Mandibular Prognathism in Dolang Sheep: Hi-C Evidence for Localized TAD Remodeling at Craniofacial Loci
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Animals, Breed, Housing, and Grouping
2.3. Study Design and Sample Size Rationale
2.4. Tissue Collection and Crosslinking
2.5. In Situ Hi-C Library Preparation and Sequencing
2.6. Hi-C Processing with HiC-Pro
2.7. Conversion to HiCExplorer Format and Normalization
2.8. Replicate Concordance and Group Merging
2.9. TAD and Boundary Identification
2.10. Group-Wise Comparison of TAD Architecture
2.11. Chromatin Loop Detection and Visualization
2.12. Gene Annotation of Differential Regions
3. Results
3.1. Sequencing Output and Hi-C Mapping Quality
3.2. Reproducibility Across Biological Replicates
3.3. Genome-Wide TAD Architecture
3.4. Boundary Conservation Between Groups at 40 kb
3.5. Boundary Alignment Is Dominated by Coincident Loci and Sub-Bin Shifts
3.6. Global Conservation with a Slight Net Reduction in Boundaries in UNDER
3.7. Discrete Remodeling Loci Nominated by 1 Mb Boundary-Density Hotspots
3.8. Sensitivity, Robustness, and Interpretation
4. Discussion
4.1. Local Boundary Gains on a Globally Conserved Scaffold
4.2. Practical Implications and Testable Predictions
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, H.; Li, P.; Zhu, S.; Bi, R. Genetic factors underlying Mandibular prognathism: Insights from recent human and animal studies. Mamm. Genome 2025, 36, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Mimura, S.; Kurihara-Okawa, K.; Fukamachi, N.; Nagasaki, T.; Hori, K.; Okawa, J.; Takeyama, M.; Ono, T.; Saito, I. Characteristics of masticatory behavior of patients with mandibular prognathism. Maxillofac. Plast. Reconstr. Surg. 2025, 47, 5. [Google Scholar] [CrossRef]
- Jaruga, A.; Ksiazkiewicz, J.; Kuzniarz, K.; Tylzanowski, P. Orofacial Cleft and Mandibular Prognathism—Human Genetics and Animal Models. Int. J. Mol. Sci. 2022, 23, 953. [Google Scholar] [CrossRef]
- Anwar, A.; Fu, X.; Tang, S.; Liu, W.; Wang, Y.; Zhao, W.; Wu, C. Untargeted metabolomics analysis reveals comparative meat quality of different muscles and the impact of Saline-alkali land feeding on Dolang sheep (Ovis aries). BMC Genom. 2025, 26, 782. [Google Scholar] [CrossRef]
- Dehesa-Santos, A.; Iber-Diaz, P.; Iglesias-Linares, A. Genetic factors contributing to skeletal class III malocclusion: A systematic review and meta-analysis. Clin. Oral Investig. 2021, 25, 1587–1612. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, C.; Yao, S.; Fan, L.; Ma, L.; Pan, Y. Genetic architecture of non-syndromic skeletal class III malocclusion. Oral Dis. 2023, 29, 2423–2437. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, Z.; Zhang, Z.; Wang, C.; Li, X.; Xing, F. Analysis of the Imprinting Status and Expression of the MAGEL2 Gene During Initiation at Puberty in the Dolang Sheep. DNA Cell Biol. 2023, 42, 689–696. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Zhang, J.; Zheng, L.; Chang, Q.; Cui, Z.; Liu, S. Analysis on the desert adaptability of indigenous sheep in the southern edge of Taklimakan Desert. Sci. Rep. 2022, 12, 12264. [Google Scholar] [CrossRef]
- Holmes, M.; Thomas, R.; Hamerow, H. Periodontal disease in sheep and cattle: Understanding dental health in past animal populations. Int. J. Paleopathol. 2021, 33, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Grzeczka, A.; Lech, M.; Wozniak, G.; Graczyk, S.; Kordowitzki, P.; Olejnik, M.; Gehrke, M.; Jaśkowski, J.M. Periodontitis Disease in Farmed Ruminants—Current State of Research. Int. J. Mol. Sci. 2023, 24, 9763. [Google Scholar] [CrossRef]
- Beagan, J.A.; Phillips-Cremins, J.E. On the existence and functionality of topologically associating domains. Nat. Genet. 2020, 52, 8–16. [Google Scholar] [CrossRef]
- Kong, S.; Zhang, Y. Deciphering Hi-C: From 3D genome to function. Cell Biol. Toxicol. 2019, 35, 15–32. [Google Scholar] [CrossRef]
- Guo, P.; Mao, L.; Chen, Y.; Lee, C.N.; Cardilla, A.; Li, M.; Bartosovic, M.; Deng, Y. Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues. Nat. Methods 2025, 22, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Han, M.-H.; Park, J.; Park, M. Advances in the multimodal analysis of the 3D chromatin structure and gene regulation. Exp. Mol. Med. 2024, 56, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Pedrotti, S.; Castiglioni, I.; Perez-Estrada, C.; Zhao, L.; Chen, J.P.; Crosetto, N.; Bienko, M. Emerging methods and applications in 3D genomics. Curr. Opin. Cell Biol. 2024, 90, 102409. [Google Scholar] [CrossRef]
- Chen, S.; Lake, B.B.; Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 2019, 37, 1452–1457. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.P.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.; Machol, I.; Omer, A.D.; Lander, E.S.; et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell 2014, 159, 1665–1680. [Google Scholar] [CrossRef]
- Servant, N.; Varoquaux, N.; Lajoie, B.R.; Viara, E.; Chen, C.-J.; Vert, J.-P.; Heard, E.; Dekker, J.; Barillot, E. HiC-Pro: An optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015, 16, 259. [Google Scholar] [CrossRef]
- FastQC. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Institute: Cambridge, UK, 2016; Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Wolff, J.; Bhardwaj, V.; Nothjunge, S.; Richard, G.; Renschler, G.; Gilsbach, R.; Manke, T.; Backofen, R.; Ramírez, F.; Grüning, B.A. Galaxy HiCExplorer: A web server for reproducible Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 2018, 46, W11–W16. [Google Scholar] [CrossRef]
- Quinlan, A.R. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr. Protoc. Bioinform. 2014, 47, 11.12.1–11.12.34. [Google Scholar] [CrossRef]
- Liu, R.; Xu, R.; Yan, S.; Li, P.; Jia, C.; Sun, H.; Sheng, K.; Wang, Y.; Zhang, Q.; Guo, J.; et al. Hi-C, a chromatin 3D structure technique advancing the functional genomics of immune cells. Front. Genet. 2024, 15, 1377238. [Google Scholar] [CrossRef]
- Rajderkar, S.; Barozzi, I.; Zhu, Y.; Hu, R.; Zhang, Y.; Li, B.; Alcaina Caro, A.; Fukuda-Yuzawa, Y.; Kelman, G.; Akeza, A.; et al. Topologically associating domain boundaries are required for normal genome function. Commun. Biol. 2023, 6, 435. [Google Scholar] [CrossRef]
- Patalano, F.; Sandve, S.R.; Aasland, R.; Paulsen, J. TAD conservation in vertebrate genomes is driven by stabilising selection. BMC Biol. 2025, 23, 241. [Google Scholar] [CrossRef]
- Widmer, S.; Seefried, F.R.; Häfliger, I.M.; Signer-Hasler, H.; Flury, C.; Drögemüller, C. WNT10B: A locus increasing risk of brachygnathia inferior in Brown Swiss cattle. J. Dairy Sci. 2023, 106, 8969–8978. [Google Scholar] [CrossRef]
- Zohud, O.; Lone, I.M.; Midlej, K.; Obaida, A.; Masarwa, S.; Schröder, A.; Küchler, E.C.; Nashef, A.; Kassem, F.; Reiser, V.; et al. Towards Genetic Dissection of Skeletal Class III Malocclusion: A Review of Genetic Variations Underlying the Phenotype in Humans and Future Directions. J. Clin. Med. 2023, 12, 3212. [Google Scholar] [CrossRef]
- Orozco, G.; Schoenfelder, S.; Walker, N.; Eyre, S.; Fraser, P. 3D genome organization links non-coding disease-associated variants to genes. Front. Cell Dev. Biol. 2022, 10, 995388. [Google Scholar] [CrossRef] [PubMed]
- Lupiáñez, D.G.; Kraft, K.; Heinrich, V.; Krawitz, P.; Brancati, F.; Klopocki, E.; Horn, D.; Kayserili, H.; Opitz, J.M.; Laxova, R.; et al. Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions. Cell 2015, 161, 1012–1025. [Google Scholar] [CrossRef]
- Kragesteen, B.K.; Spielmann, M.; Paliou, C.; Heinrich, V.; Schöpflin, R.; Esposito, A.; Annunziatella, C.; Bianco, S.; Chiariello, A.M.; Jerković, I.; et al. Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis. Nat. Genet. 2018, 50, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Wang, X.; Wang, G.; Chuai, M.; Münsterberg, A.; Yang, X. Robo signaling regulates the production of cranial neural crest cells. Exp. Cell Res. 2017, 361, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Pace, J.M.; Corrado, M.; Missero, C.; Byers, P.H. Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1. Matrix Biol. 2003, 22, 3–14. [Google Scholar] [CrossRef]
- Sanz-Garciéa, M.; Loépez-Saénchez, I.; Lazo, P.A. Proteomics Identification of Nuclear Ran GTPase as an Inhibitor of Human VRK1 and VRK2 (Vaccinia-related Kinase) Activities. Mol. Cell. Proteom. 2008, 7, 2199–2214. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Nagashima, H.; Fernando, N.; Bass, V.; Gopalakrishnan, J.; Signorella, S.; Montgomery, W.; Lim, A.I.; Harrison, O.; Reich, L.; et al. A CTCF-binding site in the Mdm1-Il22-Ifng locus shapes cytokine expression profiles and plays a critical role in early Th1 cell fate specification. Immunity 2024, 57, 1005–1018.e7. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, Z.; Banigan, E.J.; Kim, Y.; Yu, H.; Bai, X.; Finkelstein, I.J. CTCF and R-loops are boundaries of cohesin-mediated DNA looping. Mol. Cell 2023, 83, 2856–2871.e8. [Google Scholar] [CrossRef]
- Carty, M.; Zamparo, L.; Sahin, M.; González, A.; Pelossof, R.; Elemento, O.; Leslie, C.S. An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data. Nat. Commun. 2017, 8, 15454. [Google Scholar] [CrossRef] [PubMed]
- Rowley, M.J.; Corces, V.G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 2018, 19, 789–800. [Google Scholar] [CrossRef]
- Bonev, B.; Cohen, N.M.; Szabo, Q.; Fritsch, L.; Papadopoulos, G.L.; Lubling, Y.; Xu, X.; Lv, X.; Hugnot, J.-P.; Tanay, A.; et al. Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell 2017, 171, 557–572.e24. [Google Scholar] [CrossRef]
- Onizuka, S.; Yamazaki, Y.; Park, S.-J.; Sugimoto, T.; Sone, Y.; Sjöqvist, S.; Usui, M.; Takeda, A.; Nakai, K.; Nakashima, K.; et al. RNA-sequencing reveals positional memory of multipotent mesenchymal stromal cells from oral and maxillofacial tissue transcriptomes. BMC Genom. 2020, 21, 417. [Google Scholar] [CrossRef] [PubMed]
- Sept, C.E.; Tak, Y.E.; Goel, V.; Bhakta, M.S.; Cerda-Smith, C.G.; Hutchinson, H.M.; Blanchette, M.; Eyler, C.E.; Johnstone, S.E.; Joung, J.K.; et al. High-resolution CTCF footprinting reveals impact of chromatin state on cohesin extrusion. Nat. Commun. 2025, 16, 4506. [Google Scholar] [CrossRef]
- Papale, A.; Segueni, J.; El Maroufi, H.; Noordermeer, D.; Holcman, D. Insulation between adjacent TADs is controlled by the width of their boundaries through distinct mechanisms. Proc. Natl. Acad. Sci. USA 2025, 122, e2413112122. [Google Scholar] [CrossRef]
- Gershater, E.; Li, C.; Ha, P.; Chung, C.-H.; Tanna, N.; Zou, M.; Zheng, Z. Genes and Pathways Associated with Skeletal Sagittal Malocclusions: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 13037. [Google Scholar] [CrossRef]
- Narita, T.; Kilic, S.; Higashijima, Y.; Scherer, N.M.; Pappas, G.; Maskey, E.; Choudhary, C. Disentangling the architectural and non-architectural functions of CTCF and cohesin in gene regulation. Nat. Genet. 2025, 57, 3137–3151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, Y.; Wei, G. Multi-omic analysis reveals dynamic changes of three-dimensional chromatin architecture during T cell differentiation. Commun. Biol. 2023, 6, 773. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Han, K.; Hao, Y.; Su, W.; Xie, X.; Li, X.; Chen, Q.; Wei, Y.; Luo, X.; Xie, S.; et al. Navigating the 3D genome at single-cell resolution: Techniques, computation, and mechanistic landscapes. Brief. Bioinform. 2025, 26, bbaf520. [Google Scholar] [CrossRef] [PubMed]
- Tavallaee, G.; Orouji, E. Mapping the 3D genome architecture. Comput. Struct. Biotechnol. J. 2025, 27, 89–101. [Google Scholar] [CrossRef]




| Chr | Start | End | Count_CTRL | Count_UNDER | Delta | Genes |
|---|---|---|---|---|---|---|
| NC_056080.1 | 49,000,000 | 50,000,000 | 0 | 3 | 3 | UBQLN2/FOXR2/RRAGB/KLF8 |
| NC_056056.1 | 151,000,000 | 152,000,000 | 1 | 3 | 2 | IL22/IL26/IFNG, MDM1 |
| NC_056056.1 | 65,000,000 | 66,000,000 | 0 | 2 | 2 | VRK2/FANCL |
| NC_056054.1 | 145,000,000 | 146,000,000 | 0 | 2 | 2 | ROBO2 |
| NC_056055.1 | 9,000,000 | 10,000,000 | 1 | 3 | 2 | COL27A1 (+AKNA/KIF12/AMBP/WHRN/ZNF618) |
| Sample | Valid_Pairs | Cis | Trans | Cis_Ratio_pct |
|---|---|---|---|---|
| dibaotian1 | 444,574,329 | 234,569,028 | 210,005,301 | 52.76 |
| dibaotian2 | 481,591,477 | 252,188,788 | 229,402,689 | 52.37 |
| duizhao1 | 439,112,437 | 238,565,417 | 200,547,020 | 54.33 |
| duizhao2 | 532,221,884 | 319,149,103 | 213,072,781 | 59.97 |
| Sample | Resolution_bp | TAD_count | Median_size_Mb | IQR_lo_Mb | IQR_hi_Mb | Median_BS |
|---|---|---|---|---|---|---|
| duizhao1 | 40,000 | 2769 | 0.72 | 0.48 | 1.04 | −0.017 |
| duizhao2 | 40,000 | 2790 | 0.72 | 0.48 | 1.04 | −0.027 |
| dibaotian1 | 40,000 | 2780 | 0.68 | 0.48 | 1.04 | −0.018 |
| dibaotian2 | 40,000 | 2785 | 0.68 | 0.48 | 1 | −0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fang, C.; Cao, H.; Liu, L.; Liu, W. Mandibular Prognathism in Dolang Sheep: Hi-C Evidence for Localized TAD Remodeling at Craniofacial Loci. Animals 2026, 16, 39. https://doi.org/10.3390/ani16010039
Fang C, Cao H, Liu L, Liu W. Mandibular Prognathism in Dolang Sheep: Hi-C Evidence for Localized TAD Remodeling at Craniofacial Loci. Animals. 2026; 16(1):39. https://doi.org/10.3390/ani16010039
Chicago/Turabian StyleFang, Chao, Hang Cao, Lingling Liu, and Wujun Liu. 2026. "Mandibular Prognathism in Dolang Sheep: Hi-C Evidence for Localized TAD Remodeling at Craniofacial Loci" Animals 16, no. 1: 39. https://doi.org/10.3390/ani16010039
APA StyleFang, C., Cao, H., Liu, L., & Liu, W. (2026). Mandibular Prognathism in Dolang Sheep: Hi-C Evidence for Localized TAD Remodeling at Craniofacial Loci. Animals, 16(1), 39. https://doi.org/10.3390/ani16010039

