Carcass and Offal Yields of Farmed Common Eland (Taurotragus oryx) Males, as Affected by Age and Immunocastration
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Slaughtering
2.2. Primal Cutting Yields
2.3. Statistical Analysis
3. Results
4. Discussion
Eland | Gemsbok | Blesbok | Springbok | Impala | Beef Cattle | Fallow Deer | |||
---|---|---|---|---|---|---|---|---|---|
Free-Ranging | Free-Ranging | Free- Ranging | Free- Ranging | Free- Ranging | Semi- Extensive | Intensive | Extensive | ||
Sub-Adult | Sub-Adult | Adult | Sub-Adult | Adult | Sub-Adult | Adult | Sub-Adult | Adult | |
Slaughter weight | 305.4 ± 23.32 | 101.7 ± 5.26 | 187.6 ± 3.86 | 50.4 ± 5.0 | 33.7 ± 4.6 | 26.3 ± 4.5 | 36.4 ± 1.30 | 600 | 47.4 ± 12.34 |
Hot carcass weight | 156.9 ± 15.08 | 52.6 ± 3.42 | 96.2 ± 4.41 | 24.9 ± 2.2 | 19.4 ± 2.5 | 14.5 ± 2.2 | 21.6 ± 0.82 | 318 | 29.6 ± 7.72 |
Dressing percentage | 50.8 ± 1.46 | 51.4 ± 0.76 | 53.3 ± 1.7 | 62.9 ± 1.5 | 64.9 ± 1.8 | 63.5 ± 2.9 | 59.1 ± 0.76 | 53 | 61.5 ± 1.47 |
Head + tongue | 4.95 | 6.3 | 5.7 | 8.6 | 6.5 | 6.4 | 6.5 | 2.5 | 5.4 |
Feet | 2.3 | 2.8 | 2 | - | 3 | - | 3.3 | 1.9 | 3.3 |
Kidneys | 0.3 | 0.3 | 0.2 | 0.3 | 0.6 | 0.6 | 0.3 | 0.19 | 0.3 |
Liver | 1.4 | 1.3 | 1 | 1.3 | 2.8 | 2.5 | 1.6 | 1.3 | 1.8 |
Heart | 0.5 | 0.6 | 0.5 | 1.1 | 0.8 | 1 | 0.7 | 0.37 | 0.9 |
Spleen | 0.2 | 0.4 | 0.3 | 0.3 | 0.3 | 0.7 | 0.5 | 0.21 * | 0.3 |
Lungs + trachea | 1.5 | 2.2 | 1.6 | 1.9 | 1.9 | 2.3 | 2.1 | 0.84 | 1.2 + |
Skin | 6.6 | 6.6 | 7.8 | 5.6 | 5.6 | 5.8 | 5 | 7 | 6.6 |
Penis | 0.08 | - | - | - | - | - | 0.05 | - | - |
GIT (full) | 28 | - | - | 33.1 | 33.1 | 22.9 | 18.9 | 14.3 | 16.7 |
Source reference | 27 | 32 | 32 | 33 | 33 | 33 | 34 | 28 | 36 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, W.A.; Lindsey, P.A.; Nicholson, S.K.; Relton, C.; Davies-Mostert, H.T. Jobs, game meat and profits: The benefits of wildlife ranching on marginal lands in South Africa. Biol. Conserv. 2020, 245, 108561. [Google Scholar] [CrossRef]
- Van der Merwe, P.; Saayman, A.; Jacobs, C. Assessing the economic impact of COVID-19 on the private wildlife industry of South Africa. Glob. Ecol. Conserv. 2021, 28, e01633. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.P.S. A comparison of different wildlife production enterprises in the Northern Cape Province, South Africa. S. Afr. J. Wildl. Res. 1998, 16, 124–128. [Google Scholar]
- Bothma, J.; Du, P.; Sartorius Von Bach, H.J.; Cloete, P.C. Economics of the wildlife industry in South Africa. In Game Ranch Management, 6th ed.; Bothma, J.D.P., Du Toit, J.G., Eds.; Van Schaik Publishers: Pretoria, South Africa, 2016; pp. 85–94. [Google Scholar]
- Posselt, J. The domestication of the eland. Rhod. J. Agric. Res. 1963, 1, 81–87. [Google Scholar]
- Skinner, J.D. Productivity of the eland: An appraisal of the last five years’ research. S. Afr. J. Sci. 1971, 67, 534–539. [Google Scholar]
- Mossman, S.L.; Mossman, A.S. Wildlife Utilization and Game Ranching: Report on a Study of Recent Progress in This Field in Southern Africa; International Union for Conservation of Nature and Natural Resources Occasional Paper No. 17; International Union for Conservation of Nature and Natural Resources: Morges, Switzerland, 1976. [Google Scholar]
- Lightfoot, C.R. Eland (Taurotragus oryx) as a ranching animal complementary to cattle in Rhodesia. Rhod. Agric. J. 1977, 74, 47–120. [Google Scholar]
- Charles, A.B.; King, J.M.; Heath, B.R. Game domestication for animal production in Kenya: An analysis of growth in oryx, eland and zebu cattle. J. Agric. Sci. 1981, 97, 453–463. [Google Scholar] [CrossRef]
- Woodford, M.H. Wild relatives of domestic livestock & some suggestions for new domesticants. In World Watch List for Domestic Animal Diversity, 3rd ed.; Scherf, B.D., Ed.; Food and Agriculture Organization of The United Nations: Rome, Italy, 2000. [Google Scholar]
- Treus, V.D.; Lobanov, N.V. Acclimatisation and Domestication of the Eland at Askanya-Nova Zoo. Int. Zoo Yearb. 1971, 11, 147–156. [Google Scholar] [CrossRef]
- Treus, V.D.; Kravchenko, D. Methods of rearing and economic utilization of eland in the Askanya-Nova Zoological Park. Proc. Zool. Soc. Lond. 1968, 21, 395–411. [Google Scholar]
- Flack, P. Hunting the Spiral Horns: Eland, Everyman’s Elephant; Rowland Ward Publications: Houghton, South Africa, 2013. [Google Scholar]
- van Vliet, N.; Cornelis, D.; Beck, H.; Lindsey, P.A.; Nasi, N.; LeBel, S.; Moreno, J.; Fragoso, J.; Jori, F. Meat from the wild: Extractive uses of wildlife and alternatives for sustainability. In Current trends in Wildlife Research; Mateo, R., Ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Estes, R.D. The Behaviour Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates; University of California Press: Berkeley, CA, USA, 1991. [Google Scholar]
- Lambrecht, F.L. Game animals: A substitute for cattle? Rangelands 1983, 5, 22–24. [Google Scholar]
- Retief, G.P. The potential of game domestication in Africa, with special reference to Botswana. J. S. Afr. Vet. Assoc. 1971, 42, 119–127. [Google Scholar]
- Watson, L.H.; Owen-Smith, N. Diet composition and habitat selection of eland in semi-arid shrubland. Afr. J. Ecol. 2000, 38, 130–137. [Google Scholar] [CrossRef]
- Cromsigt, J.P.G.M.; de Beest, M.; Kerley, G.I.H.; Landman, M.; le Roux, E.; Smith, F.A. Trophic rewilding as a climate mitigation strategy? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musa, A.S.; Needham, T.; Neradilova, S.; Kotrba, R.; Ganswindt, A.; Ceacero, F. Habituation of common eland (Taurotragus oryx) to intensive routine handling, and the effect of immunocastration thereon. Appl. Anim. Behav. Sci. 2021, 237, 105294. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Van Schalkwyk, D.L.; McMillin, K.W.; Kotrba, R. Intramuscular fat characteristics of Namibian common eland (Taurotragus oryx). Afr. J. Wildl. Res. 2015, 45, 312–320. [Google Scholar] [CrossRef]
- Bartoň, L.; Bureš, D.; Kotrba, R.; Sales, J. Comparison of meat quality between eland (Taurotragus oryx) and cattle (Bos taurus) raised under similar conditions. Meat Sci. 2014, 96, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Needham, T.; Laubser, J.; Kotrba, R.; Bureš, D.; Smyth, H.; Hoffman, L. Sensory characteristics of the longissimus thoracis et lumborum and biceps femoris muscles from male and female common eland (Taurotragus oryx). Meat Sci. 2019, 158, 107918. [Google Scholar] [CrossRef]
- Needham, T.; Kotrba, R.; Hoffman, L.C.; Bureš, D. Ante- and post-mortem strategies to improve the meat quality of high-value muscles harvested from farmed male common eland (Taurotragus oryx). Meat Sci. 2020, 168, 108183. [Google Scholar] [CrossRef]
- Needham, T.; Lambrechts, H.; Hoffman, L.C. Application of immunocastration in a commercial Dohne Merino ram flock before weaning. S. Afr. J. Anim. Sci. 2019, 48, 1115–11120. [Google Scholar] [CrossRef]
- Bureš, D.; Bartoň, L. Growth performance, carcass traits and meat quality of bulls and heifers slaughtered at different ages. Czech J. Anim. Sci. 2012, 57, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Needham, T.; Laubser, J.G.; Kotrba, R.; Bureš, D.; Hoffman, L.C. Sex influence on muscle yield and physiochemical characteristics of common eland (Taurotragus oryx) meat. Meat Sci. 2019, 152, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Agriculture and Horticulture Development Board (AHDB) Beef & Lamb. Beef Yield Guide: From Farm to Plate. Available online: http://www.qsmbeefandlamb.co.uk/books/beef-yieldguide/files/assets/common/downloads/beef-yield-guide.pdf (accessed on 25 March 2022).
- Bureš, D.; Bartoň, L. Performance, carcass traits and meat quality of Aberdeen Angus, Gascon, Holstein and Fleckvieh finishing bulls. Livest. Sci. 2018, 214, 231–237. [Google Scholar] [CrossRef]
- Avilés, C.; Martínez, A.L.; Domenech, V.; Peña, F. Effect of feeding system and breed on growth performance, and carcass and meat quality traits in two continental beef breeds. Meat Sci. 2015, 107, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Raats, J.G.; Strydom, P.E. Tick susceptibility and its effects on growth performance and carcass characteristics of Nguni, Bonsmara and Angus steers raised on natural pasture. Animal 2008, 2, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, L.C.; van Schalkwyk, D.L.; Muller, M.; Needham, T.; van Rensburg, B.J.; McMillin, K. Carcass yields and physiochemical meat quality characteristics of Namibian gemsbok (Oryx gazella) as influenced by muscle, gender and age. Meat Sci. 2020, 169, 108208. [Google Scholar] [CrossRef] [PubMed]
- Van Zyl, L.; Ferreira, A.V. Physical and chemical carcass composition of springbok (Antidorcas marsupialis), blesbok (Damaliscus dorcas phillipsi) and impala (Aepyceros melampus). Small Rumin. Res. 2004, 53, 103–109. [Google Scholar] [CrossRef]
- Needham, T.; Engels, R.; Bureš, D.; Kotrba, R.; Janse van Rensburg, B.; Hoffman, L. Carcass yields and physiochemical meat quality of semi-extensive and intensively farmed impala (Aepyceros melampus). Foods 2020, 9, 418. [Google Scholar] [CrossRef] [PubMed]
- Kudrnáčová, E.; Bureš, D.; Bartoň, L.; Kotrba, R.; Ceacero, F.; Hoffman, L.C.; Kouřimská, L. The Effect of Barley and Lysine Supplementation of Pasture-Based Diet on Growth, Carcass Composition and Physical Quality Attributes of Meat from Farmed Fallow Deer (Dama dama). Animals 2019, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Fitzhenry, L.B.; Cawthorn, D.M.; Muchenje, V.; Kotrba, R.; Hoffman, L.C.; Bureš, D. Carcass composition and yields of wild fallow deer (Dama dama) in South Africa. Afr. J. Wildl. Res. 2009, 49, 100–110. [Google Scholar] [CrossRef]
- Jeffery, R.C.V.; Hanks, J. Body growth of captive eland Taurotragus oryx in Natal. S. Afr. J. Zool. 1981, 16, 183–189. [Google Scholar]
- Jones, M.; Arnaud, E.; Gouws, P.; Hoffman, L.C. Processing of South African biltong—A review. S. Afr. J. Anim. Sci. 2017, 47, 743–757. [Google Scholar] [CrossRef] [Green Version]
- Erasmus, S.W.; Hoffman, L.C. What is meat in South Africa? Anim. Front. 2017, 7, 71–75. [Google Scholar] [CrossRef] [Green Version]
- McCrindle, C.M.E.; Siegmund-Schultze, M.; Heeb, A.W.; Zárate, A.V.; Ramrajh, S. Improving food security and safety through use of edible by-products from wild game. Environ. Dev. Sustain. 2013, 15, 1245–1257. [Google Scholar] [CrossRef] [Green Version]
- Murray, S.M.; Patil, A.R.; Fahey, G.C.; Merchen, N.R.; Hughes, D.M. Raw and rendered animal by-products as ingredients in dog diets. J. Anim. Sci. 1997, 75, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Vos, A.D. Deer Farming: Guidelines on Practical Aspects. Food and Agriculture Organization of the United Nations (FAO). Available online: https://agris.fao.org/agris-search/search.do?recordID=XF8330045 (accessed on 28 March 2022).
- Needham, T.; Lambrechts, H.; Hoffman, L.C. Castration of male livestock and the potential of immunocastration to improve animal welfare and production traits: Invited Review. S. Afr. J. Anim. Sci. 2017, 47, 731–742. [Google Scholar] [CrossRef]
Age | Castration Status | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
SA | J | NON | IC | A | C | ||
Slaughter weight (kg) | 271.3 | 155.2 | 208.6 | 217.9 | 17.61 | 0.0002 | 0.694 |
Hot carcass weight (kg) | 153.8 | 89.7 | 120.4 | 123 | 9.66 | 0.0002 | 0.843 |
Dressing percentage | 56.8 | 57.7 | 57.9 | 56.6 | 0.72 | 0.393 | 0.208 |
Proportionate yields (% of live slaughter weight) | |||||||
Head | 3.91 | 3.93 | 4.01 | 3.83 | 0.123 | 0.872 | 0.291 |
Tongue | 0.20 | 0.21 | 0.20 | 0.20 | 0.008 | 0.560 | 0.888 |
Feet | 2.18 | 2.53 | 2.39 | 2.32 | 0.057 | 0.0004 | 0.361 |
Skin | 7.68 | 5.88 | 6.84 | 6.71 | 0.295 | 0.0004 | 0.729 |
Kidneys | 0.19 | 0.21 | 0.20 | 0.20 | 0.007 | 0.031 | 0.673 |
Liver | 1.24 | 1.29 | 1.24 | 1.29 | 0.046 | 0.384 | 0.474 |
Heart | 0.45 | 0.47 | 0.47 | 0.44 | 0.014 | 0.324 | 0.238 |
Spleen | 0.15 | 0.15 | 0.15 | 0.14 | 0.008 | 0.816 | 0.394 |
Lungs | 0.57 | 0.61 | 0.59 | 0.59 | 0.022 | 0.203 | 0.963 |
Trachea | 0.19 | 0.28 | 0.24 | 0.24 | 0.017 | 0.0012 | 0.941 |
Tail | 0.18 | 0.16 | 0.18 | 0.16 | 0.010 | 0.088 | 0.144 |
Penis | 0.15 | 0.11 | 0.13 | 0.13 | 0.007 | 0.0006 | 0.763 |
Testes + scrotum | 0.11 | 0.05 | 0.09 | 0.08 | 0.006 | <0.0001 | 0.760 |
Kidney fat | 0.12 | 0.15 | 0.14 | 0.13 | 0.025 | 0.350 | 0.715 |
Heart fat | 0.36 | 0.30 | 0.34 | 0.32 | 0.050 | 0.397 | 0.831 |
Omentum fat | 0.13 | 0.11 | 0.12 | 0.12 | 0.414 | 0.414 | 0.970 |
Empty rumen + reticulum | 2.08 | 2.37 | 2.20 | 2.25 | 0.099 | 0.048 | 0.675 |
Age | Castration Status | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
SA | J | NON | IC | A | C | ||
Cold side weight (kg) | 75.2 | 43.3 | 58.5 | 60 | 4.93 | <0.001 | 0.832 |
Proportionate yields (% of cold side weight) | |||||||
Total meat yield | 82 | 80.9 | 81.3 | 81.6 | 0.43 | 0.071 | 0.252 |
High- priced meat | 43.8 | 46.5 | 44.8 | 45.5 | 0.59 | 0.003 | 0.415 |
Low-priced meat | 38.3 | 34.7 | 36.5 | 36.2 | 0.37 | <0.0001 | 0.576 |
Total bones | 15.3 | 16.4 | 16.0 | 15.7 | 0.42 | 0.073 | 0.568 |
Total tendons | 1.0 | 1.2 | 1.1 | 1.1 | 0.1 | 0.187 | 0.922 |
Total trimmings | 5.0 | 4.2 | 4.7 | 4.4 | 0.2 | 0.010 | 0.334 |
Total separable fat | 1.7 | 1.5 | 1.6 | 1.6 | 0.2 | 0.536 | 0.909 |
Ratios | |||||||
High:low-priced meat | 1.146 | 1.355 | 1.237 | 1.264 | 0.023 | <0.0001 | 0.447 |
Meat/bones | 5.035 | 4.063 | 4.784 | 4.883 | 0.121 | 0.047 | 0.603 |
Primal cut yields (% of cold side weight) and tissue dissection yield (% of primal cut weight) | |||||||
Rump | 32.6 | 34.7 | 33.9 | 33.4 | 0.39 | 0.001 | 0.378 |
Meat | 89.6 | 91.0 | 90.0 | 90.6 | 0.34 | 0.006 | 0.220 |
Bones and tendons | 6.8 | 6.2 | 6.7 | 6.3 | 0.27 | 0.165 | 0.318 |
Separable fat | 0.80 | 0.80 | 0.85 | 0.75 | 0.12 | 0.844 | 0.525 |
Trimmings | 2.90 | 1.90 | 2.43 | 2.33 | 0.24 | 0.009 | 0.761 |
Shoulder | 9.5 | 9.5 | 9.3 | 9.7 | 0.25 | 0.979 | 0.312 |
Meat | 84.5 | 87.2 | 84 | 87.8 | 2.49 | 0.422 | 0.266 |
Bones and tendons | 10.4 | 9.7 | 10.9 | 9.3 | 1.05 | 0.645 | 0.272 |
Separable fat | 2.2 | 1.8 | 2.4 | 1.7 | 0.49 | 0.509 | 0.314 |
Trimmings | 2.8 | 1.2 | 2.8 | 1.3 | 1.05 | 0.264 | 0.290 |
Loin | 8.3 | 8.6 | 8.5 | 8.4 | 0.30 | 0.550 | 0.828 |
Meat | 54.9 | 55.6 | 54.1 | 56.4 | 2.03 | 0.812 | 0.400 |
Bones and tendons | 26.8 | 28.3 | 27.5 | 27.5 | 1.47 | 0.465 | 0.987 |
Separable fat | 2.8 | 0.9 | 2.1 | 1.5 | 0.83 | 0.096 | 0.599 |
Trimmings | 15.4 | 15.3 | 16.3 | 14.5 | 1.10 | 0.923 | 0.230 |
Fillet | 2.6 | 2.6 | 2.6 | 2.6 | 0.05 | 0.478 | 0.838 |
Meat | 75.2 | 74.1 | 73.1 | 76.2 | 2.49 | 0.727 | 0.372 |
Separable fat | 4.3 | 3.5 | 3.4 | 4.4 | 0.66 | 0.386 | 0.284 |
Trimmings | 20.5 | 22.5 | 23.5 | 19.5 | 2.32 | 0.528 | 0.214 |
Ribs | 8.8 | 8.1 | 8.5 | 8.5 | 0.21 | 0.026 | 0.912 |
Meat | 63.1 | 63.6 | 64.1 | 62.6 | 1.02 | 0.723 | 0.264 |
Bones and tendons | 24.4 | 26.5 | 25.3 | 25.6 | 0.73 | 0.052 | 0.810 |
Separable fat | 5.30 | 3.60 | 4.43 | 4.46 | 0.55 | 0.030 | 0.961 |
Trimmings | 7.2 | 6.4 | 6.1 | 7.4 | 0.73 | 0.447 | 0.200 |
Belly | 3.0 | 2.6 | 2.7 | 2.8 | 0.12 | 0.009 | 0.227 |
Meat | 59.6 | 61.2 | 62.5 | 58.3 | 2.48 | 0.637 | 0.224 |
Bones and tendons | 19.8 | 20.5 | 20.1 | 20.2 | 1.11 | 0.659 | 0.902 |
Separable fat | 3.2 | 8.5 | 5.2 | 6.5 | 2.77 | 0.171 | 0.723 |
Trimmings | 17.4 | 9.8 | 12.3 | 14.9 | 2.79 | 0.061 | 0.484 |
Shins | 12.3 | 13.3 | 12.9 | 12.7 | 0.28 | 0.018 | 0.573 |
Meat | 70.2 | 66.7 | 68.5 | 68.3 | 0.77 | 0.004 | 0.843 |
Bones and tendons | 29.8 | 33.3 | 31.5 | 31.7 | 0.77 | 0.004 | 0.843 |
Neck | 18.4 | 16.2 | 17.3 | 17.4 | 0.34 | <0.001 | 0.868 |
Muscle Type and Animal Age | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LTL | BF | ST | SM | IS | SS | PM | SEM | p-Value | ||||||||
SA | J | SA | J | SA | J | SA | J | SA | J | SA | J | SA | J | |||
Yield (%) | 4.58 a | 2.6 cd | 4.06 b | 2.36 d | 1.43 f | 0.85 gh | 3.08 c | 1.96 e | 1.14 fgh | 0.61 hi | 0.84 hi | 0.49 i | 1.33 fg | 0.67 hi | 0.168 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Needham, T.; Musa, A.S.; Kotrba, R.; Ceacero, F.; Hoffman, L.C.; Lebedová, N.; Bureš, D. Carcass and Offal Yields of Farmed Common Eland (Taurotragus oryx) Males, as Affected by Age and Immunocastration. Animals 2022, 12, 2893. https://doi.org/10.3390/ani12212893
Needham T, Musa AS, Kotrba R, Ceacero F, Hoffman LC, Lebedová N, Bureš D. Carcass and Offal Yields of Farmed Common Eland (Taurotragus oryx) Males, as Affected by Age and Immunocastration. Animals. 2022; 12(21):2893. https://doi.org/10.3390/ani12212893
Chicago/Turabian StyleNeedham, Tersia, Abubakar Sadiq Musa, Radim Kotrba, Francisco Ceacero, Louwrens Christiaan Hoffman, Nicole Lebedová, and Daniel Bureš. 2022. "Carcass and Offal Yields of Farmed Common Eland (Taurotragus oryx) Males, as Affected by Age and Immunocastration" Animals 12, no. 21: 2893. https://doi.org/10.3390/ani12212893
APA StyleNeedham, T., Musa, A. S., Kotrba, R., Ceacero, F., Hoffman, L. C., Lebedová, N., & Bureš, D. (2022). Carcass and Offal Yields of Farmed Common Eland (Taurotragus oryx) Males, as Affected by Age and Immunocastration. Animals, 12(21), 2893. https://doi.org/10.3390/ani12212893