The Regulating Effects of Ice-Templated Directional Microchannels on Surface Micro-Ceramicization Strengthening of Cement Paste Containing TiB2
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Setup for Freeze-Casting Method
2.3. Sample Preparation
2.4. Characterisations
3. Results
3.1. Compressive Strength
3.2. Matrix Density
3.3. Distribution of Pores and Microchannels
4. Discussions
4.1. Products of Cement Hydration and Ceramicization
4.2. Ceramicization Enhancement Assisted by Freeze Concentration
5. Conclusions
- (1)
- The ceramicization effects induced by the TiB2 oxidation at high temperatures can effectively improve the compressive strength of cementitious samples prepared by the freeze-casting method. The compressive strength value of the cement paste containing 25 wt.% of TiB2 micron powders prepared by the freeze-casting method after heat treatment is much higher than that of the sample prepared by the freeze-casting method without heat treatment. Moreover, when the sample containing 25 wt.% of TiB2 with a water-to-cement ratio of 0.65, the compressive strength of samples prepared by the freeze-casting method with heating treatment is higher than that of samples prepared by the regular casting method with and without heating treatment.
- (2)
- The distributions of TiB2 particles and the pores in the frozen cementitious materials affect ceramicization reactions. With the growth of ice crystals in slurry, the TiB2 and cement particles are re-distributed by the swelling stress and the coulomb forces caused by the different surface charges on the different particles and the ice crystal. The negatively charged TiB2 particles become concentrated at the wall areas of microchannels, and the positively charged cement hydrates grow into the microchannels from the walls as detected in the line-scanning SEM-EDS results.
- (3)
- The freeze concentration effects induced by the freeze-casting method can improve the enhancement of the high temperature ceramicization among TiB2, air and decomposed products of cement hydrates. The enhancement effects of high-temperature ceramicization are closely related to the initial water-to-cement (or solid) ratios and the regional water-to-solid ratios near the ice crystals in the frozen samples. After heating treatment, the walls of microchannels and micropores in cementitious-TiB2 composites, which are prepared by the freeze-casting method, are covered by a layer of thick glassy products, leading to a stable matrix and higher compressive strength.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, H.; She, W.; Zuo, W.; Zhou, Y.; Huang, J.; Zhang, Z.; Geng, Z.; Yao, Y.; Zhang, W.; Zheng, L.; et al. Hierarchical Toughening of a Biomimetic Bulk Cement Composite. ACS Appl. Mater. Interfaces 2020, 12, 53297–53309. [Google Scholar] [CrossRef]
- Miao, S.; Wang, Y.; Lu, M.; Liu, X.; Chen, Y.; Zhao, Y. Freezing-Derived Functional Materials. Mater. Today 2024, 74, 235–268. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Juilland, P.; Monteiro, P.J.M. Advances in Understanding Hydration of Portland Cement. Cem. Concr. Res. 2015, 78, 38–56. [Google Scholar] [CrossRef]
- Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. Mechanisms of Cement Hydration. Cem. Concr. Res. 2011, 41, 1208–1223. [Google Scholar] [CrossRef]
- Iqbal Khan, M.; Abbas, Y.M. Significance of Fiber Characteristics on the Mechanical Properties of Steel Fiber-Reinforced High-Strength Concrete at Different Water-Cement Ratios. Constr. Build. Mater. 2023, 408, 133742. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Li, Z.; Sun, K.; Zhang, J.; Deng, Y.; Deng, J. Regulation and Mechanism of Water-Cement Ratio and Superplasticizer on Rheological Properties of Waterborne Epoxy Resin Emulsion Modified Cement Paste. Constr. Build. Mater. 2025, 476, 141288. [Google Scholar] [CrossRef]
- Jiang, C.; Fang, J.; Chen, J.Y.; Gu, X.L. Modeling the Instantaneous Phase Composition of Cement Pastes under Elevated Temperatures. Cem. Concr. Res. 2020, 130, 105987. [Google Scholar] [CrossRef]
- Li, Y.; Mi, T.; Liu, W.; Dong, Z.; Dong, B.; Tang, L.; Xing, F. Chemical and Mineralogical Characteristics of Carbonated and Uncarbonated Cement Pastes Subjected to High Temperatures. Compos. Part B Eng. 2021, 216, 108861. [Google Scholar] [CrossRef]
- Fares, H.; Remond, S.; Noumowe, A.; Cousture, A. High Temperature Behaviour of Self-Consolidating Concrete: Microstructure and Physicochemical Properties. Cem. Concr. Res. 2010, 40, 488–496. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, H.; Huang, P.; Tang, J.; She, W. Biomimetic Mechanical Robust Cement-Resin Composites with Machine Learning-Assisted Gradient Hierarchical Structures. Adv. Mater. 2024, 36, 2405183. [Google Scholar] [CrossRef] [PubMed]
- She, W.; Wu, Z.; Yang, J.; Pan, H.; Du, F.; Du, Z.; Miao, C. Cement-Based Biomimetic Metamaterials. J. Build. Eng. 2024, 94, 110050. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Y.; Zhou, Y.; Zhang, W.; Li, W.; She, W.; Liu, J.; Miao, C. Multi-Layered Cement-Hydrogel Composite with High Toughness, Low Thermal Conductivity, and Self-Healing Capability. Nat. Commun. 2023, 14, 3438. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, Z.; Sun, Q.; Yang, X.; Deng, S.; Liu, T.; Lv, Y.; Sun, T.; Li, W.; Xie, A. Thermal Adaptability of Surface Micro-ceramization Induced by TiB2micron Powders on Portland Cement Paste at Different Elevated Temperatures. Ceram. Int. 2025, 51, 59509–59521. [Google Scholar] [CrossRef]
- Shi, W.; Wang, Z.; Li, C.; Sun, Q.; Wang, W.; Deng, S.; Li, W.; Xie, A. High-Temperature Strengthening of Portland Cementitious Materials by Surface Micro-ceramization. Cem. Concr. Res. 2025, 190, 107790. [Google Scholar] [CrossRef]
- Luo, Y.; Li, S.H.; Klima, K.M.; Brouwers, H.J.H.; Yu, Q. Degradation Mechanism of Hybrid Fly Ash/Slag Based Geopolymers Exposed to Elevated Temperatures. Cem. Concr. Res. 2022, 151, 106649. [Google Scholar] [CrossRef]
- Inagawa, A.; Harada, M.; Okada, T. Charging of the Ice/Solution Interface by Deprotonation of Dangling Bonds, Ion Adsorption, and Ion Uptake in an Ice Crystal As Revealed by Zeta Potential Determination. J. Phys. Chem. C 2019, 123, 6062–6069. [Google Scholar] [CrossRef]
- Drzymala, J.; Sadowski, Z.; Holysz, L.; Chibowski, E. Ice/Water Interface: Zeta Potential, Point of Zero Charge, and Hydrophobicity. J. Colloid Interface Sci. 1999, 220, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yu, J.; Deng, K.; Ren, Z.; Fu, H. Preparation of C-Axis Textured TiB2 Ceramics by a Strong Magnetic Field of 6 T Assisted Slip-Casting Process. Mater. Lett. 2018, 217, 96–99. [Google Scholar] [CrossRef]
- Shirey, K.; Tallon, C. Cost-Effective Suspension Formulation for Flexible TiB2 Tapes. Int. J. Appl. Ceram. Technol. 2023, 20, 1606–1616. [Google Scholar] [CrossRef]
- Martins, J.R.; Rocha, J.C.; Novais, R.M.; Labrincha, J.A.; Hotza, D.; Senff, L. Zeta Potential in Cementitious Systems: A Comprehensive Overview of Influencing Factors and Implications on Material Properties. J. Build. Eng. 2025, 99, 111556. [Google Scholar] [CrossRef]
- Gallucci, E.; Zhang, X.; Scrivener, K.L. Effect of Temperature on the Microstructure of Calcium Silicate Hydrate (C-S-H). Cem. Concr. Res. 2013, 53, 185–195. [Google Scholar] [CrossRef]
- Shirani, S.; Cuesta, A.; Morales-Cantero, A.; De la Torre, A.G.; Olbinado, M.P.; Aranda, M.A.G. Influence of Curing Temperature on Belite Cement Hydration: A Comparative Study with Portland Cement. Cem. Concr. Res. 2021, 147, 106499. [Google Scholar] [CrossRef]
- Dilnesa, B.Z.; Lothenbach, B.; Renaudin, G.; Wichser, A.; Kulik, D. Synthesis and Characterization of Hydrogarnet Ca3(AlXFe1−X)2(SiO4)y(OH)4(3−Y). Cem. Concr. Res. 2014, 59, 96–111. [Google Scholar] [CrossRef]
- Dung, N.T.; Unluer, C. Improving the Performance of Reactive MgO Cement-Based Concrete Mixes. Constr. Build. Mater. 2016, 126, 747–758. [Google Scholar] [CrossRef]
- Krishnan, P.P.R.; Kumar, P.A.; Prabhakaran, K. Freeze-Gelcasting of Aqueous Alumina Powder Suspension Using Natural Rubber Latex. Ceram. Int. 2022, 48, 14839–14848. [Google Scholar] [CrossRef]
- Sekine, Y.; Nankawa, T. Freeze-Concentrated Layers as a Unique Field for the Formation of Hydrogels. Bull. Chem. Soc. Jpn. 2023, 96, 1150–1155. [Google Scholar] [CrossRef]
- Yoda, T.; Miyaki, H.; Saito, T. Freeze Concentrated Apple Juice Maintains Its Flavor. Sci. Rep. 2021, 11, 12679. [Google Scholar] [CrossRef]
- Wang, D.; Wu, J.; Wu, S.; Chen, X.; Li, W.; Chen, X.; Gao, C.; He, Z. Ice-Mediated Reactions and Assemblies in Diverse Domains. Adv. Funct. Mater. 2024, 34, 2315532. [Google Scholar] [CrossRef]
- Kim, B.; Kim, K. Cryoprotective Polyol-Induced Ice Microstructure Development and Enhanced Chromium(VI) Reduction in Polycrystalline Structures. Cryst. Growth Des. 2024, 24, 9030–9038. [Google Scholar] [CrossRef]
- Shao, G.; Hanaor, D.A.H.; Shen, X.; Gurlo, A. Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures—A Review of Novel Materials, Methods, and Applications. Adv. Mater. 2020, 32, 1907176. [Google Scholar] [CrossRef]
- Dultz, S.; Speth, M.; Kaiser, K.; Mikutta, R.; Guggenberger, G. Size, Shape, and Stability of Organic Particles Formed during Freeze–Thaw Cycles: Model Experiments with Tannic Acid. J. Colloid Interface Sci. 2024, 667, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Heming, R.; Yousf, A.; Wohlgemuth, K. Understanding the Impact of Process Parameters on the Crystallization Process within an Integrated Suspension Melt Crystallization Pilot Plant. Sep. Purif. Technol. 2025, 369, 133096. [Google Scholar] [CrossRef]


















| Compound | CaO | SiO2 | MgO | SO3 | Al2O3 | Na2O | K2O | Fe2O3 | MnO | P2O5 | Others |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Content (%) | 61.04 | 24.87 | 6.05 | 3.48 | 2.79 | 0.46 | 0.57 | 0.31 | 0.03 | 0.03 | 0.37 |
| Group Name | Water (kg/m3) | Cement (kg/m3) | TiB2 (kg/m3) | Casting Method | Heating Treatment |
|---|---|---|---|---|---|
| 0.5 R | 0.5 | 1 | 0.25 | R-CAST | No |
| 0.65 R | 0.65 | 1 | 0.25 | R-CAST | No |
| 0.8 R | 0.8 | 1 | 0.25 | R-CAST | No |
| 0.5 F | 0.5 | 1 | 0.25 | F-CAST | No |
| 0.65 F | 0.65 | 1 | 0.25 | F-CAST | No |
| 0.8 F | 0.8 | 1 | 0.25 | F-CAST | No |
| 0.5 RT | 0.5 | 1 | 0.25 | R-CAST | Yes |
| 0.65 RT | 0.65 | 1 | 0.25 | R-CAST | Yes |
| 0.8 RT | 0.8 | 1 | 0.25 | R-CAST | Yes |
| 0.5 FT | 0.5 | 1 | 0.25 | F-CAST | Yes |
| 0.65 FT | 0.65 | 1 | 0.25 | F-CAST | Yes |
| 0.8 FT | 0.8 | 1 | 0.25 | F-CAST | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, Z.; Shen, W.; Zhang, Z.; Shi, W.; Sun, T.; Li, W.; Xie, A. The Regulating Effects of Ice-Templated Directional Microchannels on Surface Micro-Ceramicization Strengthening of Cement Paste Containing TiB2. Buildings 2026, 16, 303. https://doi.org/10.3390/buildings16020303
Wang Z, Shen W, Zhang Z, Shi W, Sun T, Li W, Xie A. The Regulating Effects of Ice-Templated Directional Microchannels on Surface Micro-Ceramicization Strengthening of Cement Paste Containing TiB2. Buildings. 2026; 16(2):303. https://doi.org/10.3390/buildings16020303
Chicago/Turabian StyleWang, Zixiao, Wenqing Shen, Zhen Zhang, Weizheng Shi, Tao Sun, Wenyu Li, and Aming Xie. 2026. "The Regulating Effects of Ice-Templated Directional Microchannels on Surface Micro-Ceramicization Strengthening of Cement Paste Containing TiB2" Buildings 16, no. 2: 303. https://doi.org/10.3390/buildings16020303
APA StyleWang, Z., Shen, W., Zhang, Z., Shi, W., Sun, T., Li, W., & Xie, A. (2026). The Regulating Effects of Ice-Templated Directional Microchannels on Surface Micro-Ceramicization Strengthening of Cement Paste Containing TiB2. Buildings, 16(2), 303. https://doi.org/10.3390/buildings16020303

