Effects of Adding Astragali Radix and Inulae Radix on Fermentation Quality, Nutrient Preservation, and Microbial Community in Barley Silage
Abstract
1. Introduction
2. Materials and Method
2.1. Silage Production and Sampling
| DM (%) | CP/%DM | NDF/%DM | ADF/%DM | WSC/%DM |
|---|---|---|---|---|
| 26.40 ± 0.10 | 13.40 ± 0.14 | 48.17 ± 0.18 | 25.13 ± 0.18 | 5.19 ± 0.12 |
2.2. Chemical Composition and Fermentation Characteristic Analysis
2.3. Microbial Analysis
2.4. Statistical Analysis
3. Results
3.1. Effect of AR and IR on Fermentation Quality
3.2. Effect of AR and IR on Chemical Composition of Barley Silage
3.3. Microbial Diversity and Structural Differences
3.4. Microbial Community Composition of Barley Silage
3.5. Correlation Analysis Between Microbial Taxa and Silage Characteristics
3.6. Correlation Analysis Between Silage Characteristics and Microbial Taxa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, Y.L.; Yin, G.M.; Zhao, H.P.; Bai, C.S.; Sun, J.J.; Yu, Z.; Sun, Q.Z. Nutritive value of desert wormwood (Artemisia desertorum Spreng.) silage in mixture with high-moisture maize straw. Grass Forage Sci. 2017, 72, 174–178. [Google Scholar] [CrossRef]
- Johnson, J.A.; Sutherland, B.D.; McKinnon, J.J.; A McAllister, T.; Penner, G.B. Effect of feeding barley or corn silage with dry-rolled barley, corn, or a blend of barley and corn grain on rumen fermentation, total tract digestibility, and nitrogen balance for finishing beef heifers. J. Anim. Sci. 2020, 98, skaa002. [Google Scholar] [CrossRef]
- Aldemiri, R.; Bingol, N.T.; Karsli, M.A.; Dede, S. Effect of substituting barley grain with wet sugar beet pulp silage on some blood metabolites in lambs. Indian J. Anim. Res. 2019, 53, 55–58. [Google Scholar] [CrossRef]
- Hargreaves, A.; Hill, J.; Leaver, J.D. Effect of stage of growth on the chemical composition, nutritive value and ensilability of whole-crop barley. Anim. Feed Sci. Technol. 2009, 152, 50–61. [Google Scholar] [CrossRef]
- Addah, W.; Baah, J.; Okine, E.K.; McAllister, T.A. A third-generation esterase inoculant alters fermentation pattern and improves aerobic stability of barley silage and the efficiency of body weight gain of growing feedlot cattle. J. Anim. Sci. 2012, 90, 1541–1552. [Google Scholar] [CrossRef]
- Migliorati, L.; Boselli, L.; Pirlo, G.; Moschini, M.; Masoero, F. Corn silage replacement with barley silage in dairy cows’ diet does not change milk quality, cheese quality and yield. J. Sci. Food Agric. 2017, 97, 3396–3401. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Taylor, C.C.; Ranjit, N.J.; Mills, J.A.; Neylon, J.M.; Kung, L. The effect of treating whole-plant barley with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for dairy cows. J. Dairy Sci. 2002, 85, 1793–1800. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Z.; Huan, H.; Gu, H.; Xu, N.; Ding, C. Impact of molasses and microbial inoculants on fermentation quality, aerobic stability, and bacterial and fungal microbiomes of barley silage. Sci. Rep. 2020, 10, 5342. [Google Scholar] [CrossRef]
- Liu, B.; Huan, H.; Gu, H.; Xu, N.; Shen, Q.; Ding, C. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages. Bioresour. Technol. 2019, 273, 212–219. [Google Scholar] [CrossRef]
- Wu, B.; Ren, T.; Cao, X.; Wu, T.; Hu, Z.; Ai, J.; Zhang, N.; Zhang, Y.; Yu, Z.; Du, L.; et al. Emerging and innovative utilisation of herbal medicine residues in anaerobic fermentation of corn straw: Cellulose degradation, fermentation characteristics, and microbial community structure and co-occurrence network. Ind. Crops Prod. 2025, 227, 120802. [Google Scholar] [CrossRef]
- Luo, J.; Yang, R.; Ma, F.; Jiang, W.; Han, C. Recycling utilization of Chinese medicine herbal residues resources: Systematic evaluation on industrializable treatment modes. Environ. Sci. Pollut. Res. Int. 2023, 30, 32153–32167. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Li, C. Comprehensive utilization of Chinese medicine residues for industry and environment protection: Turning waste into treasure. J. Clean Prod. 2021, 279, 123856. [Google Scholar] [CrossRef]
- Lu, Q.; Li, R.; Yang, Y.; Zhang, Y.; Zhao, Q.; Li, J. Ingredients with anti-inflammatory effect from medicine food homology plants. Food Chem. 2022, 368, 130610. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Wang, X.; Xiong, Y.; Liu, Z.; Lin, Y.; Ni, K.; Yang, F. Innovative utilization of herbal residues: Exploring the diversity of mechanisms beneficial to regulate anaerobic fermentation of alfalfa. Bioresour. Technol. 2022, 360, 127429. [Google Scholar] [CrossRef]
- Ni, K.; Wang, X.; Lu, Y.; Guo, L.; Li, X.; Yang, F. Exploring the silage quality of alfalfa ensiled with the residues of astragalus and hawthorn. Bioresour. Technol. 2020, 297, 122249. [Google Scholar] [CrossRef]
- Ikbal, A.M.A.; Rajkhowa, A.; Debnath, B.; Singh, W.S.; Manna, K.; Bhattacharjee, B.; Das, T.; Goswami, S. Pharmacological Review on Astragalus membranaceus: Chinese Traditional Herb. Pharmacogn. Rev. 2022, 16, 90–94. [Google Scholar] [CrossRef]
- Chen, G.; Jiang, N.; Zheng, J.; Hu, H.; Yang, H.; Lin, A.; Hu, B.; Liu, H. Structural characterization and anti-inflammatory activity of polysaccharides from Astragalus membranaceus. Int. J. Biol. Macromol. 2023, 241, 124386. [Google Scholar] [CrossRef]
- Yu, S.; Peng, W.; Qiu, F.; Zhang, G. Research progress of astragaloside IV in the treatment of atopic diseases. Biomed. Pharmacother. 2022, 156, 113989. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, W.; Hong, Y.; Wei, W.; Zheng, N.; He, X.; Bao, Y.; Gao, X.; Huang, W.; Sheng, L.; et al. Astragalus polysaccharides attenuate chemotherapy-induced immune injury by modulating gut microbiota and polyunsaturated fatty acid metabolism. Phytomedicine 2024, 128, 155492. [Google Scholar] [CrossRef]
- Kenny, C.-R.; Stojakowska, A.; Furey, A.; Lucey, B. From Monographs to Chromatograms: The Antimicrobial Potential of Inula helenium L. (Elecampane) Naturalised in Ireland. Molecules 2022, 27, 1406. [Google Scholar] [CrossRef]
- Xu, H.; Yang, X.; Liu, S.; Han, F.; Liu, K. Study on Sesquiterpenoid Constituents of Inula helenium L. Lishizhen Med. Mater. Medica Res. 2007, 18, 2738–2740. [Google Scholar]
- Vogel, K.P.; Pedersen, J.F.; Masterson, S.D.; Toy, J.J. Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Sci. 1999, 39, 276–279. [Google Scholar] [CrossRef]
- Bolsen, K.; Lin, C.; Brent, B.; Feyerherm, A.; Urban, J.; Aimutis, W. Effect of silage additives on the microbial succession and fermentation process of alfalfa and corn silages. J. Dairy Sci. 1992, 75, 3066–3083. [Google Scholar] [CrossRef]
- Hasan, M.T. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemist: Rockville, MD, USA, 1990. [Google Scholar]
- Kerepesi, I.; Tóth, M.; Boross, L. Water soluble carbohydrate in dried plant. J. Agric. Food Chem. 1996, 44, 3235–3239. [Google Scholar] [CrossRef]
- Tuovinen, O.H.; Niemelä, S.I.; Rajala-Schultz, P.J. The Role of microbes in ensiling. Microorganisms 2025, 13, 2237. [Google Scholar] [CrossRef]
- Huang, S.; Ke, W.; Lu, Q.; Gao, L.; Zhou, X.; Ma, C. Effects of total flavonoids from Taraxacum mongolicum hand.-mazz. on fermentation quality, antioxidant status and microbial community of Caragana korshinskii Kom. silage. Fermentation 2023, 9, 949. [Google Scholar] [CrossRef]
- Zi, X.; Li, M.; Chen, Y.; Lv, R.; Zhou, H.; Tang, J. Effects of citric acid and Lactobacillus plantarum on silage quality and bacterial diversity of king grass silage. Front. Microbiol. 2021, 12, 631096. [Google Scholar] [CrossRef]
- Zhou, T.; Lei, X.; Luo, Y.; Ou, Y.; Tian, S.; Xie, Y.; Zheng, Y.; Sun, H.; Yang, F. High temperatures and antibacterial plant additives change the fermentation quality, free amino acids and lactic acid bacteria fermentation type in Caragana Korshinskii silage. BMC Microbiol. 2025, 25, 437. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Zhao, S.; Wang, Y. Lactobacillus plantarum inoculants delay spoilage of high moisture alfalfa silages by regulating bacterial community composition. Front. Microbiol. 2020, 11, 1989. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhao, J.; Dong, Z.; Dong, D.; Shao, T. Silage fermentation characteristics and microbial diversity of alfalfa (Medicago sativa L.) in response to exogenous microbiota from temperate grasses. World J. Microbiol. Biotechnol. 2021, 37, 204. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Shi, R.; Yang, D.; Tian, H.; Wang, L.; Ling, Z.; Li, J.; Li, L.; Sun, Y.; Zheng, Y. Innovative strategy to enhance bioconversion of sweet sorghum bagasse (SSB) by the combination of bio-fortified ensiling and dilute alkali pretreatment. Ind. Crops Prod. 2024, 211, 118208. [Google Scholar] [CrossRef]
- Feng, Q.; Zhang, J.; Ling, W.; Degen, A.A.; Zhou, Y.; Ge, C.; Yang, F.; Zhou, J. Ensiling hybrid Pennisetum with lactic acid bacteria or organic acids improved the fermentation quality and bacterial community. Front. Microbiol. 2023, 14, 1216722. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, Y.; Yang, F.; Hu, J.; Ma, R.; Liu, H.; Shao, T. Improving total mixed ration silage: Effects of lactic acid bacteria inoculants and antimicrobial additives on fermentation quality and aerobic stability. Agronomy 2024, 14, 1602. [Google Scholar] [CrossRef]
- Wang, L.; Bao, J.; Zhuo, X.; Li, Y.; Zhan, W.; Xie, Y.; Wu, Z.; Yu, Z. Effects of Lentilactobacillus buchneri and chemical additives on fermentation profile, chemical composition, and nutrient digestibility of high-moisture corn silage. Front. Vet Sci. 2023, 10, 1296392. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Xu, J.; Guo, L.; Xiong, Y.; Lin, Y.; Ni, K.; Yang, F. Exploring the addition of herbal residues on fermentation quality, bacterial communities, and ruminal greenhouse gas emissions of paper mulberry silage. Front. Microbiol. 2022, 12, 820011. [Google Scholar] [CrossRef]
- Wang, W.; Tian, H.; Zhao, Y.; Nie, Y.; Li, Z.; Gong, J.; Jiang, W.; Yin, Y.; Santos Bermudez, R.; He, W. Formation of high-quality mixed silage from paper mulberry and wheat bran driven by the characteristics of the microbial community. Front. Microbiol. 2024, 15, 1476067. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Xiong, Y.; Guo, L.; Xu, J.; Lin, Y.; Ni, K.; Yang, F. Perilla frutescens as potential antimicrobial modifier to against forage oat silage spoilage. Front. Microbiol. 2022, 13, 1053933. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Sheng, P.; Song, C.; Ma, W.; Bai, B.; Zhao, J.; Du, S.; Ge, G.; Wang, Z.; et al. Biotechnological Effects of Lactobacillus plantarum, Cellulase, and Xylanase on Nutritional Quality and Microbial Community Structure of Corn Stover Silage. Fermentation 2025, 11, 14. [Google Scholar] [CrossRef]
- Shahrivari-Baviloliaei, S.; Orhan, I.E.; Senol Deniz, F.S.; Yilmaz, M.A.; Viapiana, A.; Konopacka, A.; Tugay, O.; Plenis, A. Chemical Profile and Evaluation of the Antioxidant, Anti-Enzymatic, and Antibacterial Activity of Astragalus strictispinus and Astragalus macrocephalus subsp. finitimus. Plants 2025, 14, 3485. [Google Scholar] [CrossRef]
- Liu, J.; Wang, D.; Ren, N.; Zhang, L.; Wang, T. Metabolites of Astragalus membranaceus and their pro-apoptotic and cytotoxic activities: Insights into targeted metabolic pathways. Front. Pharmacol. 2025, 16, 1647958. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Zhang, H.; Yang, T.; Abbas, Z.; Jiang, X.; Zhang, H.; Zhang, R.; Si, D. The Fermentation Quality, Antioxidant Activity, and Bacterial Community of Mulberry Leaf Silage with Pediococcus, Bacillus, and Wheat Bran. Fermentation 2024, 10, 214. [Google Scholar] [CrossRef]
- Bian, X.; Yang, L.; Wu, W.; Lv, L.; Jiang, X.; Wang, Q.; Wu, J.; Li, Y.; Ye, J.; Fang, D.; et al. Pediococcus pentosaceus LI05 alleviates DSS-induced colitis by modulating immunological profiles, the gut microbiota and short-chain fatty acid levels in a mouse model. Microb. Biotechnol. 2020, 13, 1228–1244. [Google Scholar] [CrossRef] [PubMed]
- Udén, P. Fresh and ensiled forage plants—Total composition, silage losses and the prediction of silage composition from the crop. Grass Forage Sci. 2017, 73, 420–431. [Google Scholar] [CrossRef]
- Serva, L.; Magrin, L.; Marchesini, G.; Andrighetto, I. Short Communication: Prognostic Values of a Multiparametric Risk Score in Maize Silage Undergoing Different Ensiling Conditions. Agronomy 2022, 12, 774. [Google Scholar] [CrossRef]
- Bai, B.; Qiu, R.; Wang, Z.; Liu, Y.; Bao, J.; Sun, L.; Liu, T.; Ge, G.; Jia, Y. Effects of Cellulase and Lactic Acid Bacteria on Ensiling Performance and Bacterial Community of Caragana korshinskii Silage. Microorganisms 2023, 11, 337. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Wang, S.; Zhao, L.; Zhang, B.; Jia, W.; Zhai, Z.; Zhao, L.; Li, Y. Effects of antibacterial peptide-producing Bacillus subtilis, gallic acid, and cellulase on fermentation quality and bacterial community of whole-plant corn silage. Front. Microbiol. 2022, 13, 1028001. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, B.; Liu, G.; Shi, H.; Wang, J. Effect of Bacillus subtilis and Lactobacillus plantarum on solid-state fermentation of soybean meal. J. Sci. Food Agric. 2023, 103, 6070–6079. [Google Scholar] [CrossRef]
- Sun, L.; Bai, C.; Xu, H.; Na, N.; Jiang, Y.; Yin, G.; Liu, S.; Xue, Y. Succession of Bacterial Community During the Initial Aerobic, Intense Fermentation, and Stable Phases of Whole-Plant Corn Silages Treated With Lactic Acid Bacteria Suspensions Prepared From Other Silages. Front. Microbiol. 2021, 12, 655095. [Google Scholar] [CrossRef]
- Okoye, C.O.; Wei, Z.; Jiang, H.; Wu, Y.; Wang, Y.; Gao, L.; Li, X.; Jiang, J. Metagenomics analysis reveals the performance of homo- and heterofermentative lactic acid bacteria in alfalfa silage fermentation, bacterial community, and functional profiles. J. Anim. Sci. 2023, 101, skad163. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, D.; Chen, Y.; Lei, Y.; Li, M.; Wang, J.; He, X.; Yang, Y.; Zhang, X.; Liu, S.; et al. Enhancing alfalfa and sorghum silage quality using agricultural wastes: Fermentation dynamics, microbial communities, and functional insights. BMC Plant Biol. 2025, 25, 728, Erratum in BMC Plant Biol. 2025, 25, 785. https://doi.org/10.1186/s12870-025-06846-7. [Google Scholar] [CrossRef]






| Items | CK | AR-1% | AR-2% | IR-1% | IR-2% | p Value |
|---|---|---|---|---|---|---|
| DM (%) | 25.02 ± 0.11 b | 26.18 ± 0.23 a | 26.34 ± 0.36 a | 27.07 ± 0.62 a | 27.12 ± 0.68 a | <0.01 |
| CP/%DM | 12.78 ± 0.11 a | 12.94 ± 0.19 a | 12.84 ± 0.19 a | 11.86 ± 0.05 c | 12.20 ± 0.24 b | 0.034 |
| NDF/%DM | 49.67 ± 0.74 a | 46.55 ± 1.16 b | 46.34 ± 0.71 b | 47.14 ± 0.96 b | 46.70 ± 1.05 b | <0.01 |
| ADF/%DM | 26.10 ± 0.44 a | 24.51 ± 0.51 b | 24.60 ± 0.61 b | 24.10 ± 0.38 b | 25.01 ± 0.58 b | 0.047 |
| Starch/%DM | 0.26 ± 0.03 e | 0.77 ± 0.05 d | 1.93 ± 0.10 c | 2.86 ± 0.07 a | 2.14 ± 0.07 b | <0.01 |
| Ash/%DM | 5.80 ± 0.06 a | 5.38 ± 0.04 b | 5.23 ± 0.13 b | 5.29 ± 0.06 b | 5.29 ± 0.08 b | <0.01 |
| WSC/%DM | 1.71 ± 0.01 d | 2.89 ± 0.06 c | 3.18 ± 0.04 b | 4.15 ± 0.07 a | 3.13 ± 0.11 b | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, Y.; Ying, Y.; Sun, J.; Zhao, J.; Wang, W.; Kang, B. Effects of Adding Astragali Radix and Inulae Radix on Fermentation Quality, Nutrient Preservation, and Microbial Community in Barley Silage. Microorganisms 2025, 13, 2822. https://doi.org/10.3390/microorganisms13122822
Yun Y, Ying Y, Sun J, Zhao J, Wang W, Kang B. Effects of Adding Astragali Radix and Inulae Radix on Fermentation Quality, Nutrient Preservation, and Microbial Community in Barley Silage. Microorganisms. 2025; 13(12):2822. https://doi.org/10.3390/microorganisms13122822
Chicago/Turabian StyleYun, Ying, Ying Ying, Juanjuan Sun, Jinmei Zhao, Wenxi Wang, and Boyang Kang. 2025. "Effects of Adding Astragali Radix and Inulae Radix on Fermentation Quality, Nutrient Preservation, and Microbial Community in Barley Silage" Microorganisms 13, no. 12: 2822. https://doi.org/10.3390/microorganisms13122822
APA StyleYun, Y., Ying, Y., Sun, J., Zhao, J., Wang, W., & Kang, B. (2025). Effects of Adding Astragali Radix and Inulae Radix on Fermentation Quality, Nutrient Preservation, and Microbial Community in Barley Silage. Microorganisms, 13(12), 2822. https://doi.org/10.3390/microorganisms13122822
