Advances in Novel Detection Technologies for Occult Hepatitis B Virus Infection: Building an Ultra-Sensitive Barrier for Transfusion Safety
Abstract
1. Introduction
2. Novel OBI Detection Technologies
2.1. dPCR and ddPCR
2.2. CRISPR-Cas System
2.3. Third-Generation Sequencing Technologies
2.4. Nanomaterial-Based Detection Technologies
2.5. Comparative Analysis and Practical Readiness for Transfusion Screening
3. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HBV | Hepatitis B virus |
| HCC | Hepatocellular carcinoma |
| OBI | Occult hepatitis B virus infection |
| HBsAg | Hepatitis B surface antigen |
| anti-HBc | Hepatitis B core antibody |
| anti-HBs | Hepatitis B surface antibody |
| cccDNA | Covalently closed circular DNA |
| rcDNA | Relaxed circular DNA |
| NAT | Nucleic acid testing |
| PCR | Polymerase chain reaction |
| qPCR | Quantitative polymerase chain reaction |
| dPCR | Digital polymerase chain reaction |
| ddPCR | Droplet digital polymerase chain reaction |
| LoD | Limit of detection |
| RPA | Recombinase polymerase amplification |
| LAMP | Loop-mediated isothermal amplification |
| CRISPR | Clustered regularly interspaced short palindromic repeats |
| Cas | CRISPR-associated |
| SHERLOCK | Specific High-sensitivity Enzymatic Reporter unLOCKing |
| DETECTR | DNA Endonuclease-Targeted CRISPR Trans Reporter |
| SDA | Strand displacement amplification |
| qRT-PCR | Quantitative reverse transcription polymerase chain reaction |
| TGS | Third-generation sequencing |
| RCA | Rolling-circle amplification |
| ELISA | Enzyme-linked immunosorbent assay |
References
- Jeng, W.J.; Papatheodoridis, G.V.; Lok, A.S.F. Hepatitis B. Lancet 2023, 401, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-C.; Huang, D.Q.; Nguyen, M.H. Global burden of hepatitis B virus: Current status, missed opportunities and a call for action. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.C.; Nguyen, M.H. Curing chronic hepatitis B virus infection. Lancet. Infect. Dis. 2023, 23, 392–393. [Google Scholar] [CrossRef] [PubMed]
- Saitta, C.; Pollicino, T.; Raimondo, G. Occult Hepatitis B Virus Infection: An Update. Viruses 2022, 14, 1504. [Google Scholar] [CrossRef]
- de Almeida, N.A.A.; de Paula, V.S. Occult Hepatitis B virus (HBV) infection and challenges for hepatitis elimination: A literature review. J. Appl. Microbiol. 2022, 132, 1616–1635. [Google Scholar] [CrossRef]
- Wu, T.; Kwok, R.M.; Tran, T.T. Isolated anti-HBc: The Relevance of Hepatitis B Core Antibody-A Review of New Issues. Am. J. Gastroenterol. 2017, 112, 1780–1788. [Google Scholar] [CrossRef]
- Bucio-Ortiz, L.; Enriquez-Navarro, K.; Maldonado-Rodríguez, A.; Torres-Flores, J.M.; Cevallos, A.M.; Salcedo, M.; Lira, R. Occult Hepatitis B Virus Infection in Hepatic Diseases and Its Significance for the WHO’s Elimination Plan of Viral Hepatitis. Pathogens 2024, 13, 662. [Google Scholar] [CrossRef]
- Fu, M.X.; Simmonds, P.; Andersson, M.; Harvala, H. Biomarkers of transfusion transmitted occult hepatitis B virus infection: Where are we and what next? Rev. Med. Virol. 2024, 34, e2525. [Google Scholar] [CrossRef]
- He, P.; Zhang, P.; Fang, Y.; Han, N.; Yang, W.; Xia, Z.; Zhu, Y.; Zhang, Z.; Shen, J. The role of HBV cccDNA in occult hepatitis B virus infection. Mol. Cell. Biochem. 2023, 478, 2297–2307. [Google Scholar] [CrossRef]
- Candotti, D.; Assennato, S.M.; Laperche, S.; Allain, J.-P.; Levicnik-Stezinar, S. Multiple HBV transfusion transmissions from undetected occult infections: Revising the minimal infectious dose. Gut 2019, 68, 313–321. [Google Scholar] [CrossRef]
- Klein, D. Quantification using real-time PCR technology: Applications and limitations. Trends Mol. Med. 2002, 8, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Im, Y.R.; Jagdish, R.; Leith, D.; Kim, J.U.; Yoshida, K.; Majid, A.; Ge, Y.; Ndow, G.; Shimakawa, Y.; Lemoine, M. Prevalence of occult hepatitis B virus infection in adults: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xue, R.; Wang, X.; Xiao, L.; Xian, J. High-sensitivity HBV DNA test for the diagnosis of occult HBV infection: Commonly used but not reliable. Front. Cell. Infect. Microbiol. 2023, 13, 1186877. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Wu, W.; Wu, J.; Chen, Z.; Wu, Z.; Tang, Y.; Hu, M. Prevalence and clinical characteristics of hepatitis B surface antigen-negative/hepatitis B core antibody-positive patients with detectable serum hepatitis B virus DNA. Ann. Transl. Med. 2022, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Morozov, S.; Batskikh, S. Reactivation of hepatitis B virus infection—An important aspect of multifaceted problem. World J. Gastroenterol. 2024, 30, 3193–3197. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, B.; Valdes, J.D.; Sun, J.; Guo, H. Serum Hepatitis B Virus RNA: A New Potential Biomarker for Chronic Hepatitis B Virus Infection. Hepatology 2019, 69, 1816–1827. [Google Scholar] [CrossRef]
- Samadi, E.; Mirshahabi, H.; Motamed, N.; Sadeghi, H. Prevalence of Occult Hepatitis B Virus Infection in Hemodialysis Patients Using Nested PCR. Rep. Biochem. Mol. Biol. 2020, 9, 82–88. [Google Scholar] [CrossRef]
- Ding, R.; Long, J.; Yuan, M.; Zheng, X.; Shen, Y.; Jin, Y.; Yang, H.; Li, H.; Chen, S.; Duan, G. CRISPR/Cas12-Based Ultra-Sensitive and Specific Point-of-Care Detection of HBV. Int. J. Mol. Sci. 2021, 22, 4842. [Google Scholar] [CrossRef]
- Ye, X.; Liu, L.; Chen, L.; Nie, X.; Huang, L.; Ye, D.; Zeng, J.; Li, T.; Li, B.; Xu, M.; et al. High-Frequency Notable HBV Mutations Identified in Blood Donors With Occult Hepatitis B Infection From Heyuan City of Southern China. Front. Immunol. 2022, 13, 754383. [Google Scholar] [CrossRef]
- Deng, X.; Guo, X.; Li, T.; Laperche, S.; Zang, L.; Candotti, D. Alternative hepatitis B virus DNA confirmatory algorithm identified occult hepatitis B virus infection in Chinese blood donors with non-discriminatory nucleic acid testing. Blood Transfus. 2022, 20, 8–17. [Google Scholar]
- Gionda, P.O.; Gomes-Gouvea, M.; Malta, F.d.M.; Sebe, P.; Salles, A.P.M.; Francisco, R.d.S.; José-Abrego, A.; Roman, S.; Panduro, A.; Pinho, J.R.R. Analysis of the complete genome of HBV genotypes F and H found in Brazil and Mexico using the next generation sequencing method. Ann. Hepatol. 2022, 27, 100569. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, K.; Liu, C.; Zhang, X.; Huang, X. Application of nested PCR in the detection of occult hepatitis B virus infection in blood donors. Chin. J. Exp. Clin. Virol. 2023, 37, 410–413. [Google Scholar] [CrossRef]
- Hayashi, S.; Isogawa, M.; Kawashima, K.; Ito, K.; Chuaypen, N.; Morine, Y.; Shimada, M.; Higashi-Kuwata, N.; Watanabe, T.; Tangkijvanich, P.; et al. Droplet digital PCR assay provides intrahepatic HBV cccDNA quantification tool for clinical application. Sci. Rep. 2022, 12, 2133. [Google Scholar] [CrossRef] [PubMed]
- Allweiss, L.; Testoni, B.; Yu, M.; Lucifora, J.; Ko, C.; Qu, B.; Lütgehetmann, M.; Guo, H.; Urban, S.; Fletcher, S.P.; et al. Quantification of the hepatitis B virus cccDNA: Evidence-based guidelines for monitoring the key obstacle of HBV cure. Gut 2023, 72, 972–983. [Google Scholar] [CrossRef]
- Roth, W.K. History and Future of Nucleic Acid Amplification Technology Blood Donor Testing. Transfus. Med. Hemotherapy 2019, 46, 67–75. [Google Scholar] [CrossRef]
- Tang, H.; Cai, Q.; Li, H.; Hu, P. Comparison of droplet digital PCR to real-time PCR for quantification of hepatitis B virus DNA. Biosci. Biotechnol. Biochem. 2016, 80, 2159–2164. [Google Scholar] [CrossRef]
- Wang, K.; Li, B.; Guo, Y.; Wu, Y.; Li, Y.; Wu, W. An integrated digital PCR system with high universality and low cost for nucleic acid detection. Front. Bioeng. Biotechnol. 2022, 10, 947895. [Google Scholar] [CrossRef]
- Zhang, L.; Parvin, R.; Fan, Q.; Ye, F. Emerging digital PCR technology in precision medicine. Biosens. Bioelectron. 2022, 211, 114344. [Google Scholar] [CrossRef]
- Liu, X.; Feng, J.; Zhang, Q.; Guo, D.; Zhang, L.; Suo, T.; Hu, W.; Guo, M.; Wang, X.; Huang, Z.; et al. Analytical comparisons of SARS-COV-2 detection by qRT-PCR and ddPCR with multiple primer/probe sets. Emerg. Microbes Infect. 2020, 9, 1175–1179. [Google Scholar] [CrossRef]
- Wang, K.; Sang, B.; He, L.; Guo, Y.; Geng, M.; Zheng, D.; Xu, X.; Wu, W. Construction of dPCR and qPCR integrated system based on commercially available low-cost hardware. Analyst 2022, 147, 3494–3503. [Google Scholar] [CrossRef]
- Piermatteo, L.; Scutari, R.; Chirichiello, R.; Alkhatib, M.; Malagnino, V.; Bertoli, A.; Iapadre, N.; Ciotti, M.; Sarmati, L.; Andreoni, M.; et al. Droplet digital PCR assay as an innovative and promising highly sensitive assay to unveil residual and cryptic HBV replication in peripheral compartment. Methods 2022, 201, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Limothai, U.; Chuaypen, N.; Poovorawan, K.; Chotiyaputta, W.; Tanwandee, T.; Poovorawan, Y.; Tangkijvanich, P. Reverse transcriptase droplet digital PCR vs reverse transcriptase quantitative real-time PCR for serum HBV RNA quantification. J. Med. Virol. 2020, 92, 3365–3372. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.C.; Nadeau, K.; Abbasi, M.; Lachance, C.; Nguyen, M.; Fenrich, J. The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time. Trends Biotechnol. 2019, 37, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Tong, Q. Comparison of the application effect of nucleic acid test and ELISA test in the screening of hepatitis B virus (HBV)in blood samples of unpaid blood donations. China Contemp. Med. 2021, 27, 151–152. [Google Scholar]
- Olmedillas-López, S.; Olivera-Salazar, R.; García-Arranz, M.; García-Olmo, D. Current and Emerging Applications of Droplet Digital PCR in Oncology: An Updated Review. Mol. Diagn. Ther. 2022, 26, 61–87. [Google Scholar] [CrossRef]
- Bio-Red. Automated Droplet Generator #1864101. June 2024. Available online: https://www.bio-rad.com/webroot/web/pdf/lsr/literature/10043138.pdf (accessed on 10 September 2025).
- Wei, L.; Wang, Z.; She, Y.; Fu, H. CRISPR/Cas Multiplexed Biosensing: Advances, Challenges, and Perspectives. Anal. Chem. 2025, 97, 11943–11958. [Google Scholar] [CrossRef]
- Patchsung, M.; Jantarug, K.; Pattama, A.; Aphicho, K.; Suraritdechachai, S.; Meesawat, P.; Sappakhaw, K.; Leelahakorn, N.; Ruenkam, T.; Wongsatit, T.; et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 2020, 4, 1140–1149. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef]
- Shi, K.; Xie, S.; Tian, R.; Wang, S.; Lu, Q.; Gao, D.; Lei, C.; Zhu, H.; Nie, Z. A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics. Sci. Adv. 2021, 7, eabc7802. [Google Scholar] [CrossRef]
- Gong, S. Research on Enzyme-Catalyzed Real-Time Nucleic Acid Detection Methods Based on CRISPR-Cas12a. Ph.D. Thesis, Shandong Normal University, Jinan, China, 2023. [Google Scholar]
- Wang, S.; Li, H.; Kou, Z.; Ren, F.; Jin, Y.; Yang, L.; Dong, X.; Yang, M.; Zhao, J.; Liu, H.; et al. Highly sensitive and specific detection of hepatitis B virus DNA and drug resistance mutations utilizing the PCR-based CRISPR-Cas13a system. Clin. Microbiol. Infect. 2021, 27, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Fan, Z.; Xu, L.; Cao, Y.; Chen, S.; Pan, Z.; Gao, Y.; Li, H.; Zheng, S.; Ma, Y.; et al. CRISPR/Cas13a-assisted rapid and portable HBV DNA detection for low-level viremia patients. Emerg. Microbes Infect. 2023, 12, e2177088. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, S.; Cortese, M.F.; Rodríguez-Algarra, F.; Tabernero, D.; Rando-Segura, A.; Quer, J.; Buti, M.; Rodríguez-Frías, F. Next-generation sequencing for the diagnosis of hepatitis B: Current status and future prospects. Expert Rev. Mol. Diagn. 2021, 21, 381–396. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, A.L.; Roberts, H.E.; Bonsall, D.; de Cesare, M.; Mokaya, J.; Lumley, S.F.; Golubchik, T.; Piazza, P.; Martin, J.B.; de Lara, C.; et al. Illumina and Nanopore methods for whole genome sequencing of hepatitis B virus (HBV). Sci. Rep. 2019, 9, 7081. [Google Scholar] [CrossRef]
- Lee, G.-Y.; Park, K.; Lee, Y.-S.; Kim, J.H.; Byun, K.S.; Kim, J.; Kim, W.-K.; Song, J.-W. Molecular diagnosis of patients with hepatitis A virus infection using amplicon-based nanopore sequencing. PLoS ONE 2023, 18, e0288361. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, W.; Peng, W.; Zhao, Q.; Piao, J.; Zhang, B.; Wu, X.; Wang, H.; Gong, X.; Chang, J. Enhanced Fluorescence ELISA Based on HAT Triggering Fluorescence “Turn-on” with Enzyme-Antibody Dual Labeled AuNP Probes for Ultrasensitive Detection of AFP and HBsAg. ACS Appl. Mater. Interfaces 2017, 9, 9369–9377. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lai, Z.-L.; Wang, G.-J.; Wu, C.-Y. Polymerase chain reaction-free detection of hepatitis B virus DNA using a nanostructured impedance biosensor. Biosens. Bioelectron. 2016, 77, 603–608. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, L.; Xiong, Y.; Leng, Y.; Wang, H.; Xiong, Y. Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B. Talanta 2018, 181, 258–264. [Google Scholar] [CrossRef]
- Delshadi, S.; Fratzl, M.; Ramel, O.; Bigotte, P.; Kauffmann, P.; Kirk, D.; Masse, V.; Brenier-Pinchart, M.P.; Fricker-Hidalgo, H.; Pelloux, H.; et al. Magnetically localized and wash-free fluorescence immunoassay (MLFIA): Proof of concept and clinical applications. Lab A Chip 2023, 23, 645–658. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Y.; Xu, Z.; Li, X.; Liu, Q.; Wang, P.; Dong, Y. Simultaneous electrochemical determination of two hepatitis B antigens using graphene-SnO2 hybridized with sea urchin-like bimetallic nanoparticles. Mikrochim. Acta 2021, 188, 109. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, P.; Ma, E.; Yu, H.; Zhou, K.; Tang, C.; Ren, J.; Li, Y.; Liu, Q.; Dong, Y. A sandwich-type electrochemical immunosensor based on Au@Pd nanodendrite functionalized MoO2 nanosheet for highly sensitive detection of HBsAg. Bioelectrochemistry 2021, 138, 107713. [Google Scholar] [CrossRef] [PubMed]
- Shevtsov, M.; Zhao, L.; Protzer, U.; van de Klundert, M.A.A. Applicability of Metal Nanoparticles in the Detection and Monitoring of Hepatitis B Virus Infection. Viruses 2017, 9, 193. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hu, Y.; Chen, M.; An, J.; Lyu, Y.; Liu, Y.; Li, D. Naked-Eye Detection of Hepatitis B Surface Antigen Using Gold Nanoparticles Aggregation and Catalase-Functionalized Polystyrene Nanospheres. ACS Omega 2021, 6, 9828–9833. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; He, X.; Ju, L.; Liu, X.; Li, F.; Cui, H. A label-free method for the detection of specific DNA sequences using gold nanoparticles bifunctionalized with a chemiluminescent reagent and a catalyst as signal reporters. Anal. Bioanal. Chem. 2016, 408, 8747–8754. [Google Scholar] [CrossRef]
- Xi, Z.; Gong, Q.; Wang, C.; Zheng, B. Highly sensitive chemiluminescent aptasensor for detecting HBV infection based on rapid magnetic separation and double-functionalized gold nanoparticles. Sci. Rep. 2018, 8, 9444. [Google Scholar] [CrossRef]
- Tang, R.; Yang, H.; Gong, Y.; Liu, Z.; Li, X.; Wen, T.; Qu, Z.; Zhang, S.; Mei, Q.; Xu, F. Improved Analytical Sensitivity of Lateral Flow Assay using Sponge for HBV Nucleic Acid Detection. Sci. Rep. 2017, 7, 1360. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Wang, H.; Fu, Q.; Peng, J.; Wang, Y.; Du, J.; Zhou, Y.; Zhan, L. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens. Bioelectron. 2010, 26, 404–410. [Google Scholar] [CrossRef]
- Lu, X.; Dong, X.; Zhang, K.; Han, X.; Fang, X.; Zhang, Y. A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer. Analyst 2013, 138, 642–650. [Google Scholar] [CrossRef]
- Cha, B.H.; Lee, S.-M.; Park, J.C.; Hwang, K.S.; Kim, S.K.; Lee, Y.-S.; Ju, B.-K.; Kim, T.S. Detection of Hepatitis B Virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. Biosens. Bioelectron. 2009, 25, 130–135. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, H.; Chen, J.; Han, H.; Ma, W. Simple and sensitive detection of HBsAg by using a quantum dots nanobeads based dot-blot immunoassay. Theranostics 2014, 4, 307–315. [Google Scholar] [CrossRef]
- Huang, S.; Qiu, H.; Xiao, Q.; Huang, C.; Su, W.; Hu, B. A simple QD-FRET bioprobe for sensitive and specific detection of hepatitis B virus DNA. J. Fluoresc. 2013, 23, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Huang, J.; Huang, H.; Mao, W.; Ye, Z. A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Adv. 2018, 8, 1820–1825. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.K.; Shen, S.-K.; Chiang, C.-W.; Weng, Y.-Y.; Lu, M.-P.; Yang, Y.-S. Silicon Nanowire Field-Effect Transistor as Label-Free Detection of Hepatitis B Virus Proteins with Opposite Net Charges. Biosensors 2021, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, A.A.; Lo Faro, M.J.; Petralia, S.; Fazio, B.; Musumeci, P.; Conoci, S.; Irrera, A.; Priolo, F. Ultrasensitive Label- and PCR-Free Genome Detection Based on Cooperative Hybridization of Silicon Nanowires Optical Biosensors. ACS Sens. 2018, 3, 1690–1697. [Google Scholar] [CrossRef]
- Cabral, D.G.; Lima, E.C.; Moura, P.; Dutra, R.F. A label-free electrochemical immunosensor for hepatitis B based on hyaluronic acid-carbon nanotube hybrid film. Talanta 2016, 148, 209–215. [Google Scholar] [CrossRef]
- Yaralı, E.; Erdem, A. Cobalt Phthalocyanine-Ionic Liquid Composite Modified Electrodes for the Voltammetric Detection of DNA Hybridization Related to Hepatitis B Virus. Micromachines 2021, 12, 753. [Google Scholar] [CrossRef]
- Alizadeh, N.; Hallaj, R.; Salimi, A. A highly sensitive electrochemical immunosensor for hepatitis B virus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification. Biosens. Bioelectron. 2017, 94, 184–192. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, C.; Cui, M.; Zhang, X.; Yang, D.-P.; Wang, X.; Cui, D. Graphene oxide wrapped with gold nanorods as a tag in a SERS based immunoassay for the hepatitis B surface antigen. Mikrochim. Acta 2018, 185, 458. [Google Scholar] [CrossRef]

| Technique | ELISA | NAT | ddPCR |
|---|---|---|---|
| Target | Antigen or antibody | Nucleic acid | Nucleic acid |
| Principle | Antigen–antibody reaction | Nucleic acid amplification (e.g., PCR, RT-PCR) is used to detect the DNA or RNA of pathogens. | By distributing the sample across droplets/microchambers, performing independent PCR with fluorescence readout, and applying Poisson-based quantification. |
| Sensitivity | pg/mL | The detection rate of HBV nucleic acid is 100% [34] | Ultra-low-frequency calling of rare mutations or single-copy molecules (≈0.001%) [35] |
| Specificity | Low specificity and potential cross-reactivity | High | High |
| Detection Time | 1.5–4 h | 1.5–2.5 h | 4–6 h |
| Throughput | High | Medium | Low [36] |
| Cost | Low | Medium | High |
| Application Scenario | Mass screening Resource-limited settings | Specialized laboratory | Specialized laboratory |
| OBI Screening | Combined testing (HBsAg + anti-HBc + anti-HBs) is used for initial screening in resource-limited settings, but it is limited by the serological window period. | Gold standard for diagnosis | No standard curve is required; it allows accurate calculation of viral copy numbers and is currently suitable for research applications, enabling precise monitoring of OBI viral loads. |
| Structure | Nanomaterial | Target | Detection Method | Detection Limit | Linear Range | Ref |
|---|---|---|---|---|---|---|
| Nanoparticles | Anti-HBs and HAT-coated AuNPs | HBsAg | Fluorescent ELISA | 5 × 10−4 IU/mL | None | [48] |
| AuNPs | HBsAg | Color change in solution caused by surface plasmon resonance (SPR) | 0.1 ng/mL (visual (by naked eye)) 0.01 ng/mL (instrument-Based) | 0.01–10 ng/mL | [55] | |
| AuNPs | HBV DNA | ELISA | 111 copies/mL | 102–105 copies/mL | [49] | |
| Bifunctionalized AuNPs | HBV DNA | Chemiluminescence | 5.9 × 10−12 M | None | [56] | |
| Au@Fe3O4@SiO2 NPs | HBsAg | Chemiluminescence | 0.05 ng/mL | 1–225 ng/mL | [57] | |
| AuNPs | HBV DNA | Lateral flow immunochromatography | 103 copies/mL | None | [58] | |
| AuNRs | HBsAg | Surface plasmon resonance (SPR) | 0.1 IU/mL | 0.01–1 IU/mL | [59] | |
| AuNRs | HBV DNA | Fluorescence resonance energy transfer (FRET) | 15 pmol/L | 0.045–6.0 nmol/L | [60] | |
| MNPs | HBsAg | Magnetically assisted fluorescence immunoassay | 5 IU/mL | None | [51] | |
| Silica NPs | HBV DNA | Resonant frequency shift | 2.3 × 10−15 M | 23.1 fM–2.3 nM | [61] | |
| QDs | QDs Nanobeads | HBsAg | Immunofluorescence | 0.078 ng | None | [62] |
| QDs | HBV DNA | Fluorescence resonance energy transfer (FRET) | 1.5 nmol/L | 2.5–30 nmol/L | [63] | |
| Graphene Quantum Dots (Graphene QDs) | HBV DNA | Differential pulse voltammetry (DPV) | 1 nM | 10–500 nM | [64] | |
| One-Dimensional (1D) Material | Silicon Nanowires | HBsAg and HBx | Electrochemical | 100 fg/mL | None | [65] |
| Silicon Nanowires | HBV DNA | Fluorescence quenching | 20 copies per reaction | None | [66] | |
| Amino-Functionalized Carbon Nanotubes | HBcAb | Square-wave voltammetry (SWV) | 0.03 ng/mL | 0.03–6 ng/mL | [67] | |
| Two-Dimensional (2D) Material | Pencil Graphite Electrode | HBV DNA | ELISA | 2.48 µg/mL | 5–30 µg/mL | [68] |
| Nanocomposite Materials | Fe3O4 MNP and AuNPs | HBsAg | Square-wave voltammetry (SWV) | 0.19 ng/µL | 0.3–1000 ng/µL | [69] |
| GO-GNRs | HBsAg | Surface-enhanced spectroscopy | 0.05 pg/mL | 1–1000 pg/mL | [70] | |
| Au@Pd Nanodendrites/ NH2-MoO2 Nanosheets | HBsAg | Electrochemical | 3.3 fg/mL | 10–100 ng/mL | [53] |
| Technology | Analytical LoD Level | Throughput (per Run) | Per-Test Cost | Sample Requirements | Operational Complexity | Suitability for Blood Centers |
|---|---|---|---|---|---|---|
| ddPCR | ~1–10 IU/mL-level | Low [36] | High | Extracted plasma/serum DNA | High—requires specialized equipment and trained personnel | High |
| CRISPR-Cas system | Single-copy/µL or aM–fM | Low–medium | Low | Extracted plasma/serum DNA with isothermal amplification | Moderate—multi-step workflows but amenable to integration into cartridges | High |
| TGS | ~102–103 copies/mL | High | High | Extracted plasma/serum DNA with complex library preparation | Very high—requires specialized platforms and bioinformatics | Low |
| Nanomaterial-based assays | Antigen: fg–pg/mL DNA: fM–pM or ~102–103 copies/mL | Low–medium | High | Serum/plasma | Moderate—often requires careful surface chemistry and calibration | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, M.; Hu, Y.; Fan, B.; Pan, Y.; Pan, B.; Wang, J.; Liu, Z. Advances in Novel Detection Technologies for Occult Hepatitis B Virus Infection: Building an Ultra-Sensitive Barrier for Transfusion Safety. Microorganisms 2025, 13, 2821. https://doi.org/10.3390/microorganisms13122821
Yi M, Hu Y, Fan B, Pan Y, Pan B, Wang J, Liu Z. Advances in Novel Detection Technologies for Occult Hepatitis B Virus Infection: Building an Ultra-Sensitive Barrier for Transfusion Safety. Microorganisms. 2025; 13(12):2821. https://doi.org/10.3390/microorganisms13122821
Chicago/Turabian StyleYi, Meng, Yuwei Hu, Bin Fan, Yiming Pan, Bo Pan, Jue Wang, and Zhong Liu. 2025. "Advances in Novel Detection Technologies for Occult Hepatitis B Virus Infection: Building an Ultra-Sensitive Barrier for Transfusion Safety" Microorganisms 13, no. 12: 2821. https://doi.org/10.3390/microorganisms13122821
APA StyleYi, M., Hu, Y., Fan, B., Pan, Y., Pan, B., Wang, J., & Liu, Z. (2025). Advances in Novel Detection Technologies for Occult Hepatitis B Virus Infection: Building an Ultra-Sensitive Barrier for Transfusion Safety. Microorganisms, 13(12), 2821. https://doi.org/10.3390/microorganisms13122821

