied.

Author Contributions: J.Z.: original draft writing, and review and editing; H.Z.: supervision; Y.W.:
simulation; C.M. and Q.L.: review. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded in part by the Natural Science Foundation of China under grants
(Nos. 61902282, 62002263, 61872083, 61872081) and in part by the Scientific Research Project of Tianjin
Education Commission under Grant (No. 2021KJ186), and in part by the Science and technology
project of Guangdong (No. 2020ZDZX3054).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pu, C.; Zhou, X. Smartphone-Based Self Rescue System for Disaster Rescue. In Proceedings of the 2019 IEEE 9th Annual

Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019. [CrossRef]
2. Yin, S.; Zhao, Y.; Li, L. UAV-Assisted Cooperative Communications with Time-Sharing SWIPT. IEEE Trans. Veh. Technol. 2020, 69.

[CrossRef]
3. Dridi, A.; Laroui, M.; Boucetta, C.; Afifi, H.; Moungla, H. Reinforcement Learning Vs ILP Optimization in IoT support of Drone

assisted Cellular Networks. In Proceedings of the ICC 2022-IEEE International Conference on Communications, Seoul, Republic
of Korea, 16–20 May 2022; pp. 4589–4594.

4. Chen, Q.; Zhu, H.; Yang, L.; Chen, X.; Pollin, S.; Vinogradov, E. Edge computing assisted autonomous flight for uav: Synergies
between vision and communications. IEEE Commun. Mag. 2011, 59, 28–33. [CrossRef]

5. Qiu, T.; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge computing in industrial internet of things: Architecture
advances and challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2462–2488. [CrossRef]

6. Jiao, Y.; Wang, P.; Niyato, D.; Suankaewmanee, K. Auction mechanismsin cloud/fog computing resource allocation for public
blockchain networks. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 1975–1989. [CrossRef]

7. Bai, T.; Wang, J.; Ren, Y.; Hanzo, L. Energy-efficient computation offloading for secure uav-edge-computing systems. IEEE Trans.
Veh. Technol. 2019, 68, 6074–6087. [CrossRef]

8. Chen, W.; Su, Z.; Xu, Q.; Luan, T.H.; Li, R. VFC-Based Cooperative UAV Computation Task Offloading for Post-disaster Rescue.
In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July
2020; pp. 1–9.

9. Young, C.; Man, L.; Koonjul, Y.; Nagowah, L. A low cost autonomous unmanned ground vehicle. Future Comput. Inform. J. 2018,
3, 304–320.

10. Zhou, F.; Wu, Y.; Hu, R.Q.; Qian, Y. Computation Rate Maximization in UAV-Enabled Wireless-Powered Mobile-Edge Computing
Systems. IEEE J. Sel. Areas Commun. 2018, 36, 1927–1941. [CrossRef]

11. Yang, Z.; Pan, C.; Wang, K.; Shikh-Bahaei, M. Energy Efficient Resource Allocation in UAV-Enabled Mobile Edge Computing
Networks. IEEE Trans. Wirel. Commun. 2019, 18, 4576–4589. [CrossRef]

12. Zhang, J.; Zhou, L.; Tang, Q.; Ngai, E.C.H.; Hu, X.; Zhao, H.; Wei, J. Stochastic Computation Offloading and Trajectory Scheduling
for UAV-Assisted Mobile Edge Computing. IEEE Internet Things J. 2019, 6, 3688–3699. [CrossRef]

13. Jeong, S.; Simeone, O.; Kang, J. Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path
Planning. IEEE Trans. Veh. Technol. 2017, 67, 2049–2063. [CrossRef]

14. Liu, Y.; Xiong, K.; Ni, Q.; Fan, P.; Letaief, K.B. UAV-Assisted Wireless Powered Cooperative Mobile Edge Computing: Joint
Offloading, CPU Control, and Trajectory Optimization. IEEE Internet Things J. 2019, 7, 2777–2790. [CrossRef]

15. Hu, X.; Wong, K.K.; Yang, K.; Zheng, Z. UAV-Assisted Relaying and Edge Computing: Scheduling and Trajectory Optimization.
IEEE Trans. Wirel. Commun. 2019, 18, 4738–4752. [CrossRef]

16. Sun, H.; Zhang, B.; Zhang, X.; Yu, Y.; Sha, K.; Shi, W. FlexEdge: Dynamic Task Scheduling for a UAV-Based on-Demand Mobile
Edge Server. IEEE Internet Things J. 2022, 9, 15983–16005. [CrossRef]

17. Zhang, T.; Xu, Y.; Loo, J.; Yang, D.; Xiao, L. Joint Computation and Communication Design for UAV-Assisted Mobile Edge
Computing in IoT. IEEE Trans. Ind. Inform. 2020, 16, 5505–5516. [CrossRef]

18. Garg, S.; Singh, A.; Batra, S.; Kumar, N.; Yang, L.T. UAV-Empowered Edge Computing Environment for Cyber-Threat Detection
in Smart Vehicles. IEEE Netw. 2018, 32, 42–51. [CrossRef]

19. Han, R.; Wen, Y.; Bai, L. Rate Splitting on Mobile Edge Computing for UAV-aided IoT Systems. IEEE Trans. Cogn. Commun. Netw.
2021, 6, 1193–1203. [CrossRef]

http://doi.org/10.1109/CCWC.2019.8666565
http://doi.org/10.1109/TVT.2019.2956167
http://doi.org/10.1109/MCOM.001.2000501
http://doi.org/10.1109/COMST.2020.3009103
http://doi.org/10.1109/TPDS.2019.2900238
http://doi.org/10.1109/TVT.2019.2912227
http://doi.org/10.1109/JSAC.2018.2864426
http://doi.org/10.1109/TWC.2019.2927313
http://doi.org/10.1109/JIOT.2018.2890133
http://doi.org/10.1109/TVT.2017.2706308
http://doi.org/10.1109/JIOT.2019.2958975
http://doi.org/10.1109/TWC.2019.2928539
http://doi.org/10.1109/JIOT.2022.3152447
http://doi.org/10.1109/TII.2019.2948406
http://doi.org/10.1109/MNET.2018.1700286
http://doi.org/10.1109/TCCN.2020.3012680


Appl. Sci. 2023, 13, 289 17 of 17

20. Alsenwi, M.; Tun, Y.K.; Pandey, S.R.; Ei, N.N.; Hong, C.S. UAV-Assisted Multi-Access Edge Computing System: An Energy-
Efficient Resource Management Framework. In Proceedings of the 2020 International Conference on Information Networking
(ICOIN), Barcelona, Spain, 7–10 January 2020. [CrossRef]

21. Xujie, L.I.; Zhou, L.; Sun, Y. Multi-task offloading scheme for UAV-Enabled Fog Computing networks. EURASIP J. Wirel. Commun.
Netw. 2020, 4, 230. [CrossRef]

22. Zhan, C.; Hu, H.; Sui, X.; Liu, Z.; Niyato, D. Completion Time and Energy Optimization in the UAV-Enabled Mobile-Edge
Computing System. IEEE Internet Things J. 2020, 7, 7808–7822. [CrossRef]

23. Chen, J.; Chen, S.; Luo, S.; Wang, Q.; Cao, B.; Li, X. An intelligent task offloading algorithm (iTOA) for UAV edge computing
network. Digit. Commun. Netw. 2022, 6, 433–443. [CrossRef]

24. Wang, G.; Yu, X.; Xu, F.; Cai, J. Task offloading and resource allocation for UAV-assisted mobile edge computing with imperfect
channel estimation over Rician fading channels. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 169–180. [CrossRef]

25. Zhou, Y.; Cheng, N.; Lu, N.; Shen, X.S. Multi-uav-aided networks:Aerial-ground cooperative vehicular networking architecture.
IEEE Veh. Technol. Mag. 2015, 10, 36–44. [CrossRef]

26. Liu, N.; Liu, M.; Chen, G.; Cao, J. The The sharing at roadside: Vehicular content distribution using parked vehicles. In
Proceedings of the 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 1–9.

27. Huang, X.; Yu, R.; Liu, J.; Shu, L. Parked Vehicle Edge Computing: Exploiting Opportunistic Resources for Distributed Mobile
Applications. IEEE Access 2018, 6, 66649–66663. [CrossRef]

28. Ma, C.; Zhu, J.; Liu, M.; Zhao, H.; Liu, N.; Zou, X. Parking Edge Computing: Parked-Vehicle-Assisted Task Offloading for Urban
VANETs. IEEE Internet Things 2022, 8, 9344–9358. [CrossRef]

29. Su, Z.; Hui, Y.; Guo, S. D2D-based content delivery with parked vehicles in vehicular social networks. IEEE Wirel. Commun. 2016,
23, 90–95. [CrossRef]

30. Liu, C.H.; Chen, Z.; Tang, J.; Xu, J.; Piao, C. Energy-Efficient UAV Control for Effective and Fair Communication Coverage: A
Deep Reinforcement Learning Approach. IEEE J. Sel. Areas Commun. 2022, 36, 2059–2070. [CrossRef]

31. Liu, M.; Gong, H.; Wen, Y.; Chen, G.; Cao, J. The last minute: Efficient Data Evacuation strategy for sensor networks in post-disaster
applications. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 291–295.

32. Tang, C.; Wei, X.; Xiao, S.; Chen, W.; Fang, W.; Zhang, W.; Hao, M. A mobile cloud based scheduling strategy for industrial
internet of things. IEEE Access 2018, 6, 7262–7275. [CrossRef]

33. Yan, J.; Bi, S.; Huang, L.; Zhang, Y.J.A. Deep reinforcement learning based offloading for mobile edge computing with general
task graph. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11
June 2020; pp. 1–7.

34. He, Y.; Zhai, D.; Jiang, Y.; Zhang, R. Relay Selection for UAV-Assisted Urban Vehicular Ad Hoc Networks. IEEE Wirel. Commun.
Lett. 2020, 9, 1379–1383. [CrossRef]

35. Dynamic Programming. Available online: https://web.stanford.edu/class/cs97si/04-dynamic-programming.pdf (accessed on
13 May 2022).

36. Hu, J.; Ma, C.; Liu, N.; Liu, M.; Feng, W. VPOD: Virtual parking overlay network based data delivery in urban VANETs. Int. J. Ad
Hoc Ubiquitous Comput. 2017, 26, 250–262.

37. Huang, W.; Guo, H.; Liu, J. Task Offloading in UAV Swarm-Based Edge Computing: Grouping and Role Division. In Proceedings
of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ICOIN48656.2020.9016631
http://doi.org/10.1186/s13638-020-01825-y
http://doi.org/10.1109/JIOT.2020.2993260
http://doi.org/10.1016/j.dcan.2020.04.008
http://doi.org/10.1186/s13638-020-01780-8
http://doi.org/10.1109/MVT.2015.2481560
http://doi.org/10.1109/ACCESS.2018.2879578
http://doi.org/10.1109/JIOT.2021.3056396
http://doi.org/10.1109/MWC.2016.7553031
http://doi.org/10.1109/JSAC.2018.2864373
http://doi.org/10.1109/ACCESS.2018.2799548
http://doi.org/10.1109/LWC.2020.2991037
https://web.stanford.edu/class/cs97si/04-dynamic-programming.pdf

	Introduction 
	Related Work 
	Motivating Scenario 
	System Model 
	Disaster Model 
	Cluster Construction 

	Task Execution Cost Analysis 
	Task Execution Latency 
	Energy Comsumption 

	Data Offloading Solution 
	Estimating the Amount of Resources 
	Task Offloading Decision 

	Simulation Result 
	Evaluation Results of the Learning Rate and the Attenuation Factor 
	Evaluation Results of Modifying Computational Complexity 
	Evaluation Results of Modifying the Generated Tasks 
	Evaluation Results of Modifying the Amount of Parking Resources 
	Evaluation Results of Modifying  and Evaluation Test on Task Allocation Time 
	Evaluation Results of Modifying Cth 

	Conclusions 
	References

