Scientometrics Evaluation of Published Scientific Papers on the Use of Proteomics Technologies in Mastitis Research in Ruminants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Procedure
2.2. Paper Evaluation
- Year of publication of paper.
- Country and scientific establishment (university or other institution) of origin of the paper (the country(ies) and the establishment(s) only of the first/last authors were taken into account). If multiple authors were listed as first or last authors in the papers, they were all considered.
- Type of paper: (i) original article or (ii) review. For original articles, the following details were further recorded:
- ▪
- Mammalian species involved in the study described.
- ▪
- Mastitis aspect(s) described therein: (i) aetiology, (ii) pathogenesis, (iii) diagnosis, (iv) treatment.
- ▪
- Type of study described therein: (i) experimental work (i.e., challenge-associated), (ii) field work or (iii) laboratory work.
- ▪
- Material assessed by means of the proteomics technologies employed in the study described; this included (i) blood, (ii) mammary tissue(s), (iii) milk, (iv) milk fat globule, (v) saliva or (vi) pathogen(s).
- ▪
- Methodological approaches for proteomics analyses employed in the study described.
- ▪
- Use of additional -omics technologies in the study described.
- Journal in which paper was published.
- Number of literature references included in the relevant list.
- Number and names of all co-authors in paper.
- Total number of citations received by the paper until the end of 2023.
- Accessibility of paper, i.e., whether there was open or subscription-only access to the paper.
2.3. Data Management and Analysis
3. Results
3.1. Year of Publication of Papers
3.2. Origin of Papers
3.3. Content of Papers
3.3.1. Mammalian Species
3.3.2. Mastitis Aspect and Type of Work
3.3.3. Material Assessed
3.3.4. Proteomics Methodological Approaches
3.3.5. Additional -Omics Technologies Described in Papers
3.4. Journals in Which Papers Were Published
3.5. Authors of Papers
3.6. Accessibility of Papers
3.7. Impact of Papers
4. Discussion
4.1. Year of Publication
4.2. Countries of Origin
4.3. Mastitis Content
4.4. Proteomics Methodologies
4.5. Bibliometric Details
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia, S.N.; Osburn, B.I.; Cullor, J.S. A one health perspective on dairy production and dairy food safety. One Health 2019, 7, 100086. [Google Scholar] [CrossRef]
- Maity, S.; Ambatipudi, K. Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: A One-Health perspective. FEMS Microbiol. Ecol. 2021, 97, fiaa241. [Google Scholar] [CrossRef]
- Vasileiou, N.G.C.; Chatzopoulos, D.C.; Sarrou, S.; Fragkou, I.A.; Katsafadou, A.I.; Mavrogianni, V.S.; Petinaki, E.; Fthenakis, G.C. Role of staphylococci in mastitis in sheep. J. Dairy Res. 2019, 86, 254–266. [Google Scholar] [CrossRef]
- Fornelli, L.; Toby, T.K.; Schachner, L.F.; Doubleday, P.F.; Srzentić, K.; DeHart, C.J.; Kelleher, N.L. Top-down proteomics: Where we are, where we are going? J. Proteom. 2018, 175, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, E.I.; Billinis, C.; Galamatis, D.; Fthenakis, G.C.; Tsangaris, G.T.; Katsafadou, A.I. Applied proteomics in ‘one health’. Proteomes 2021, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Gulta, B.M.; Ahmed, K.K.M.; Gupta, R.; Tiwari, R. World camel research: A scientometric assessment, 2003–2012. Scientometrics 2015, 102, 957–975. [Google Scholar]
- Gonzalez, M.; Salgado-Arroyo, L. Análisis bibliométrico de los artículos científicos publicados en Medicina Veterinaria y Zootecnia en Colombia 2010–2019. Rev. MVZ Colomb. 2020, 25, 2114. [Google Scholar] [CrossRef]
- Vaziri, E.; Maghsoudi, A.; Feizabadi, M.; Faraji-Arough, H.; Rokouei, M. Scientometric evaluation of 100-year history of Poultry Science (1921–2020). Poult. Sci. 2022, 101, 102134. [Google Scholar] [CrossRef]
- Lianou, D.T.; Fthenakis, G.C. Scientometrics study of research output on sheep and goats from Greece. Animals 2022, 12, 2666. [Google Scholar] [CrossRef]
- Ding, W.; Li, J.L.; Ma, H.Y.; Wu, Y.R.; He, H.L. Science mapping of meta-analysis in agricultural science. Information 2023, 14, 611. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 3166-1:2020(en) Codes for the Representation of Names of Countries and Their Subdivisions—Part 1: Country Code. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:3166:-1:ed-4:v1:en (accessed on 15 January 2024).
- Lippolis, J.D.; Reinhardt, T.A. Proteomic survey of bovine neutrophils. Vet. Immunol. Immunopathol. 2005, 103, 53–65. [Google Scholar] [CrossRef]
- Reinhardt, T.A.; Lippolis, J.D. Bovine milk fat globule membrane proteome. J. Dairy Res. 2006, 73, 406–413. [Google Scholar] [CrossRef]
- Boehmer, J.L.; Bannerman, D.D.; Shefcheck, K.; Ward, J.L. Proteomic analysis of differentially expressed proteins in bovine milk during experimentally induced Escherichia coli mastitis. J. Dairy Sci. 2008, 91, 4206–5218. [Google Scholar] [CrossRef]
- Lippolis, J.D.; Bayles, D.O.; Reinhardt, T.A. Proteomic changes in Escherichia coli when Ggrown in fresh milk versus laboratory media. J. Proteome Res. 2009, 8, 149–158. [Google Scholar] [CrossRef]
- Hogarth, C.J.; Fitzpatrick, J.L.; Nolan, A.M.; Young, F.J.; Pitt, A.; Eckersall, P.D. Differential protein composition of bovine whey: A comparison of whey from healthy animals and from those with clinical mastitis. Proteomics 2004, 4, 2094–2100. [Google Scholar] [CrossRef]
- Taverna, F.; Negri, A.; Piccinini, R.; Zecconi, A.; Nonnis, S.; Ronchi, S.; Tedeschi, G. Characterization of cell wall associated proteins of a Staphylococcus aureus isolated from bovine mastitis case by a proteomic approach. Vet. Microbiol. 2007, 119, 240–247. [Google Scholar] [CrossRef]
- Smolenski, G.; Haines, S.; Kwan, F.Y.S.; Bond, J.; Farr, V.; Davis, S.R.; Stelwagen, K.; Wheeler, T.T. Characterisation of host defence proteins in milk using a proteomic approach. J. Proteome Res. 2007, 6, 207–215. [Google Scholar] [CrossRef]
- Addis, M.F.; Pisanu, S.; Ghisaura, S.; Pagnozzi, D.; Marogna, G.; Tanca, A.; Biosa, G.; Cacciotto, C.; Alberti, A.; Pittau, M.; et al. Proteomics and pathway analyses of the milk fat globule in sheep naturally infected by Mycoplasma agalactiae provide indications of the in vivo response of the mammary epithelium to bacterial infection. Infect. Immun. 2011, 79, 3833–3845. [Google Scholar] [CrossRef]
- Alonso-Fauste, I.; Andres, M.; Iturralde, M.; Lampreave, F.; Gallart, J.; Alava, M.A. Proteomic characterization by 2-DE in bovine serum and whey from healthy and mastitis affected farm animals. J. Proteom. 2012, 75, 3015–3030. [Google Scholar] [CrossRef]
- Turk, R.; Piras, C.; Kovacic, M.; Samardzija, M.; Ahmed, H.; De Canio, M.; Urbani, A.; Mestric, Z.F.; Soggiu, A.; Bonizzi, L.; et al. Proteomics of inflammatory and oxidative stress response in cows with subclinical and clinical mastitis. J. Proteom. 2012, 75, 4412–4428. [Google Scholar] [CrossRef]
- Chiaradia, E.; Valiani, A.; Tartaglia, M.; Scoppetta, F.; Renzone, G.; Arena, S.; Avellini, L.; Benda, S.; Gaiti, A.; Scaloni, A. Ovine subclinical mastitis: Proteomic analysis of whey and milk fat globules unveils putative diagnostic biomarkers in milk. J. Proteom. 2013, 83, 144–159. [Google Scholar] [CrossRef]
- Olumee-Shabon, Z.; Boehmer, J.L. Detection of casein Pphosphopeptides in goat milk. J. Proteome Res. 2013, 6, 3034–3041. [Google Scholar] [CrossRef]
- Eckersall, P.D.; Almeida, A.M.; Miller, M.D. Proteomics, a new tool for farm animal science. J. Proteom. 2012, 75, 4187–4189. [Google Scholar] [CrossRef]
- Harper, L.; Kalfa, N.; Beckers, G.M.A.; Kaefer, M.; Nieuwhof-Leppink, A.J.; Fossum, M.; Herbst, K.W.; Bagli, D. The impact of COVID-19 on research. J. Pediatr. Urol. 2020, 16, 715–716. [Google Scholar] [CrossRef]
- Saunders, B.; Sim, J.; Kingstone, T.; Baker, S.; Waterfield, J.; Bartlam, B.; Burroughs, H.; Jinks, C. Saturation in qualitative research: Exploring its conceptualization and operationalization. Qual. Quant. 2017, 52, 1893–1907. [Google Scholar] [CrossRef]
- Jiang, R.; Tortorice, D.L.; Jefferson, J.H. Restructuring China’s research institutes: Impacts on China’s research orientation and productivity. Econ. Transit. 2016, 24, 163–208. [Google Scholar] [CrossRef]
- Dai, Y.; Xu, J. Evaluating government intervention in academic entrepreneurship: An identity perspective and evidence from China. Int. J. Technol. 2023, 93, 36–63. [Google Scholar] [CrossRef]
- Pan, J.; Liu, Y.; Chen, G.; Zhang, Q. Diamond model for the transfer of world science and technology centres. J. Chin. Econ. Bus. Stud. 2019, 17, 129–145. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, N. Recent advances in drug development and regulatory science in China. Ther. Innov. Regul. Sci. 2018, 52, 739–750. [Google Scholar] [CrossRef]
- Lill, J.R.; Mathews, W.R.; Rose, C.H.; Schirle, M. Proteomics in the pharmaceutical and biotechnology industry: A look to the next decade. Expert Rev. Proteom. 2021, 18, 503–526. [Google Scholar] [CrossRef]
- International Dairy Food Association. U.S. Dairy Industry’s Economic Impact Ttotals $753 Billion. 2021. Available online: https://www.idfa.org/news/u-s-dairy-industrys-economic-impact-totals-753-billion (accessed on 20 February 2024).
- Food and Agriculture Organization of the United Nations. The Global Dairy Sector: Facts. 2016. Available online: https://www.fao.org/3/cb2992en/cb2992en.pdf?fbclid=IwAR22dOWHwI1BtpVS60zcMelHtMV_Lse_P_UXbtecc7_I7p76VUSC0Gvu7MI (accessed on 20 February 2024).
- Roncada, P.; Piras, C.; Soggiu, A.; Turk, R.; Urbanie, A.; Bonizzi, L. Farm animal milk proteomics. J. Proteom. 2012, 75, 4259–4274. [Google Scholar] [CrossRef]
- Pereira, C.S.; Santos, L.M.M.; Machado, L.S.; Melo, D.A.; Coelho, S.M.O.; Pereira, V.L.A.; Souza, M.M.S.; Nascimento, E.R. Proteomics characterization of Staphylococcus spp. from goat mastitis and phenogeno-typical assessment of resistance to beta-lactamics. Pesq. Vet. Brasil. 2021, 41, e06129. [Google Scholar] [CrossRef]
- Rodriguez, M.F.; Gomez, A.P.; Parra, C.M. Molecular and proteomic identification of Arthrobacter gandavensis isolated from cows with subclinical mastitis in a dairy farm. Malays. J. Microbiol. 2022, 18, 309–314. [Google Scholar]
- Rodriguez, M.F.; Gomez, A.P.; Parra-Giraldo, C.M.; Ceballos-Garzon, A. Proteomics and genetic approaches elucidate the circulation of low variability Staphylococcus aureus Strains on Colombian dairy farms. Microb. Ecol. 2023, 86, 2320–2329. [Google Scholar] [CrossRef]
- Folescu, R.; Miftode, E.; Carmen, L. Animal experimental studies: Controversies, alternatives and perspectives. Rev. Cercet. Interv. Soc. 2013, 43, 266–273. [Google Scholar]
- The Australian and New Zealand Council for the Care of Animals in Research and Teaching. Ninth Annual Report for the Year Ending 31 December 2001; Australian and New Zealand Council for the Care of Animals in Research and Teaching (ANZCCART) Limited: Adelaide, Australia; Wellington, New Zealand, 2002; 27p. [Google Scholar]
- Katsafadou, A.I.; Tsangaris, G.T.; Anagnostopoulos, A.K.; Billinis, C.; Barbagianni, M.S.; Vasileiou, N.G.C.; Spanos, S.A.; Mavrogianni, V.S.; Fthenakis, G.C. Differential quantitative proteomics study of experimental Mannheimia haemolytica mastitis in sheep. J. Proteom. 2019, 205, 103393. [Google Scholar] [CrossRef]
- Huang, J.; Luo, G.J.; Zhang, Z.J.; Wang, X.G.; Ju, Z.H.; Qi, C.; Zhang, Y.; Wang, C.F.; Li, R.L.; Li, J.B.; et al. iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. BMC Genomics 2014, 15, 839. [Google Scholar] [CrossRef]
- Shah, P.; Zhang, B.; Choi, C.; Yang, S.; Zhou, J.; Harlan, R.; Tian, Y.; Zhang, Z.; Chan, D.W.; Zhang, H. Tissue proteomics using chemical immobilization and mass spectrometry. Anal. Biochem. 2015, 469, 27–33. [Google Scholar] [CrossRef]
- Messner, C.B.; Demichev, V.; Wang, Z.; Hartl, J.; Kustatscher, G.; Mülleder, M.; Ralser, M. Mass spectrometry-based high-throughput proteomics and its role in biomedical studies and systems biology. Proteomics 2023, 23, e2200013. [Google Scholar] [CrossRef]
- Haslam, C.; Hellicar, J.; Dunn, A.; Fuetterer, A.; Hardy, N.; Marshall, P.; Paape, R.; Pemberton, M.; Resemannand, A.; Leveridge, M. The evolution of MALDI-TOF mass spectrometry toward ultra-high-throughput screening: 1536-well format and beyond. J. Biomol. Screen. 2016, 21, 176–186. [Google Scholar] [CrossRef]
- Zhan, X.; Li, N.; Zhan, X.; Qian, S. Revival of 2DE-LC/MS in proteomics and its potential for large-scale study of human proteoforms. Med One 2018, 3, e180008. [Google Scholar]
- Dowsey, A.W.; Dunn, M.J.; Yang, G.Z. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline. Bioinformatics 2008, 24, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Turk, R.; Rošić, N.; Kuleš, J.; Horvatić, A.; Gelemanovic, A.; Galen, A.; Ljubić, B.; Benić, M.; Stepanović, V.; Mrljak, V.; et al. Milk and serum proteomes in subclinical and clinical mastitis in Simmental cows. J. Proteom. 2021, 244, 104277. [Google Scholar] [CrossRef]
- Liang, X.; Zhu, W.; Lv, Z.; Zou, Q. Molecular computing and bioinformatics. Molecules 2019, 24, 2358. [Google Scholar] [CrossRef]
- Noor, Z.; Ahn, S.B.; Baker, M.S.; Ranganathan, S.; Mohamedali, A. Mass spectrometry–based protein identification in proteomics—A review. Brief. Bioinform. 2021, 22, 1620–1638. [Google Scholar] [CrossRef]
- Hermjakob, H. The HUPO proteomics standards initiative—Overcoming the fragmentation of proteomics data. Proteomics 2006, 6 (Suppl. S2), 34–38. [Google Scholar] [CrossRef]
- Orchard, S.; Hermjakob, H. The HUPO proteomics standards initiative—Easing communication and minimizing data loss in a changing world. Brief. Bioinform. 2008, 2, 166–173. [Google Scholar] [CrossRef]
- Zubair, M.; Khan, F.A.; Menghwar, H.; Faisal, M.; Ashraf, M.; Rasheed, M.A.; Marawan, M.A.; Dawood, A.; Chen, Y.; Chen, H.; et al. Progresses on bacterial secretomes enlighten research on Mycoplasma secretome. Microb. Pathog. 2020, 144, 104160. [Google Scholar] [CrossRef]
- Fanelli, D.; Larivière, V. Researchers’ individual publication rate has not increased in a century. PLoS ONE 2016, 11, e0149504. [Google Scholar] [CrossRef]
- European Commission. Open Access. 2022. Available online: https://research-and-innovation.ec.europa.eu/strategy/strategy-2020-2024/our-digital-future/open-science/open-access_en (accessed on 20 February 2024).
- Morrison, H.; Borges, L.; Zhao, X.; Kakou, T.L.; Shanbhoug, A.N. Change and growth in open access journal publishing and charging trends 2011–2021. J. Assoc. Inf. Sci. Technol. 2022, 73, 1793–1805. [Google Scholar] [CrossRef]
- Pampel, H. Promoting open access in research-performing organizations: Spheres of activity, challenges, and future action areas. Publications 2023, 11, 44. [Google Scholar] [CrossRef]
- Evans, J.A. Electronic publication and the narrowing of science and scholarship. Science 2008, 321, 395. [Google Scholar] [CrossRef] [PubMed]
- Onodera, N.; Yoshikane, F. Factors affecting citation rates of research articles. large-scale study based on Web of Science data. J. Assoc. Inform. Sci. Technol. 2015, 66, 739–764. [Google Scholar] [CrossRef]
- Fox, C.W.; Paine, C.E.T.; Sauterey, B. Citations increase with manuscript length, author number, and references cited in ecology journals. Ecol. Evol. 2016, 6, 7717–7726. [Google Scholar] [CrossRef] [PubMed]
- Ahlgren, P.; Colliander, C.; Sjögårde, P. Exploring the relation between referencing practices and citation impact: A large-scale study based on Web of Science data. J. Assoc. Inform. Sci. Technol. 2018, 69, 728–743. [Google Scholar] [CrossRef]
- Mammola, S.; Fontaneto, D.; Martínez, A.; Chichorro, F. Impact of the reference list features on the number of citations. Scientometrics 2021, 126, 785–799. [Google Scholar] [CrossRef]
Proteomics Methodological Approaches 1 | No. of Articles | Median Year of Publication |
---|---|---|
LC-MS/MS | 56 | 2019 |
2-DE, MALDI-TOF MS | 24 | 2015 |
2-DE, LC-MS/MS | 18 | 2015 |
2D-DIGE, MALDI-TOF MS, GeLC-MS/MS | 13 | 2011 |
MALDI-TOF MS | 10 | 2021 |
GeLC-MS/MS | 5 | 2013 |
Bioinformatics | 5 | 2022 |
LC-MS/MS, Bioinformatics | 3 | 2022 |
MALDI-TOF MS, LC-MS/MS | 1 | 2020 |
Variables | Odds Risk (±se) 1 | p |
---|---|---|
Cited references in papers | <0.0001 | |
Per unit increase | 1.040 ± 1.008 | - |
International collaboration | 0.06 | |
No (2.0 (2.3) 2) | reference | - |
Yes (2.8 (5.1)) | 4.096 ± 2.115 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourganou, M.V.; Chatzopoulos, D.C.; Lianou, D.T.; Tsangaris, G.T.; Fthenakis, G.C.; Katsafadou, A.I. Scientometrics Evaluation of Published Scientific Papers on the Use of Proteomics Technologies in Mastitis Research in Ruminants. Pathogens 2024, 13, 324. https://doi.org/10.3390/pathogens13040324
Bourganou MV, Chatzopoulos DC, Lianou DT, Tsangaris GT, Fthenakis GC, Katsafadou AI. Scientometrics Evaluation of Published Scientific Papers on the Use of Proteomics Technologies in Mastitis Research in Ruminants. Pathogens. 2024; 13(4):324. https://doi.org/10.3390/pathogens13040324
Chicago/Turabian StyleBourganou, Maria V., Dimitris C. Chatzopoulos, Daphne T. Lianou, George Th. Tsangaris, George C. Fthenakis, and Angeliki I. Katsafadou. 2024. "Scientometrics Evaluation of Published Scientific Papers on the Use of Proteomics Technologies in Mastitis Research in Ruminants" Pathogens 13, no. 4: 324. https://doi.org/10.3390/pathogens13040324
APA StyleBourganou, M. V., Chatzopoulos, D. C., Lianou, D. T., Tsangaris, G. T., Fthenakis, G. C., & Katsafadou, A. I. (2024). Scientometrics Evaluation of Published Scientific Papers on the Use of Proteomics Technologies in Mastitis Research in Ruminants. Pathogens, 13(4), 324. https://doi.org/10.3390/pathogens13040324