Emotion Processing in Peripheral Neuropathic Pain: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Nerve Conduction Studies (NCSs)
2.3. Quantitative Sensory Testing (QST)
2.4. Emotion Processing and General Health Assessment
3. Statistical Analysis
4. Results
4.1. Demographic, Clinical, and NCS Findings
4.2. QST Evaluation and Sensory Phenotype
4.3. Emotion Processing and Health Quality Evaluation
4.4. Correlation Analysis between Emotion Processing Characteristics
4.5. Correlation Analysis between QST Profile and Emotion Processing Characteristics
4.6. Sensory Phenotype and Emotion Processing Characteristics
4.7. General Linear Model Analysis
5. Discussion
Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, M.; Vlaeyen, J.W.S.; Rief, W.; Barke, A.; Aziz, Q.; Benoliel, R.; Cohen, M.; Evers, S.; Giamberardino, M.A.; Goebel, A.; et al. The IASP classification of chronic pain for ICD-11: Chronic primary pain. Pain 2019, 160, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Damasio, A.R. Descartes’ Error; Putman: New York, NY, USA, 1994. [Google Scholar]
- Malezieux, M.; Klein, A.S.; Gogolla, N. Neural circuits for emotion. Annu. Rev. Neurosci. 2023, 46, 211–231. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.T. Limbic systems for emotion and for memory, but no single limbic system. Cortex 2015, 62, 119–157. [Google Scholar] [CrossRef] [PubMed]
- Di Tella, M.; Enrici, I.; Castelli, L.; Colonna, F.; Fusaro, E.; Ghiggia, A.; Romeo, A.; Tesio, V.; Adenzato, M. Alexithymia, not fibromyalgia, predicts the attribution of pain to anger-related facial expressions. J. Affect. Disord. 2018, 227, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Isoardo, G.; Ciullo, S.; Titolo, P.; Fontana, E.; Battiston, B.; Stella, M.; Luxardo, N.; Laino, F.; Migliaretti, G.; Stura, I.; et al. The relationship between alexithymia, sensory phenotype and neurophysiological parameters in patients with chronic upper limb neuropathy. J. Neural Transm. 2021, 128, 61–71. [Google Scholar] [CrossRef]
- Sifneos, P.E. The prevalence of ‘alexithymic’ characteristics in psychosomatic patients. Psychother. Psychosom. 1973, 22, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Lane, R.D.; Weihs, K.L.; Herring, A.; Hishaw, A.; Smith, R. Affective agnosia: Expansion of the alexithymia construct and a new opportunity to integrate and extend Freud’s legacy. Neurosci. Biobehav. Rev. 2015, 55, 594–611. [Google Scholar] [CrossRef] [PubMed]
- Di Tella, M.; Adenzato, M.; Catmur, C.; Miti, F.; Castelli, L.; Ardito, R.B. The role of alexithymia in social cognition: Evidence from a non-clinical population. J. Affect. Disord. 2020, 273, 482–492. [Google Scholar] [CrossRef]
- Enrici, I.; Adenzato, M.; Ardito, R.B.; Mitkova, A.; Cavallo, M.; Zibetti, M.; Lopiano, L.; Castelli, L. Emotion processing in Parkinson’s disease: A three-level study on recognition, representation, and regulation. PLoS ONE 2015, 10, e0131470. [Google Scholar] [CrossRef]
- Enrici, I.; Mitkova, A.; Castelli, L.; Lanotte, M.; Lopiano, L.; Adenzato, M. Deep Brain Stimulation of the subthalamic nucleus does not negatively affect social cognitive abilities of patients with Parkinson’s disease. Sci. Rep. 2017, 7, 9413. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Haroutounian, S.; Kamerman, P.; Baron, R.; Bennett, D.L.; Bouhassira, D.; Cruccu, G.; Freeman, R.; Hansson, P.; Nurmikko, T.; et al. Neuropathic pain: An updated grading system for research and clinical practice. Pain 2016, 157, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Scholz, J.; Finnerup, N.B.; Attal, N.; Aziz, Q.; Baron, R.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Cruccu, G.; Davis, K.D.; et al. The IASP classification of chronic pain for ICD-11: Chronic neuropathic pain. Pain 2019, 160, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Geber, C.; Klein, T.; Azad, S.; Birklein, F.; Gierthmühlen, J.; Huge, V.; Lauchart, M.; Nitzsche, D.; Stengel, M.; Valet, M.; et al. Test-retest and interobserver reliability of quantitative sensory testing according to the protocol of the German Research Network on Neuropathic Pain (DFNS): A multi-centre study. Pain 2011, 152, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Backonja, M.M.; Attal, N.; Baron, R.; Bouhassira, D.; Drangholt, M.; Dyck, P.J.; Edwards, R.R.; Freeman, R.; Gracely, R.; Haanpaa, M.H.; et al. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. Pain 2013, 154, 1807–1819. [Google Scholar] [CrossRef]
- von Hehn, C.A.; Baron, R.; Woolf, C.J. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 2012, 73, 638–652. [Google Scholar] [CrossRef] [PubMed]
- Isoardo, G.; Rota, E.; Ciullo, S.; Titolo, P.; Matteoni, E.; Stura, I.; Calvo, A.; Fontana, E.; Battiston, B.; Migliaretti, G.; et al. Psychophysiological and neurophysiological correlates of dropping objects from hands in carpal tunnel syndrome. Brain Sci. 2023, 13, 1576. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Dworkin, R.H.; Turk, D.C.; Baron, R.; Polydefkis, M.; Tracey, I.; Borsook, D.; Edwards, R.R.; Harris, R.E.; Wager, T.D.; et al. The potential role of sensory testing, skin biopsy, and functional brain imaging as biomarkers in chronic pain clinical trials: IMMPACT considerations. J. Pain 2017, 18, 757–777. [Google Scholar] [CrossRef]
- Treede, R.-D. The role of quantitative sensory testing in the prediction of chronic pain. Pain 2019, 160 (Suppl. S1), S66–S69. [Google Scholar] [CrossRef]
- Rosenberger, D.C.; Blechschmidt, V.; Timmerman, H.; Wolff, A.; Treede, R.-D. Challenges of neuropathic pain: Focus on diabetic neuropathy. J. Neural Transm. 2020, 127, 589–624. [Google Scholar] [CrossRef]
- Witney, A.G.; Wing, A.; Thonnard, J.-L.; Smith, A.M. The cutaneous contribution to adaptive precision grip. Trends Neurosci. 2004, 27, 637–643. [Google Scholar] [CrossRef]
- Khalsa, S.S.; Rudrauf, D.; Feinstein, J.S.; Tranel, D. The pathways of interoceptive awareness. Nat. Neurosci. 2009, 12, 1494–1496. [Google Scholar] [CrossRef]
- Schug, S.A.; Lavand’Homme, P.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.-D.; IASP Taskforce for the Classification of Chronic Pain. The IASP classification of chronic pain for ICD-11: Chronic postsurgical or posttraumatic pain. Pain 2019, 160, 45–52. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Neurology. Practice parameter for carpal tunnel syndrome (summary statement): Report of the quality standards Subcommittee of the American Academy of Neurology. Neurology 1993, 43, 2406–2409. [Google Scholar] [CrossRef]
- Jablecki, C.K.; Andary, M.T.; Floeter, M.K.; Miller, R.G.; Quartly, C.A.; Vennix, M.J.; Wilson, J.R. Practice parameter: Electrodiagnostic studies in carpal tunnel syndrome: Report of the American Association of Electrodiagnostic Medicine, American Academy of Neurology, and the American Academy of Physical Medicine and Rehabilitation. Neurology 2002, 58, 1589–1592. [Google Scholar] [CrossRef]
- Ferrante, M.A. Brachial plexopathies: Classification, causes, and consequences. Muscle Nerve 2004, 30, 547–568. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, M.; Giannini, F.; Ballerini, M.; Ginanneschi, F.; Martorelli, E. Incidence of ulnar neuropathy at the elbow in the province of Siena (Italy). J. Neurol. Sci. 2005, 234, 5–10. [Google Scholar] [CrossRef]
- Isoardo, G.; Stella, M.; Cocito, D.; Risso, D.; Migliaretti, G.; Cauda, F.; Palmitessa, A.; Faccani, G.; Ciaramitaro, P. Neuropathic pain in post-burn hypertrophic scars: A psychophysical and neurophysiological study. Muscle Nerve 2012, 45, 883–890. [Google Scholar] [CrossRef]
- Bouhassira, D.; Attal, N.; Alchaar, H.; Boureau, F.; Brochet, B.; Bruxelle, J.; Cunin, G.; Fermanian, J.; Ginies, P.; Grun-Overdyking, A.; et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005, 114, 29–36. [Google Scholar] [CrossRef]
- Jensen, M.P.; McFarland, C.A. Increasing the reliability and validity of pain intensity measurement in chronic pain patients. Pain 1993, 55, 195–203. [Google Scholar] [CrossRef]
- Maier, C.; Baron, R.; Tölle, T.R.; Binder, A.; Birbaumer, N.; Birklein, F.; Gierthmühlen, J.; Flor, H.; Geber, C.; Huge, V.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 2010, 150, 439–450. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Pictures of Facial Affect; Consulting Psychologists Press: Palo Alto, CA, USA, 1976. [Google Scholar]
- Baron-Cohen, S.; Wheelwright, S.; Hill, J.; Raste, Y.; Plumb, I. The “Reading the Mind in the Eyes” Test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 2001, 42, 241–251. [Google Scholar] [CrossRef]
- Shamay-Tsoory, S.G.; Aharon-Peretz, J. Dissociable prefrontal networks for cognitive and affective theory of mind: A lesion study. Neuropsychologia 2007, 45, 3054–3067. [Google Scholar] [CrossRef] [PubMed]
- Di Tella, M.; Ardito, R.B.; Dutto, F.; Adenzato, M. On the (lack of) association between theory of mind and executive functions: A study in a non-clinical adult sample. Sci. Rep. 2020, 10, 17283. [Google Scholar] [CrossRef] [PubMed]
- Bagby, R.M.; Parker, J.D.A.; Taylor, G.J. The twenty-item Toronto Alexithymia Scale—I. Item selection and cross-validation of the factor structure. J. Psychosom. Res. 1994, 38, 23–32. [Google Scholar] [CrossRef]
- Bagby, R.; Taylor, G.J.; Parker, J.D. The Twenty-item Toronto Alexithymia Scale—II. Convergent, discriminant, and concurrent validity. J. Psychosom. Res. 1994, 38, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.P.; Williams, P. A Users’ Guide to the General Health Questionnaire; GL Assessment: London, UK, 1988. [Google Scholar]
- Rolke, R.; Baron, R.; Maier, C.; Tölle, T.R.; Treede, R.-D.; Beyer, A.; Binder, A.; Birbaumer, N.; Birklein, F.; Bötefür, I.C.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Standardized protocol and reference values. Pain 2006, 123, 231–243. [Google Scholar] [CrossRef]
- Padua, L.; Pasqualetti, P.; Rosenbaum, R. One patient, two carpal tunnels: Statistical and clinical analysis--by hand or by patient? Clin. Neurophysiol. 2005, 116, 241–243. [Google Scholar] [CrossRef]
- Ho, N.S.; Wong, M.M.; Lee, T.M. Neural connectivity of alexithymia: Specific association with major depressive disorder. J. Affect. Disord. 2016, 193, 362–372. [Google Scholar] [CrossRef]
- Donges, U.-S.; Suslow, T. Alexithymia and automatic processing of emotional stimuli: A systematic review. Rev. Neurosci. 2017, 28, 247–264. [Google Scholar] [CrossRef]
- Gazzola, V.; Spezio, M.L.; Etzel, J.A.; Castelli, F.; Adolphs, R.; Keysers, C. Primary somatosensory cortex discriminates affective significance in social touch. Proc. Natl. Acad. Sci. USA 2012, 109, 1657–1666. [Google Scholar] [CrossRef]
- Ravaja, N.; Harjunen, V.; Ahmed, I.; Jacucci, G.; Spapé, M.M. Feeling touched: Emotional modulation of somatosensory potentials to interpersonal touch. Sci. Rep. 2017, 7, 40504. [Google Scholar] [CrossRef]
- Parker, J.D.; Taylor, G.J.; Bagby, M. Alexithymia and the recognition of facial expressions of emotion. Psychother. Psychosom. 1993, 59, 197–202. [Google Scholar] [CrossRef]
- Farhoumandi, N.; Mollaey, S.; Heysieattalab, S.; Zarean, M.; Eyvazpour, R. Facial emotion recognition predicts alexithymia using machine learning. Comput. Intell. Neurosci. 2021, 2021, 2053795. [Google Scholar] [CrossRef] [PubMed]
- Scarpazza, C.; di Pellegrino, G.; Làdavas, E. Emotional modulation of touch in alexithymia. Emotion 2014, 14, 602–610. [Google Scholar] [CrossRef]
- Attal, N.; Poindessous-Jazat, F.; De Chauvigny, E.; Quesada, C.; Mhalla, A.; Ayache, S.S.; Fermanian, C.; Nizard, J.; Peyron, R.; Lefaucheur, J.-P.; et al. Repetitive transcranial magnetic stimulation for neuropathic pain: A randomized multicentre sham-controlled trial. Brain 2021, 144, 3328–3339. [Google Scholar] [CrossRef] [PubMed]
- Choo, Y.J.; Kwak, S.G.; Chang, M.C. Effectiveness of Repetitive Transcranial Magnetic Stimulation on Managing Fibromyalgia: A Systematic Meta-Analysis. Pain Med. 2022, 23, 1272–1282. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, D.; Adhia, D.; Vanneste, S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci. Biobehav. Rev. 2021, 130, 125–146. [Google Scholar] [CrossRef] [PubMed]
All Patients | Moderate-High Alexithymia | No Alexithymia | Healthy Control | |
---|---|---|---|---|
Age | 52.7 ± 13.6 | 51.9 ± 12.2 | 53.2 ± 14.6 | 48.3 ± 15.5 |
Male/Female | 24/38 | 13/12 | 11/26 | 18/30 |
Years of education | 11.3 ± 3.5 a | 11.1 ± 3.1 a | 11.4 ± 3.7 a | 14.3 ± 4.7 |
Primary school diploma | 5 | 0 | 5 | 1 |
Secondary school diploma | 18 | 11 | 7 | 7 |
High school diploma | 8 | 4 | 4 | 2 |
Graduation | 31 | 10 | 21 | 38 |
NRS | 6.2 ± 2.4 | 6.6 ± 2.2 | 6.1 ± 2.5 | - |
DN4 | 5.4 ± 2.2 | 5.6 ± 2.3 | 5.5 ± 2.3 | - |
CTS | 34 | 13 | 21 | - |
PBHS | 13 | 5 | 8 | - |
ONP | 15 | 7 | 8 | - |
Moderate-High Alexithymia | No Alexithymia | ||
---|---|---|---|
CDT | |||
Dorsum | R | −3.5 ± 6.1 | −6.3 ± 20.9 |
L | −95.3 ± 271.7 | −44.9 ± 182.8 | |
Index | R | −2.6 ± 4.1 | −1.3 ± 3.8 |
L | −28.3 ± 82.0 a | −18.3 ± 69.0 | |
Little finger | R | −6.5 ± 1.3 | −0.9 ± 3.0 |
L | −22.7 ± 51.0 | −11.5 ± 35.7 | |
HPT | |||
Dorsum | R | 0.20 ± 0.91 b | −0.21 ± 1.1 |
L | 0.14 ± 1.1 | −0.52 ± 1.12 | |
Index | R | 0.23 ± 0.67 | −0.24 ± 1.07 |
L | 0.21 ± 0.84 | −1.05 ± 4.66 | |
Little finger | R | −0.03 ± 6.95 | −0.24 ± 1.0 |
L | −0.01 ± 1.13 | −0.36 ± 1.06 | |
VDT | |||
Index | R | −0.94 ± 1.18 | 0.62 ± 1.16 |
L | 2.34 ± 2.44 a | −0.31 ± 1.41 | |
Little finger | R | 1.08 ± 1.2 | 0.67 ± 1.04 |
L | 1.51 ± 2.18 | 0.7 ± 1.02 |
Test | All Patients | Moderate-High Alexithymia | No-Alexithymia | Healthy Controls |
---|---|---|---|---|
Ekman 60-Faces | ||||
Overall score | 46.9 ± 5.7 b | 46.1 ± 4.6 a,c | 47.6 ± 6.4 | 49.1 ± 5.1 |
Happiness | 9.7 ± 0.7 | 9.8 ± 0.5 | 9.7 ± 0.8 | 9.8 ± 0.3 |
Surprise | 9 ± 1.6 | 8.9 ± 1.3 | 9 ± 1.8 | 9.2 ± 0.9 |
Anger | 7.1 ± 1.6 | 6.7 ± 1.5 a,d | 7.4 ± 1.5 | 7.6 ± 1.8 |
Disgust | 8.5 ± 1.5 | 8.8 ± 1.3 | 8.3 ± 1.7 | 8.9 ± 1.2 |
Sadness | 7.3 ± 1.6 | 6.7 ± 1.7 d | 7.7 ± 1.3 | 7.5 ± 1.6 |
Fear | 5.3 ± 2.4 | 5.1 ± 2.2 | 5.4 ± 2.4 | 6.1 ± 2.4 |
RME | 24 ± 6.1 | 22.6 ± 3.7 a | 24.8 ± 7.2 | 25.2 ± 4.3 |
GHQ-12 | 3.2 ± 4.6 a | 4.1 ± 4.6 a | 2.7 ± 4.7 | 1.3 ± 2 |
Test | L0 | L1 | L2 | L3 |
---|---|---|---|---|
Ekman 60-Faces | ||||
Overall score | 48.4 ± 5.1 | 46.5 ± 4.6 | 47.2 ± 3.7 | 46.3 ± 7.6 |
Happiness | 9.6 ± 0.8 | 9.8 ± 0.6 | 9.8 ± 0.4 | 9.8 ± 0.8 |
Surprise | 9.6 ± 0.6 | 9.2 ± 1.0 | 9.1 ± 0.8 | 8.4 ± 2.3 |
Anger | 7.1 ± 1.6 | 6.7 ± 1.4 | 6.7 ± 1.4 | 7.4 ± 1.7 |
Disgust | 8.5 ± 1.5 | 8.8 ± 1.1 | 8.4 ± 0.9 | 8.4 ± 2.0 |
Sadness | 7.4 ± 1.5 | 7.0 ± 1.9 | 7.9 ± 0.8 | 7.1 ± 1.7 |
Fear | 6.4 ± 2.0 | 4.9 ± 2.2 | 5.1 ± 2.6 | 4.8 ± 2.5 |
RME | 25.5 ± 4.0 a | 25.0 ± 4.6 a | 25.4 ± 10.4 a | 21.6 ± 4.5 |
GHQ-12 | 1.7 ± 2.0 | 2.8 ± 4.0 | 5.2 ± 7.4 | 3.4 ± 4.4 |
Test | G0 | G1 | G2 | G3 |
---|---|---|---|---|
Ekman 60-Faces | ||||
Overall score | 46.9 ± 5.3 | 50.0 ± 4.7 a | 43.9 ± 7.2 | 51 ± 1.0 |
Happiness | 9.7 ± 0.6 | 10 ± 0.1 | 9.5 ± 0.1 | 9.3 ± 0.6 |
Surprise | 9.08 ± 1.7 a | 9.6 ± 0.7 a | 8.3 ± 1.7 | 9.0 ± 1.0 |
Anger | 7.3 ± 1.2 | 7.1 ± 1.7 | 6.1 ± 2.1 | 7.6 ± 2.3 |
Disgust | 8.4 ± 1.4 | 8.6 ± 1.5 | 8.5 ± 2.1 | 9.3 ± 0.6 |
Sadness | 7.3 ± 1.6 | 7.9 ± 1.1 | 7 ± 1.7 | 7.6 ± 2.3 |
Fear | 5.1 ± 2.0 b | 6.7 ± 2.3 a | 4.0 ± 2.8 b | 8 ± 0.0 |
RME | 24 ± 4.5 a | 26.4 ± 4.1 a | 22.1 ± 11.1 | 24± 3.6 |
GHQ-12 | 2.8 ± 3.75 | 1.25 ± 2.18 a | 6.27 ± 7.5 | 2.66 ± 3.05 |
β | F | p | |
---|---|---|---|
Univariate analysis | |||
Left index finger VDT z-score | |||
Ekman 60-Faces | 3.77 | 0.87 | 0.32 |
RME | 12.83 | 4.46 | 0.04 |
Alexithymia group | 49.79 | 13.61 | 0.0006 |
GHQ-12 | 5.29 | 1.2 | 0.279 |
NRS | 2.17 | 0.47 | 0.497 |
Left little finger VDT z-score | |||
Ekman 60-Faces | 2.76 | 1.26 | 0.267 |
RME | 9,76 | 7.44 | 0.009 |
Alexithymia group | 9.31 | 3.54 | 0.065 |
GHQ-12 | 3.13 | 1.1 | 0.29 |
NRS | 1.72 | 0.58 | 0.45 |
Multivariate analysis | |||
Left index VDT z-score | |||
RME | 8.65 | 3.63 | 0.06 |
Alexithymia group | 11.24 | 4.71 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isoardo, G.; Adenzato, M.; Ciullo, S.; Fontana, E.; Stura, I.; Migliaretti, G.; Titolo, P.; Matteoni, E.; Calvo, A.; Laino, F.; et al. Emotion Processing in Peripheral Neuropathic Pain: An Observational Study. Med. Sci. 2024, 12, 27. https://doi.org/10.3390/medsci12020027
Isoardo G, Adenzato M, Ciullo S, Fontana E, Stura I, Migliaretti G, Titolo P, Matteoni E, Calvo A, Laino F, et al. Emotion Processing in Peripheral Neuropathic Pain: An Observational Study. Medical Sciences. 2024; 12(2):27. https://doi.org/10.3390/medsci12020027
Chicago/Turabian StyleIsoardo, Gianluca, Mauro Adenzato, Stefano Ciullo, Elena Fontana, Ilaria Stura, Giuseppe Migliaretti, Paolo Titolo, Enrico Matteoni, Andrea Calvo, Federica Laino, and et al. 2024. "Emotion Processing in Peripheral Neuropathic Pain: An Observational Study" Medical Sciences 12, no. 2: 27. https://doi.org/10.3390/medsci12020027
APA StyleIsoardo, G., Adenzato, M., Ciullo, S., Fontana, E., Stura, I., Migliaretti, G., Titolo, P., Matteoni, E., Calvo, A., Laino, F., Palumbo, F., & Ardito, R. B. (2024). Emotion Processing in Peripheral Neuropathic Pain: An Observational Study. Medical Sciences, 12(2), 27. https://doi.org/10.3390/medsci12020027