Halophilic Fungi—Features and Potential Applications
Abstract
:1. Introduction
2. Biodiversity and Taxonomy of Fungi in Saline Habitats
3. Halophilic Fungi and Their Adaptation Mechanisms to High Salt Concentrations
4. Applications of Halophilic Filamentous Fungi
4.1. In Biotechnology
4.2. In Bioremediation
4.3. Biofuel Production
4.4. In Medicine
4.5. In the Pharmaceutical Industry
4.6. Antimicrobial Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oren, A. Industrial and environmental applications of halophilic microorganisms. Environ. Technol. 2010, 31, 825–834. [Google Scholar] [CrossRef]
- Corral, P.; Amoozegar, M.A.; Ventosa, A. Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Mar. Drugs 2020, 18, 33. [Google Scholar] [CrossRef] [PubMed]
- Dutta, B.; Bandopadhyay, R. Biotechnological potentials of halophilic microorganisms and their impact on mankind. BJBAS 2022, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Oren, A. Novel insights into the diversity of halophilic microorganisms and their functioning in hypersaline ecosystems. npj Biodivers. 2024, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Gunde-Cimerman, N.; Zalar, P.; de Hoog, S.; Plemenitaš, A. Hypersaline waters in salterns—Natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 2000, 32, 235–240. [Google Scholar]
- Gunde-Cimerman, N.; Zalar, P. Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol. Biotech. 2014, 52, 170–179. [Google Scholar]
- Ali, I.; Akbar, A.; Yanwisetpakdee, B.; Prasongsuk, S.; Lotrakul, P.; Punnapayak, H. Purification, characterization, and potential of saline waste water remediation of a polyextremophilic α-amylase from an obligate halophilic Aspergillus gracilis. Biomed Res. Int. 2014, 2024, 106937. [Google Scholar]
- Śliżewska, W.; Struszczyk-Świta, K.; Marchut-Mikołajczyk, O. Metabolic potential of halophilic filamentous fungi—Current perspective. Int. J. Mol. Sci. 2022, 23, 4189. [Google Scholar] [CrossRef] [PubMed]
- Iscen, C.F.; Gül, Ü.D.; Yavuz, A.A.; İlhan, S. Decolorization of dye solution containing Remazol Black B by Aspergillus niger isolated from hypersaline environment. Int. J. Environ. Sci. Technol. 2022, 19, 12497–12504. [Google Scholar] [CrossRef]
- Turk, M.; Plemenitaš, A.; Gunde-Cimerman, N. Extremophilic yeasts: Plasma-membrane fluidity as determinant of stress tolerance. Fungal Boil. 2011, 115, 950–958. [Google Scholar] [CrossRef]
- Buchalo, A.S.; Nevo, E.; Wasser, S.P.; Oren, A.; Molitoris, H.P. Fungal life in the extremely hypersaline water of the Dead Sea: First records. Proc. R. Soc. London. Ser. B Biol. Sci. 1998, 265, 1461–1465. [Google Scholar] [CrossRef]
- Kis-Papo, T.; Oren, A.; Wasser, S.P.; Nevo, E. Survival of filamentous fungi in hypersaline Dead Sea water. Microb. Ecol. 2003, 45, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Gunde-Cimerman, N.; Butinar, L.; Sonjak, S.; Turk, M.; Uršič, V.; Zalar, P.; Plemenitaš, A. Halotolerant and halophilic fungi from coastal environment in the Arctics. In Adaptation to Life at High Salt Concentrations in Arcahea, Bacteria and Eucarya; Gunde-Cimerman, N., Oren, A., Plemenitaš, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 397–423. [Google Scholar]
- Kopytina, N.I. Fungi of the Black Sea basin: Directions and perspectives of research. Mar. Biol. 2019, 4, 15–33. [Google Scholar]
- Nayak, S.S.; Gonsalves, V.; Nazareth, S.W. Isolation and salt tolerance of halophilic fungi from mangroves and solar salterns in Goa, India. Int. J. Mol. Sci. 2012, 41, 164–172. [Google Scholar]
- Ali, F.S.; Akbar, A.; Prasongsuk, S.; Permpornsakul, P.; Yanwisetpakdee, B.; Lotrakul, P.; Punnapayak, H.; Asrar, M.; Ali, I. Penicillium imranianum, a new species from the manmade solar saltern of Phetchaburi province. Thail. Pak. J. Bot. 2018, 50, 2055–2058. [Google Scholar]
- Gostinčar, C.; Lenassi, M.; Gunde-Cimerman, N.; Plemenitaš, A. Fungal adaptation to extremely high salt concentrations. Adv. Appl. Microbiol. 2011, 77, 71–96. [Google Scholar] [PubMed]
- Calabon, M.S.; Jones, E.G.; Promputtha, I.; Hyde, K.D. Fungal biodiversity in salt marsh ecosystems. J. Fungi 2021, 7, 648. [Google Scholar]
- Agrawal, S.; Chavan, P.; Dufossé, L. Hidden Treasure: Halophilic Fungi as a Repository of Bioactive Lead Compounds. J. Fungi 2024, 10, 290. [Google Scholar] [CrossRef] [PubMed]
- Wingfield, L.K.; Jitprasitporn, N.; Che-Alee, N. Isolation and characterization of halophilic and halotolerant fungi from man-made solar salterns in Pattani Province, Thailand. PLoS ONE 2023, 18, e0281623. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.N.; Kaur, T.; Kour, D.; Rana, K.L.; Yadav, N.; Rastegari, A.A.; Saxena, A.K. Saline microbiome: Biodiversity, ecological significance, and potential role in amelioration of salt stress. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 283–309. [Google Scholar]
- Ali, I.; Khaliq, S.; Sajid, S.; Akbar, A. Biotechnological applications of halophilic fungi: Past, present, and future. In Fungi in Extreme Environments: Ecological Role and Biotechnological Significance; Springer: Cham, Switzerland, 2019; pp. 291–306. [Google Scholar]
- Gunde-Cimerman, N.; Plemenitaš, A.; Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microb. Rev. 2018, 42, 353–375. [Google Scholar] [CrossRef]
- Hmad, I.B.; Boudabbous, M.; Belghith, H.; Gargouri, A. A novel ionic liquid-stable halophilic endoglucanase from Stachybotrys microspora. Proc. Biochem. 2017, 54, 59–66. [Google Scholar] [CrossRef]
- Hmad, I.B.; Gargouri, A. Ionic liquid-tolerant cellulase system of Stachybotrys microspora exploited in the in situ saccharification of lignocellulosic biomass. J. Mol. Liq. 2020, 310, 113167. [Google Scholar] [CrossRef]
- Butinar, L.; Sonjak, S.; Zalar, P.; Plemenitaš, A.; Gunde-Cimerman, N. Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot. Mar. 2005, 48, 73–79. [Google Scholar] [CrossRef]
- Musa, H.; Kasim, F.H.; Gunny, A.A.N.; Gopinath, S.C. Salt-adapted moulds and yeasts: Potentials in industrial and environmental biotechnology. Proc. Biochem. 2018, 69, 33–44. [Google Scholar] [CrossRef]
- Leitão, A.L.; Enguita, F.J. Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress. Microbiol. Res. 2016, 183, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Zalar, P.; de Hoog, G.; Schroers, H.J.; Frank, J.M.; Gunde-Cimerman, N. Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov). Antonie Van Leeuwenhoek 2005, 87, 311–328. [Google Scholar] [CrossRef]
- Gunde-Cimerman, N.; Ramos, J.; Plemenitaš, A. Halotolerant and halophilic fungi. Mycol. Res. 2009, 113, 1231–1241. [Google Scholar] [CrossRef]
- El-Meleigy, M.A.; Hoseiny, E.N.; Ahmed, S.A.; Al-Hoseiny, A.M. Isolation, identification, morphogenesis and ultrastructure of obligate halophilic fungi. J. Appl. Sci. Environ. Sanit. 2010, 5, 189–200. [Google Scholar]
- Nazareth, S.; Gonsalves, V.; Nayak, S. A first record of obligate halophilic aspergilli from the Dead Sea. Indian J. Microbial. 2012, 52, 22–27. [Google Scholar] [CrossRef]
- Molitoris, H.P.; Buchalo, A.S.; Kurchenko, I.; Nevo, E.; Rawal, B.S.; Wasser, S.P.; Oren, A. Physiological diversity of the first filamentous fungi isolated from the hypersaline Dead Sea. Fungal Divers. 2000, 5, 55–70. [Google Scholar]
- Nazareth, S.; Gonsalves, V. Aspergillus penicillioides—A true halophile existing in hypersaline and polyhaline econiches. Ann. Microbiol. 2014, 64, 397–402. [Google Scholar] [CrossRef]
- Zhao, B.; Al Rasheed, H.; Ali, I.; Hu, S. Efficient enzymatic saccharification of alkaline and ionic liquid-pretreated bamboo by highly active extremozymes produced by the co-culture of two halophilic fungi. Bioresour. Technol. 2021, 319, 124115. [Google Scholar] [CrossRef]
- Nicoletti, R.; Salvatore, M.M.; Andolfi, A. Secondary metabolites of mangrove-associated strains of Talaromyces. Mar. Drugs 2018, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.; Yu, W.-J.; Lim, J.-Y.; Kang, N.-S.; Kwon, Y.-M.; Choi, G.; Bae, S.-S.; Cho, K.; Lee, D.-S. Characterization of the proteolytic activity of a halophilic Aspergillus reticulatus strain SK1-1 isolated from a solar saltern. Microorganisms 2021, 10, 29. [Google Scholar] [CrossRef]
- Niu, S.; Fan, Z.W.; Xie, C.L.; Liu, Q.; Luo, Z.H.; Liu, G.M.; Yang, X.W. Spirograterpene A, a tetracyclic spiro-diterpene with a fused 5/5/5/5 ring system from the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475. J. Nat. Prod. 2017, 80, 2174–2177. [Google Scholar] [CrossRef]
- Vitale, G.A.; Coppola, D.; Palma Esposito, F.; Buonocore, C.; Ausuri, J.; Tortorella, E.; de Pascale, D. Antioxidant molecules from marine fungi: Methodologies and perspectives. Antioxidants 2020, 9, 1183. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Li, S.; Wang, Q.; Hu, C.; Liu, H.; Zhang, W. Bioactive metabolites from the deep-sea-derived fungus Diaporthe longicolla FS429. Mar. Drugs 2020, 18, 381. [Google Scholar] [CrossRef]
- Xu, J.L.; Liu, H.X.; Chen, Y.C.; Tan, H.B.; Guo, H.; Xu, L.Q.; Li, S.N.; Huang, Z.L.; Li, H.H.; Gao, X.X.; et al. Highly substituted benzophenone aldehydes and eremophilane derivatives from the deep-sea derived fungus Phomopsis lithocarpus FS508. Mar. Drugs 2018, 16, 329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, W.; He, X.; Che, Q.; Zhu, T.; Gu, Q.; Li, D. Peniphenylanes A-G from the deep-sea-derived fungus Penicillium fellutanum HDN14-323. Planta Med. 2016, 82, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, R.; Luo, Z.; Wang, W. Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor. Nat. Prod. Res. 2017, 32, 558–563. [Google Scholar] [CrossRef]
- Niu, S.; Liu, D.; Shao, Z.; Proksch, P.; Lin, W. Eutypellazines A–M, thiodiketopiperazine-type alkaloids from deep sea derived fungus Eutypella sp. MCCC 3A00281. RSC Adv. 2017, 7, 33580–33590. [Google Scholar] [CrossRef]
- Nout, M.J.R. Useful role of fungi in food processing. In Introduction to Food-Borne Fungi; Centraal Bureau voor Schimmelcultures: Utrecht, The Netherlands, 2000; pp. 364–374. [Google Scholar]
- Hmad, I.B.; Gargouri, A. Halophilic filamentous fungi and their enzymes: Potential biotechnological applications. J. Biotechnol. 2024, 381, 11–18. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef]
- Dixit, R.; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; Lade, H. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 2015, 7, 2189–2212. [Google Scholar] [CrossRef]
- Su, C.; Jiang, L.Q.; Zhang, W.J. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ. Skept. Crit. 2014, 3, 24–38. [Google Scholar]
- Hernández, J.A.; Jiménez, A.; Mullineaux, P.; Sevilia, F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ. 2000, 23, 853–862. [Google Scholar] [CrossRef]
- Jain, S.; Choudhary, D.K.; Varma, A. Ecological perspectives of halophilic fungi and their role in bioremediation. In Soil Bioremediation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 175–192. [Google Scholar]
- Batista-García, R.A.; Sutton, T.; Jackson, S.A.; Tovar-Herrera, O.E.; Balcázar-López, E.; Sánchez-Carbente, M.D.R.; Sánchez-Reyes, A.; Dobson, A.D.W.; Folch-Mallol, J.L. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS ONE 2017, 12, e0173750. [Google Scholar] [CrossRef]
- Petrovič, U. Role of oxidative stress in the extremely salt-tolerant yeast Hortaea werneckii. FEMS Yeast Res. 2006, 6, 816–822. [Google Scholar] [CrossRef]
- Pérez-Llano, Y.; Rodríguez-Pupo, E.C.; Druzhinina, I.S.; Chenthamara, K.; Cai, F.; Gunde-Cimerman, N.; Sánchez-Carbente, M.D.R. Stress reshapes the physiological response of halophile fungi to salinity. Cells 2020, 9, 525. [Google Scholar] [CrossRef]
- Fernando, L.D.; Pérez-Llano, Y.; Dickwella Widanage, M.C.; Jacob, A.; Martínez-Ávila, L.; Lipton, A.S.; Wang, T. Structural adaptation of fungal cell wall in hypersaline environment. Nat. Commun. 2023, 14, 7082. [Google Scholar] [CrossRef] [PubMed]
- Turk, M.; Montiel, V.; Žigon, D.; Plemenitaš, A.; Ramos, J. Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity. Microbiology 2007, 153, 3586–3592. [Google Scholar] [CrossRef]
- Plemenitaš, A.; Lenassi, M.; Konte, T.; Kejžar, A.; Zajc, J.; Gostinčar, C.; Gunde-Cimerman, N. Adaptation to high salt concentrations in halotolerant/halophilic fungi: A molecular perspective. Front. Microbiol. 2014, 5, 199. [Google Scholar] [CrossRef]
- Vaupotič, T.; Plemenitaš, A. Differential gene expression and Hog1 interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii. BMC Genom. 2007, 8, 280. [Google Scholar] [CrossRef]
- Konte, T.; Plemenitaš, A. The HOG signal transduction pathway in the halophilic fungus Wallemia ichthyophaga: Identification and characterization of MAP kinases WiHog1A and WiHog1B. Extremophiles 2013, 17, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Liu, K.; Lu, Y.; Gong, G. Morphological, transcriptional, and metabolic analyses of osmotic-adapted mechanisms of the halophilic Aspergillus montevidensis ZYD4 under hypersaline conditions. Appl. Microbiol. Biotechnol. 2019, 103, 3829–3846. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Condrich, A.; Lu, L.; Scranton, S.; Hebner, C.; Sheykhhasan, M.; Ali, M.A. Genetic Engineering in Bacteria, Fungi, and Oomycetes, Taking Advantage of CRISPR. DNA 2024, 4, 427–454. [Google Scholar] [CrossRef]
- Wang, D.; Jin, S.; Lu, Q.; Chen, Y. Advances and challenges in CRISPR/Cas-based fungal genome engineering for secondary metabolite production: A review. J. Fungi 2023, 9, 362. [Google Scholar] [CrossRef]
- Michaliski, L.F.; Ióca, L.P.; Oliveira, L.S.; Crnkovic, C.M.; Takaki, M.; Freire, V.F.; Berlinck, R.G.S. Improvement of Targeted Fungi Secondary Metabolite Production Using a Systematic Experimental Design and Chemometrics Analysis. Methods Protoc. 2023, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Lin, A.; Zhang, G.; Zhang, J.; Chen, Y.; Shen, T.; Zhao, J.; Wei, D.; Wang, W. Enhancement of Cellulase Production in Trichoderma Reesei RUT-C30 by Comparative Genomic Screening. Microb. Cell Factories 2019, 18, 81. [Google Scholar] [CrossRef]
- Maini Rekdal, V.; van der Luijt, C.R.B.; Chen, Y.; Kakumanu, R.; Baidoo, E.E.K.; Petzold, C.J.; Cruz-Morales, P.; Keasling, J.D. Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit. Nat. Commun. 2024, 15, 2099. [Google Scholar] [CrossRef]
- Blomberg, A.; Adler, L. Physiology of osmotolerance in fungi. Adv. Microb. Physiol. 1992, 33, 145–212. [Google Scholar]
- Hohmann, S.; Krantz, M.; Nordlander, B. Yeast osmoregulation. Method Enzymol. 2007, 428, 29–45. [Google Scholar]
- Saito, H.; Posas, F. Response to Hyperosmotic Stress. Genetics 2012, 192, 289–318. [Google Scholar] [CrossRef]
- Zajc, J.; Liu, Y.; Dai, W.; Yang, Z.; Hu, J.; Gostincar, C.; Gunde-Cimerman, N. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: Haloadaptations present and absent. BMC Genom. 2013, 14, 617. [Google Scholar] [CrossRef] [PubMed]
- Plemenitaš, A. Sensing and responding to hypersaline conditions and the HOG signal transduction pathway in fungi isolated from hypersaline environments: Hortaea werneckii and Wallemia ichthyophaga. J. Fungi 2021, 7, 988. [Google Scholar] [CrossRef] [PubMed]
- Tomanek, L. Proteomic responses to environmentally induced oxidative stress. J. Exp. Biol. 2015, 218, 1867–1879. [Google Scholar] [CrossRef]
- Geoffry, K.; Achur, R.N. A novel halophilic extracellular lipase with both hydrolytic and synthetic activities. Biocat. Agricul. Biotechnol. 2017, 12, 125–130. [Google Scholar] [CrossRef]
- Senba, H.; Nishikawa, A.; Kimura, Y.; Tanaka, S.; Matsumoto, J.I.; Doi, M.; Takenaka, S. Improvement in salt-tolerance of Aspergillus oryzae gamma-glutamyl transpeptidase via protein chimerization with Aspergillus sydowii homolog. Enzym. Microb. Technol. 2023, 167, 110240. [Google Scholar] [CrossRef]
- Zheng, F.; Zhang, H.; Wang, J.; Chen, J.; Zhuang, H.; Basit, A. Expression and characterization of a novel halophilic GH10 β-1, 4-xylanase from Trichoderma asperellum ND-1 and its synergism with a commercial α-L-arabinofuranosidase on arabinoxylan degradation. Int. J. Biol. Macromol. 2024, 282, 136885. [Google Scholar] [CrossRef]
- Dhanavade, M.J.; Patil, P.J. Yeast and fungal mediated degradation of synthetic dyes. In Current Developments in Bioengineering and Biotechnology; Elsevier: Amsterdam, The Netherlands, 2023; pp. 371–409. [Google Scholar]
- Negi, B.B.; Das, C. Mycoremediation of wastewater, challenges, and current status: A review. Bioresour. Technol. Rep. 2023, 22, 101409. [Google Scholar] [CrossRef]
- Sankaran, S.; Khanal, S.K.; Jasti, N.; Jin, B.; Pometto, A.L., III; Van Leeuwen, J.H. Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: A review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 400–449. [Google Scholar] [CrossRef]
- Sar, T.; Marchlewicz, A.; Harirchi, S.; Mantzouridou, F.T.; Hosoglu, M.I.; Akbas, M.Y.; Hellwig, C.; Taherzadeh, M.J. Resource recovery and treatment of wastewaters using filamentous fungi. Sci. Total Environ. 2024, 951, 175752. [Google Scholar] [CrossRef]
- Bano, A.; Hussain, J.; Akbar, A.; Mehmood, K.; Anwar, M.; Hasni, M.S.; Ali, I. Biosorption of heavy metals by obligate halophilic fungi. Chemosphere 2018, 199, 218–222. [Google Scholar] [CrossRef]
- González-Abradelo, D.; Pérez-Llano, Y.; Peidro-Guzmán, H.; del Rayo Sánchez-Carbente, M.; Folch-Mallol, J.L.; Aranda, E.; Batista-García, R.A. First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions. Bioresour. Technol. 2019, 279, 287–296. [Google Scholar] [CrossRef]
- Aydogan, M.N.; Arslan, N.P. Removal of textile dye reactive black 5 by the cold-adapted, alkali-and halotolerant fungus Aspergillus flavipes MA-25 under non-sterile conditions. Desalin. Water Treat. 2015, 56, 2258–2266. [Google Scholar] [CrossRef]
- Sharma, B.; Tiwari, S.; Bisht, S.; Bhrdwaj, A.; Nayarisseri, A.; Tewari, L. Coupling effect of ionophore and oxidoreductases produced by halotolerant novel fungal strain Trametes flavida WTFP2 on dye wastewater treatment: An optimized green bioprocess. J. Environ. Chem. Eng. 2023, 11, 109629. [Google Scholar] [CrossRef]
- Liu, S.H.; Zeng, G.M.; Niu, Q.Y.; Liu, Y.; Zhou, L.; Jiang, L.H.; Tan, X.F.; Xu, P.; Zhang, C.; Cheng, M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresour. Technol. 2017, 224, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Farag, A.M.; Abd-Elnaby, H.A. Degradation of phenol by a new-degradable marine halophilic fungus Fennellia flavipes isolated from mangrove sediments. Life Sci. J. 2014, 11, 837–845. [Google Scholar]
- Leitão, A.L.; Duarte, M.P.; Santos Oliveira, J. Degradation of phenol by a halotolerant strain of Penicillium chrysogenum. Int. Biodeter. Biodegrad. 2007, 59, 220–225. [Google Scholar] [CrossRef]
- Jiang, Y.; Shang, Y.; Yang, K.; Wang, H. Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals. Appl. Microbiol. Biotechnol. 2016, 100, 1883–1890. [Google Scholar] [CrossRef]
- Crognale, S.; Pesciaroli, L.; Petruccioli, M.; D’Annibale, A. Phenoloxidase-producing halotolerant fungi from olive brine wastewater. Process Biochem. 2012, 47, 1433–1437. [Google Scholar] [CrossRef]
- Zabermawi, N.; Alsulaimany, F.; El-Saadony, M.T.; El-Tarabily, K.A. New eco-friendly trends to produce biofuel and bioenergy from microorganisms: An updated review. Saudi J. Biol. Sci. 2022; in press. [Google Scholar] [CrossRef]
- Hwang, J.H.; Church, J.; Lee, S.J.; Park, J.; Lee, W.H. Use of microalgae for advanced wastewater treatment and sustainable bioenergy generation. Environ. Eng. Sci. 2016, 33, 882–897. [Google Scholar] [CrossRef]
- Janda, K.; Kristoufek, L.; Zilberman, D. Biofuels policies and impacts. Agric. Econ.—Czech 2012, 58, 372–386. [Google Scholar] [CrossRef]
- Madhu, K.M.; Beena, P.S.; Chandrasekaran, M. Extracellular β-glucosidase production by a marine Aspergillus sydowii BTMFS 55 under solid state fermentation using statistical experimental design. Biotechnol. Bioprocess Eng. 2009, 14, 457–466. [Google Scholar] [CrossRef]
- Amoozegar, M.A.; Safarpour, A.; Noghabi, K.A.; Bakhtiary, T.; Ventosa, A. Halophiles and their vast potential in biofuel production. Front. Microbiol. 2019, 10, 1895. [Google Scholar] [CrossRef]
- Zhang, Z.; He, X.; Liu, C.; Che, Q.; Zhu, T.; Gu, Q.; Li, D. Clindanones A and B and cladosporols F and G, polyketides from the deep-sea-derived fungus Cladosporium cladosporioides HDN14-342. RSC Adv. 2016, 6, 76498–76504. [Google Scholar] [CrossRef]
- Gao, X.W.; Liu, H.X.; Sun, Z.H.; Chen, Y.C.; Tan, Y.Z.; Zhang, W.M. Secondary metabolites from the deep-sea derived fungus Aaromyces ingoldii FS121. Molecules 2016, 21, 371. [Google Scholar] [CrossRef]
- Pang, X.; Lin, X.; Wang, P.; Zhou, X.; Yang, B.; Wang, J.; Liu, Y. Perylenequione derivatives with anticancer activities isolated from the marine sponge-derived fungus, Alternaria sp. SCSIO41014. Mar. Drugs. 2018, 16, 280. [Google Scholar] [CrossRef]
- Ur Rehman, U.S.; Yang, L.J.; Zhang, Y.H.; Wu, J.S.; Shi, T.; Haider, W.; Shao, C.L.; Wang, C.Y. Sorbicillinoid derivatives from sponge-derived fungus Trichoderma reesei (HN-2016-018). Front. Microbiol. 2020, 11, 1334. [Google Scholar] [CrossRef]
- Kiss, A.; Hariri Akbari, F.; Marchev, A.; Papp, V.; Mirmazloum, I. The cytotoxic properties of extreme fungi’s bioactive components—An updated metabolic and omics overview. Life 2023, 13, 1623. [Google Scholar] [CrossRef]
- Sumiya, Y.; Sakaki, H.; Tsushima, M.; Miki, W.; Komemushi, S.; Sawabe, A. Culture characteristics of carotenoid-producing filamentous fungus T-1, and carotenoid production. J. Oleo Sci. 2007, 56, 649–652. [Google Scholar] [CrossRef]
- Gómez-Mestre, I.; Tejedo, M. Local adaptation of an anuran amphibian to osmotically stressful environments. Evolution 2003, 57, 1889–1899. [Google Scholar] [PubMed]
- Cantrell, S.A.; Hanlin, R.T.; Emiliano, A. Periconia variicolor sp. nov., a new species from Puerto Rico. Mycologia 2007, 99, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhu, T.; Tao, H.; Lu, Z.; Fang, Y.; Gu, Q.; Zhu, W. Two new cytotoxic quinone type compounds from the halotolerant fungus Aspergillus variecolor. J. Antibiot. 2007, 60, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.G.; Mongolla, P.; Pombala, S.; Kamle, A.; Joseph, J. Physicochemical characterization and antioxidant activity of melanin from a novel strain of Aspergillus bridgeri ICTF-201. Lett. Appl. Microbiol. 2011, 53, 350–358. [Google Scholar] [CrossRef]
- Oleksy, M.; Klewicka, E. Exopolysaccharides produced by Lactobacillus sp.: Biosynthesis and applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 450–462. [Google Scholar] [PubMed]
- El-Ghonemy, D.H. Antioxidant and antimicrobial activities of exopolysaccharides produced by a novel Aspergillus sp. DHE6 under optimized submerged fermentation condition. Biocatal. Agric. Biotechnol. 2021, 36, 102150. [Google Scholar] [CrossRef]
- Yan, M.-X.; Mao, W.-J.; Liu, X.; Wang, S.-Y.; Xia, Z.; Cao, S.-J.; Li, J.; Qin, L.; Xian, H.-L. Extracellular polysaccharide with novel structure and antioxidant property produced by the deep-sea fungus Aspergillus versicolor N2bc. Carbohydr. Polym. 2016, 147, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mao, W.; Chen, Z.; Ophthalmology, Z.; Zhu, W. Purification, structural characterization and antioxidant property of an extracellular polysaccharide from Aspergillus terreus. Process Biochem. 2013, 48, 1395–1401. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, W.; Yang, Y.; Teng, X.; Zhu, W.; Qi, X.; Li, N. Structure and antioxidant activity of an extracellular polysaccharide from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Carbohydr. Polym. 2012, 87, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Waoo, A.A.; Singh, S.; Pandey, A.; Kant, G.; Choure, K.; Amesho, K.T.T.; Srivastava, S. Microbial exopolysaccharides in the biomedical and pharmaceutical industries. Heliyon 2023, 9, e18613. [Google Scholar] [CrossRef]
- Abdel-Monem, N.; Abdel-Azeem, A.M.; El Ashry, E.; Ghareeb, D.A.; Nabil-Adam, A. Assessment of secondary metabolites from marine-derived fungi as antioxidant. Open J. Med. Chem. 2013, 3, 60–73. [Google Scholar] [CrossRef]
- Li, H.L.; Li, X.M.; Mándi, A.; Antus, S.; Li, X.; Zhang, P.; Liu, Y.; Kurtán, T.; Wang, B.G. Characterization of cladosporols from the marine algal-derived endophytic fungus Cladosporium cladosporioides en-399 and configurational revision of the previously reported cladosporol derivatives. J. Org. Chem. 2017, 82, 9946–9954. [Google Scholar] [CrossRef] [PubMed]
- Sepčić, K.; Zalar, P.; Gunde-Cimerman, N. Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi. Mar. Drugs 2011, 9, 59–70. [Google Scholar]
- Panchal, S.; Murali, T.S.; Suryanarayanan, T.S.; Sanyal, K. Hypersaline fungi as a source of potentially active metabolites against pathogenic Candida species. Czech Mycol. 2022, 74, 93–101. [Google Scholar] [CrossRef]
- Peters, L.; Olson, L.; Khu, D.T.K.; Linnros, S.; Le, N.K.; Hanberger, H.; Hoang, N.T.B.; Tran, D.M.; Larsson, M. Multiple antibiotic resistance as a risk factor for mortality and prolonged hospital stay: A cohort study among neonatal intensive care patients with hospital-acquired infections caused by gram-negative bacteria in Vietnam. PLoS ONE 2019, 14, e0215666. [Google Scholar] [CrossRef] [PubMed]
- Santhaseelan, H.; Dinakaran, V.T.; Dahms, H.-U.; Ahamed, J.M.; Murugaiah, S.G.; Krishnan, M.; Hwang, J.-S.; Rathinam, A.J. Recent antimicrobial responses of halophilic microbes in clinical pathogens. Microorganisms 2022, 10, 417. [Google Scholar] [CrossRef]
- Ibrar, M.; Ullah, M.W.; Manan, S.; Farooq, U.; Rafiq, M.; Hasan, F. Fungi from the extremes of life: An untapped treasure for bioactive compounds. Appl. Microbiol. Biotechnol. 2020, 104, 2777–2801. [Google Scholar] [CrossRef]
- Elhosainy, A.M. Evaluation of Some Biological Activities of Phialosimplex asmahalo. Egypt Acad. J. Biol. Sci. (G. Microbiol.) 2020, 12, 9–19. [Google Scholar] [CrossRef]
- Gonçalves, M.F.; Paço, A.; Escada, L.F.; Albuquerque, M.S.; Pinto, C.A.; Saraiva, J.A. Unveiling biological activities of marine fungi: The effect of sea salt. Appl. Sci. 2021, 11, 6008. [Google Scholar] [CrossRef]
- Zhao, D.L.; Wang, D.; Tian, X.Y.; Cao, F.; Li, Y.Q.; Zhang, C.S. Anti-phytopathogenic and cytotoxic activities of crude extracts and secondary metabolites of marine-derived fungi. Mar. Drugs 2018, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.H.; Kim, Y.R.; Park, H.S.; Oh, K.M.; Cho, Y.L.; Kwak, J.H. Antibacterial activity of LCB10-0200 against Klebsiella pneumoniae. Antibiotics 2021, 10, 1185. [Google Scholar] [CrossRef]
- Ballav, S.; Kerkar, S.; Thomas, S.; Augustine, N. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. J. Biosci. Bioeng. 2015, 119, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Giddings, L.A.; Newman, D.J. Extremophilic Fungi from Marine Environments: Underexplored Sources of Antitumor, Anti-Infective and Other Biologically Active Agents. Mar. Drugs. 2022, 20, 62. [Google Scholar] [CrossRef]
- Corral, P.; Esposito, F.P.; Tedesco, P.; Falco, A.; Tortorella, E.; Tartaglione, L.; de Pascale, D. Identification of a sorbicillinoid-producing Aspergillus strain with antimicrobial activity against Staphylococcus aureus: A new polyextremophilic marine fungus from Barents Sea. Mar. Biotechnol. 2018, 20, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Zhai, H.; Zhu, K.; Yu, J.H.; Zhang, Y.; Wang, Y.; Jiang, C.S.; Zhang, X.; Zhang, Y.; Zhang, H. Bioactive pyridone alkaloids from a deep-sea-derived fungus Arthrinium sp. UJNMF0008. Mar. Drugs 2018, 16, 174. [Google Scholar] [CrossRef]
- Resende, D.I.S.P.; Boonpothong, P.; Sousa, E.; Kijjoa, A. Chemistry of the fumiquinazolines and structurally related alkaloids. Nat. Prod. Rep. 2019, 36, 7–34. [Google Scholar] [CrossRef]
- Frisvad, J.C. Halotolerant and halophilic fungi and their extrolite production. In Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya; Gunde-Cimerman, N., Oren, A., Plemenitaš, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 425–439. [Google Scholar]
Halophilic Fungal Strain | Source of Isolation | References |
---|---|---|
Dead Sea | Gymnascella marismortuispecies, Penicillium westlingii and Ulocladium chlamydosporum Penicillium westlingii and G. marismortui | [11,12,32,33,34] |
Man-made solar saltern | Penicillium imranianum | [16] |
Solar salt marshes | Penicillium imranianum | [4,15,16] |
Solar salt plant | A. gracilis TISTR 3638 A. flavus (TISTR 3637) | [6,35] |
Estuaries and salt lakes | Genera Aspergillus and Penicillium | [14] |
Mangroves | Talaromyces Genera Aspergillus and Penicillium | [15,36] |
Saltern in the Republic of Korea | Aspergillus reticulatus SK1-1 | [37] |
Marine fungi | Ascocratera manglicola, Astrosphaeriella striatispora, Cryptovalsa halosarceicola, Linocarpon bipolaris and Rhizophila marina, Eutypella sp. MCCC Epicoccum nigrum JJY40, Gymnascella dankaliensis, Nigrospora oryzae and Chaetomium globosum | [33,38,39] |
Deep-sea | Diaporthe longicolla FS429 Phomopsis lithocarpus FS508 Penicillium fellutanum HDN14-323 Engyodontium album DFFSCS02 | [40,41,42,43] |
Antarctic sediment | Penicillium granulatum MCCC 3A00475 | [44] |
Level of Adaptation | Adaptations | References |
---|---|---|
Cellular | Cell wall thickening and change in lipid composition | [49] |
Presence of pigments (melanins and carotenoids) | [50,51,52] | |
Biosynthesis of crystalline chitin and α-glucan branching | [55] | |
ENA ATPase, a plasma membrane protein, as one of the mechanisms of salt extrusion or Na+/K+ transport. | [7] | |
Maintaining a low sterol to phospholipid ratio and reducing fatty acid cycle length and phospholipid saturation | [56] | |
Production of hydrophobins. In addition, these proteins strengthen the cell wall and make it more rigid for halo adaptation | [45] | |
Genetic | A set of genes encoding stress response proteins (heat shock proteins and chaperonins) and the expression of a glycerol synthesis enzyme, Gpd1, which is under the control of the high-osmolar glycerol (HOG) signaling pathway. | [45,57] |
Enzymatic and metabolic pathways | Secretion of extracellular polysaccharides that can serve as protective agents in the presence of high salt concentrations and during desiccation | [69] |
Exclusion of salts | ||
Synthesizing or accumulating compatible organic solutions, such as glycerol | [3,57] | |
Antioxidant enzyme activity | [60] |
Salt-Adapted Filamentous Fungi | Active Sybstances | Application | References |
---|---|---|---|
Phialosimplex asmahalo | Isolated compound 3 and compound 6 | Antiviral activity against Hepatitis A virus, Herpes Simplex type 1 | [114,115] |
Halophilic and halotolerant marine fungi (non identified) | Alterperylenol, anthraquinone derivatives, (11S)-1, 3, 6-trihydroxy-7-(1-hydroxyethyl) anthracene-9,10-dione, 7-acetyl-1, 3, 6-trihydroxyanthracene-9,10-ddione, stemphyperylenolect | Antimicrobial and anticancer properties | [116,117] |
A. affinis, E. cladophorae, Pen. lusitanum, and T. aestuarinum) | Antibacterial compounds | Antibacterial activity | [116] |
A. affinis, Pen. lusitanum | Antibacterial compounds | Antibacterial activity (against K. pneumoniae and P. aeruginosa) | [116,118] |
Micromonospora sp., Kocuria sp., and Actinomycetes sp. | Antibacterial compounds | Antibacterial activity (against Vibrio cholera, Staphylococcus aureus, and Staphylococcus citreus) | [119] |
A. versicolor | 2-(dimethoxymethyl)-1-hydroxyanthracene-9,10-dione | Antibacterial activity (against S. aureus ATCC 43300, Vibrio sp.) | [43] |
Pen. lusitanum | Dried crude extracts from the mycelia | Inhibitory effect on C. albicans | [116] |
A. affinis | Dried crude extracts from the mycelia | Inhibitory effect on E.coli | [116] |
A. protuberus | Antibacterial compounds | Antimicrobial activity against S. aureus, K. pneumoniae, B. metallica, and A. baumanii | [120] |
Engyodontium album | Engyodontiumin A | Antifungal and antibacterial activity | [121] |
Arthrinium sp. | Different compounds including arthpyrone B, apiosporamide, isomer of apiosporamide | Antibacterial activity against Mycobacterium smegmatis and S. aureus, E. coli, P. aeruginosa and C. albicans | [122,123] |
A. fumigatus | Fumiquinazolines A–G | Antifungal activity | [123] |
P. citrinum NM-3 and A. subalbidus strains | Antibacterial compounds | Antibacterial activity against Gram-positive and Gram-negative bacteria | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yovchevska, L.; Gocheva, Y.; Stoyancheva, G.; Miteva-Staleva, J.; Dishliyska, V.; Abrashev, R.; Stamenova, T.; Angelova, M.; Krumova, E. Halophilic Fungi—Features and Potential Applications. Microorganisms 2025, 13, 175. https://doi.org/10.3390/microorganisms13010175
Yovchevska L, Gocheva Y, Stoyancheva G, Miteva-Staleva J, Dishliyska V, Abrashev R, Stamenova T, Angelova M, Krumova E. Halophilic Fungi—Features and Potential Applications. Microorganisms. 2025; 13(1):175. https://doi.org/10.3390/microorganisms13010175
Chicago/Turabian StyleYovchevska, Lyudmila, Yana Gocheva, Galina Stoyancheva, Jeny Miteva-Staleva, Vladislava Dishliyska, Radoslav Abrashev, Tsvetomira Stamenova, Maria Angelova, and Ekaterina Krumova. 2025. "Halophilic Fungi—Features and Potential Applications" Microorganisms 13, no. 1: 175. https://doi.org/10.3390/microorganisms13010175
APA StyleYovchevska, L., Gocheva, Y., Stoyancheva, G., Miteva-Staleva, J., Dishliyska, V., Abrashev, R., Stamenova, T., Angelova, M., & Krumova, E. (2025). Halophilic Fungi—Features and Potential Applications. Microorganisms, 13(1), 175. https://doi.org/10.3390/microorganisms13010175