Not Ready for AI? Exploring Teachers’ Negative Attitudes Toward Artificial Intelligence
Abstract
1. Introduction
1.1. Conceptualizing AI Literacy in Education
1.2. Attitudinal, Ethical, and Institutional Dimensions of Resistance
1.3. Educational Initiatives and Frameworks for Developing AI Literacy
1.4. Demographic and Digital Competence Factors
2. Materials and Methods
2.1. Research Design and Approach
2.2. Participants and Sampling Procedure
2.3. Instruments and Measures
2.4. Data Collection Procedure
2.5. Ethical Considerations
3. Results
4. Discussion
4.1. Differences in Negative Perceptions of AI
4.2. Relationships Between Digital Competencies and Negative Perceptions of AI
5. Conclusions
6. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Exploratory Factor Analysis Results
| Item | Factor 1 Perceived AI Threat | Factor 2: Distrust in the Fairness and Ethics of AI | Communality (h2) |
|---|---|---|---|
| AI seems threatening to me. | 0.830 | 0.061 | 0.741 |
| AI could take control over humans. | 0.913 | −0.107 | 0.752 |
| I believe AI is dangerous. | 0.909 | 0.016 | 0.841 |
| I think with fear about future uses of AI. | 0.906 | −0.020 | 0.805 |
| People like me will suffer if AI is increasingly used. | 0.838 | 0.011 | 0.711 |
| Organizations use artificial intelligence unethically. | −0.096 | 0.928 | 0.785 |
| I believe artificial intelligence systems make many errors. | 0.139 | 0.724 | 0.639 |
| AI is used to spy on people. | 0.481 | 0.342 | 0.504 |
References
- Wolters, A.; Arz von Straussenburg, A.F.; Riehle, D.M. AI Literacy in Adult Education—A Literature Review. In Proceedings of the 57th Hawaii International Conference on System Sciences (HICSS 2024), Waikiki Beach, HI, USA, 3–6 January 2024; Bui, T.X., Ed.; University of Hawaiʻi at Mānoa: Honolulu, HI, USA, 2024; pp. 6888–6897. [Google Scholar]
- Gu, X.; Ericson, B.J. AI Literacy in K-12 and Higher Education in the Wake of Generative AI: An Integrative Review. In Proceedings of the 2025 ACM Conference on International Computing Education Research V.1, Charlottesville, VA, USA, 3–6 August 2025; pp. 125–140. [Google Scholar]
- El-dosuky, M. Artificial Intelligence Literacy Framework for K-12 Students. SSRN 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4947507 (accessed on 27 November 2025).
- Gherheș, V.; Fărcașiu, M.A.; Cernicova-Buca, M.; Coman, C. AI vs. Human-Authored Headlines: Evaluating the Effectiveness, Trust, and Linguistic Features of ChatGPT-Generated Clickbait and Informative Headlines in Digital News. Information 2025, 16, 150. [Google Scholar] [CrossRef]
- Gherheş, V. Artificial Intelligence: Perception, Expectations, Hopes and Benefits. Int. J. User-Syst. Interact. 2018, 11, 219–230. [Google Scholar]
- Ng, W. Can We Teach Digital Natives Digital Literacy? Comput. Educ. 2012, 59, 1065–1078. [Google Scholar] [CrossRef]
- Long, D.; Magerko, B. What Is AI Literacy? Competencies and Design Considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–16. [Google Scholar]
- Howard, S.K.; Tondeur, J.; Siddiq, F.; Scherer, R. Ready, Set, Go! Profiling Teachers’ Readiness for Online Teaching in Secondary Education. Technol. Pedagog. Educ. 2021, 30, 141–158. [Google Scholar] [CrossRef]
- Holmes, W. Artificial Intelligence in Education: Promises and Implications for Teaching and Learning; Center for Curriculum Redesign: Boston, MA, USA, 2019. [Google Scholar]
- Zawacki-Richter, O.; Marín, V.I.; Bond, M.; Gouverneur, F. Systematic Review of Research on Artificial Intelligence Applications in Higher Education–Where Are the Educators? Int. J. Educ. Technol. High. Educ. 2019, 16, 1–27. [Google Scholar] [CrossRef]
- Howard, S.K.; Mozejko, A. Teachers: Technology, Change and Resistance. In Teaching and Digital Technologies: Big Issues and Critical Questions; Henderson, M., Romeo, G., Eds.; Cambridge University Press: Cambridge, UK, 2015; pp. 307–317. ISBN 978-1-316-09196-8. [Google Scholar]
- MacDowell, P.; Moskalyk, K.; Korchinski, K.; Morrison, D. Preparing Educators to Teach and Create with Generative Artificial Intelligence. Can. J. Learn. Technol. 2024, 50, 1–23. [Google Scholar] [CrossRef]
- Dilek, M.; Baran, E.; Aleman, E. AI Literacy in Teacher Education: Empowering Educators through Critical Co-Discovery. J. Teach. Educ. 2025, 76, 294–311. [Google Scholar] [CrossRef]
- Brown, Y. Overcoming Teacher Resistance to Technology and Artificial Intelligence in the Classroom. LinkedIn, 7 February 2024. Available online: https://www.linkedin.com/pulse/overcoming-teacher-resistance-technology-artificial-classroom-brown-yupse/ (accessed on 27 November 2025).
- Tan, X.; Cheng, G.; Ling, M.H. Artificial Intelligence in Teaching and Teacher Professional Development: A Systematic Review. Comput. Educ. Artif. Intell. 2024, 8, 100355. [Google Scholar] [CrossRef]
- AI Competency Framework for Teachers—UNESCO Digital Library. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000391104 (accessed on 27 November 2025).
- Mah, D.-K.; Groß, N. Artificial Intelligence in Higher Education: Exploring Faculty Use, Self-Efficacy, Distinct Profiles, and Professional Development Needs. Int. J. Educ. Technol. High. Educ. 2024, 21, 58. [Google Scholar] [CrossRef]
- Ha, S.; Kim, S. Developing a Digital Platform Literacy Framework; International Telecommunications Society (ITS): Calgary, AB, Canada, 2023. [Google Scholar]
- Du, H.; Sun, Y.; Jiang, H.; Islam, A.; Gu, X. Exploring the Effects of AI Literacy in Teacher Learning: An Empirical Study. Humanit. Soc. Sci. Commun. 2024, 11, 559. [Google Scholar] [CrossRef]
- Tariq, U. Challenges in AI-Powered Educational Technologies: Teacher Perspectives and Resistance. AI EDIFY J. 2024, 1, 1–10. [Google Scholar]
- Mehdaoui, A. Unveiling Barriers and Challenges of AI Technology Integration in Education: Assessing Teachers’ Perceptions, Readiness and Anticipated Resistance. Futur. Educ. 2024, 4, 95–108. [Google Scholar] [CrossRef]
- Yang, Y.N.; Kong, S.C. Professional Development for Teachers in AI Literacy Education: Teaching Machine Learning to Senior Primary and Junior Secondary Students. In Proceedings of the 17th International Conference on Computer Supported Education, CSEDU 2025, Porto, Portugal, 1–3 April 2025; SciTePress: Setúbal, Portugal, 2025; pp. 35–42. [Google Scholar]
- Azzam, A.; Charles, T. A Review of Artificial Intelligence in K-12 Education. Open J. Appl. Sci. 2024, 14, 2088–2100. [Google Scholar] [CrossRef]
- Sperling, K.; Stenberg, C.-J.; McGrath, C.; Åkerfeldt, A.; Heintz, F.; Stenliden, L. In Search of Artificial Intelligence (AI) Literacy in Teacher Education: A Scoping Review. Comput. Educ. Open 2024, 6, 100169. [Google Scholar] [CrossRef]
- Nazaretsky, T.; Ariely, M.; Cukurova, M.; Alexandron, G. Teachers’ Trust in AI-powered Educational Technology and a Professional Development Program to Improve It. Br. J. Educ. Technol. 2022, 53, 914–931. [Google Scholar] [CrossRef]
- Moura, A.; Carvalho, A.A.A. Teachers’ Perceptions of the Use of Artificial Intelligence in the Classroom; Atlantis Press: Dordrecht, The Netherlands, 2024; pp. 140–150. [Google Scholar]
- Gravino, C.; Iannella, A.; Marras, M.; Pagliara, S.M.; Palomba, F. Teachers Interacting with Generative Artificial Intelligence: A Dual Responsibility; Ceur Workshop Proceedings: Aachen, Germany, 2024; Volume 3762. [Google Scholar]
- Çayak, S. Investigating the Relationship between Teachers’ Attitudes toward Artificial Intelligence and Their Artificial Intelligence Literacy. J. Educ. Technol. Online Learn. 2024, 7, 367–383. [Google Scholar] [CrossRef]
- Tin, T.T.; Chor, K.Y.; Hui, W.J.; Cheng, W.Y.; Kit, C.J.; Husin, W.N.A.-A.W.; Tiung, L.K. Demographic Factors Shaping Artificial Intelligence (AI) Perspectives: Exploring Their Impact on University Students’ Academic Performance. Pak. J. Life Soc. Sci. 2024, 22, 12248–12264. [Google Scholar] [CrossRef]
- Falebita, O. Evaluating Artificial Intelligence Anxiety among Pre-Service Teachers in University Teacher Education Programs. J. Math. Instr. Soc. Res. Opin. 2025, 4, 1–16. [Google Scholar] [CrossRef]
- Miranda, F.J.; Chamorro-Mera, A. The Impact of Gender and Age on HEI Teachers’ Intentions to Use Generative Artificial Intelligence Tools. ITLT 2025, 108, 112–128. [Google Scholar] [CrossRef]
- Bakhadirov, M.; Alasgarova, R. Factors Influencing Teachers’ Use of Artificial Intelligence for Instructional Purposes. IAFOR J. Educ. 2024, 12, 9–32. [Google Scholar] [CrossRef]
- Viberg, O.; Cukurova, M.; Feldman-Maggor, Y.; Alexandron, G.; Shirai, S.; Kanemune, S.; Wasson, B.; Tømte, C.; Spikol, D.; Milrad, M.; et al. What Explains Teachers’ Trust in AI in Education across Six Countries? Int. J. Artif. Intell. Educ. 2024, 35, 1288–1316. [Google Scholar] [CrossRef]
- Creswell, J.W.; Creswell, J.D. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches; SAGE Publications: Thousand Oaks, CA, USA, 2017; ISBN 1-5063-8669-5. [Google Scholar]
- Kaplan, D. The Sage Handbook of Quantitative Methodology for the Social Sciences; SAGE Publications: Thousand Oaks, CA, USA, 2004; ISBN 1-4833-6587-5. [Google Scholar]
- Wolf, C.; Fu, Y.; Smith, T.; Joye, D. The SAGE Handbook of Survey Methodology; SAGE Publications Ltd.: London, UK, 2016. [Google Scholar]
- Iluţ, P.; Rotariu, T.-I. Ancheta Sociologică Şi Sondajul de Opinie: Teorie Şi Practică; Polirom: Iași, Romania, 1997; ISBN 973-9248-65-9. [Google Scholar]
- Morgan, D.L. Snowball Sampling. In The SAGE Encyclopedia of Qualitative Research Methods; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008; Volume 2, pp. 815–816. [Google Scholar]
- Wiles, R.; Crow, G.; Heath, S.; Charles, V. The Management of Confidentiality and Anonymity in Social Research. Int. J. Soc. Res. Methodol. 2008, 11, 417–428. [Google Scholar] [CrossRef]
- Coffelt, T.A. Confidentiality and Anonymity of Participants. In The SAGE Encyclopedia of Communication Research Methods; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2017; pp. 228–230. ISBN 978-1-4833-8141-1. [Google Scholar]
- Etikan, I.; Musa, S.A.; Alkassim, R.S. Comparison of Convenience Sampling and Purposive Sampling. Am. J. Theor. Appl. Stat. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Lavrakas, P.J. Encyclopedia of Survey Research Methods; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008; ISBN 978-1-4129-6394-7. [Google Scholar]
- Profiroiu, C.M.; Nastacă, C.C. Gender Equality in the Romanian Educational System. Proc. Adm. Public Manag. Int. Conf. 2018, 14, 79–93. [Google Scholar]
- Schepman, A.; Rodway, P. Initial Validation of the General Attitudes towards Artificial Intelligence Scale. Comput. Hum. Behav. Rep. 2020, 1, 100014. [Google Scholar] [CrossRef]
- Schepman, A.; Rodway, P. The General Attitudes towards Artificial Intelligence Scale (GAAIS): Confirmatory Validation and Associations with Personality, Corporate Distrust, and General Trust. Int. J. Hum.-Comput. Interact. 2023, 39, 2724–2741. [Google Scholar] [CrossRef]
- Boateng, G.O.; Neilands, T.B.; Frongillo, E.A.; Melgar-Quiñonez, H.R.; Young, S.L. Best Practices for Developing and Validating Scales for Health, Social, and Behavioral Research: A Primer. Front. Public Health 2018, 6, 149. [Google Scholar] [CrossRef]
- Beaton, D.E.; Bombardier, C.; Guillemin, F.; Ferraz, M.B. Guidelines for the Process of Cross-Cultural Adaptation of Self-Report Measures. Spine 2000, 25, 3186. [Google Scholar] [CrossRef]
- Cruchinho, P.; López-Franco, M.D.; Capelas, M.L.; Almeida, S.; Bennett, P.M.; da Silva, M.M.; Teixeira, G.; Nunes, E.; Lucas, P.; Gaspar, F. Translation, Cross-Cultural Adaptation, and Validation of Measurement Instruments: A Practical Guideline for Novice Researchers. J. Multidiscip. Healthc. 2024, 17, 2701–2728. [Google Scholar] [CrossRef]
- Talik, W.; Talik, E.B.; Grassini, S. Measurement Invariance of the Artificial Intelligence Attitude Scale (AIAS-4): Cross-Cultural Studies in Poland, the USA, and the UK. Curr. Psychol. 2025, 44, 15758–15766. [Google Scholar] [CrossRef]
- Holden, R.R.; Jackson, D.N. Item Subtlety and Face Validity in Personality Assessment. J. Consult. Clin. Psychol. 1979, 47, 459–468. [Google Scholar] [CrossRef]
- Nevo, B. Face Validity Revisited. J. Educ. Meas. 1985, 22, 287–293. [Google Scholar] [CrossRef]
- Rodríguez-de-Dios, I.; Igartua, J.-J.; González-Vázquez, A. Development and Validation of a Digital Literacy Scale for Teenagers. In Proceedings of the TEEM’16: 4th International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 2–4 November 2016; pp. 1067–1072. [Google Scholar]
- Rodríguez-de-Dios, I.; Igartua, J.-J. Skills of Digital Literacy to Address the Risks of Interactive Communication. In Information and Technology Literacy: Concepts, Methodologies, Tools, and Applications; IGI Global Scientific Publishing: Hershey, PA, USA, 2018; pp. 621–632. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; SAGE Publications Limited: London, UK, 2024; ISBN 1-5296-6870-0. [Google Scholar]
- Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using IBM SPSS; Routledge: Abingdon, UK, 2020; ISBN 1-003-11745-7. [Google Scholar]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- George, D.; Mallery, P. IBM SPSS Statistics 29 Step by Step: A Simple Guide and Reference; Routledge: Abingdon, UK, 2024; ISBN 1-032-62215-6. [Google Scholar]
- Tavakol, M.; Dennick, R. Making Sense of Cronbach’s Alpha. Int. J. Med. Educ. 2011, 2, 53. [Google Scholar] [CrossRef] [PubMed]
- Cortina, J.M. What Is Coefficient Alpha? An Examination of Theory and Applications. J. Appl. Psychol. 1993, 78, 98–104. [Google Scholar] [CrossRef]
- Eisinga, R.; Grotenhuis, M.; Pelzer, B. The Reliability of a Two-Item Scale: Pearson, Cronbach, or Spearman-Brown? Int. J. Public Health 2013, 58, 637–642. [Google Scholar] [CrossRef]
- Brougham, D.; Haar, J. Smart Technology, Artificial Intelligence, Robotics, and Algorithms (STARA): Employees’ Perceptions of Our Future Workplace. J. Manag. Organ. 2018, 24, 239–257. [Google Scholar] [CrossRef]
- Nomura, T.; Kanda, T.; Suzuki, T.; Kato, K. Prediction of Human Behavior in Human–Robot Interaction Using Psychological Scales for Anxiety and Negative Attitudes Toward Robots. IEEE Trans. Robot. 2008, 24, 442–451. [Google Scholar] [CrossRef]
- Russo, C.; Romano, L.; Clemente, D.; Iacovone, L.; Gladwin, T.E.; Panno, A. Gender Differences in Artificial Intelligence: The Role of Artificial Intelligence Anxiety. Front. Psychol. 2025, 16, 1559457. [Google Scholar] [CrossRef]
- Lucas, M.; Zhang, Y.; Bem-haja, P.; Vicente, P.N. The Interplay between Teachers’ Trust in Artificial Intelligence and Digital Competence. Educ. Inf. Technol. 2024, 29, 22991–23010. [Google Scholar] [CrossRef]
- Pietsch, M.; Mah, D.-K. Leading the AI Transformation in Schools: It Starts with a Digital Mindset. Educ. Tech Res. Dev. 2025, 73, 1043–1069. [Google Scholar] [CrossRef]
- Kasinidou, M.; Kleanthoys, S.; Otterbacher, J. Cypriot Teachers’ Digital Skills and Attitudes towards AI. Discov. Educ. 2025, 4, 1. [Google Scholar] [CrossRef]
- Granström, M.; Oppi, P. Assessing Teachers’ Readiness and Perceived Usefulness of AI in Education: An Estonian Perspective. Front. Educ. 2025, 10, 1622240. [Google Scholar] [CrossRef]
- Dhahir, D.F.; Kenda, N.; Dirgahayu, D.; Syarifuddin, S.; Djaffar, R.; Widihastuti, R.; Rustam, M.; Pala, R. The Relationship of Digital Literacy, Exposure to AI-Generated Deepfake Videos, and the Ability to Identify Deepfakes in Generation X. J. Pekommas 2024, 9, 357–368. [Google Scholar] [CrossRef]
- Galindo-Domínguez, H.; Delgado, N.; Campo, L.; Losada, D. Relationship between Teachers’ Digital Competence and Attitudes towards Artificial Intelligence in Education. Int. J. Educ. Res. 2024, 126, 102381. [Google Scholar] [CrossRef]
- Asio, J.M.R.; Sardina, D.P. Gender Differences on the Impact of AI Self-Efficacy on AI Anxiety through AI Self-Competency: A Moderated Mediation Analysis. J. Pedagog. Res. 2025, 9, 55–71. [Google Scholar] [CrossRef]
- Serdenia, J.R.C.; Dumagay, A.H.; Balasa, K.A.; Capacio, E.A.; Lauzon, L.D.S. Attitude, Acceptability, and Perceived Effectiveness of Artificial Intelligence in Education: A Quantitative Cross-Sectional Study among Future Teachers. LatIA 2025, 3, 313. [Google Scholar] [CrossRef]
- Ng, D.T.K.; Leung, J.K.L.; Chu, S.K.W.; Qiao, M.S. Conceptualizing AI Literacy: An Exploratory Review. Comput. Educ. Artif. Intell. 2021, 2, 100041. [Google Scholar] [CrossRef]
- Ackerhans, S.; Wehkamp, K.; Petzina, R.; Dumitrescu, D.; Schultz, C. Perceived Trust and Professional Identity Threat in AI-Based Clinical Decision Support Systems: Scenario-Based Experimental Study on AI Process Design Features. JMIR Form. Res. 2025, 9, e64266. [Google Scholar] [CrossRef]
- Li, Y. Relationship between Perceived Threat of Artificial Intelligence and Turnover Intention in Luxury Hotels. Heliyon 2023, 9, e18520. [Google Scholar] [CrossRef]
- Trust, Attitudes and Use of Artificial Intelligence: A Global Study 2025. Available online: https://figshare.unimelb.edu.au/articles/report/Trust_attitudes_and_use_of_artificial_intelligence_A_global_study_2025/28822919?file=54013232 (accessed on 29 October 2025).
- Queirós, A.; Faria, D.; Almeida, F. Strengths and Limitations of Qualitative and Quantitative Research Methods. Eur. J. Educ. Stud. 2017, 3, 369–387. [Google Scholar] [CrossRef]
- Jager, J.; Putnick, D.L.; Bornstein, M.H. II. More than Just Convenient: The Scientific Merits of Homogeneous Convenience Samples. Monogr. Soc. Res. Child Dev. 2017, 82, 13–30. [Google Scholar] [CrossRef]
- Findley, M.G.; Kikuta, K.; Denly, M. External Validity. Annu. Rev. Political Sci. 2021, 24, 365–393. [Google Scholar] [CrossRef]
| Item Formulated | Factor 1 | Factor 2 |
|---|---|---|
| Artificial intelligence could take control over humans. | 0.913 | – |
| I believe artificial intelligence is dangerous. | 0.909 | – |
| I think with fear about the future uses of artificial intelligence. | 0.906 | – |
| People like me will suffer if artificial intelligence is increasingly used. | 0.838 | – |
| I find artificial intelligence threatening. | 0.830 | – |
| Organizations use artificial intelligence unethically. | – | 0.928 |
| I believe AI systems make many errors. | – | 0.724 |
| Item | Mean | SD | Median | IQR |
|---|---|---|---|---|
| Artificial intelligence could take control over humans. | 3.41 | 1.374 | 4 | 3 |
| I believe artificial intelligence is dangerous. | 3.37 | 1.277 | 3 | 2 |
| I think with fear about the future uses of artificial intelligence. | 3.24 | 1.324 | 3 | 2 |
| People like me will suffer if AI is increasingly used. | 3.13 | 1.341 | 3 | 2 |
| I find artificial intelligence threatening. | 3.59 | 1.249 | 4 | 2 |
| Item | Mean | SD | Median | IQR |
|---|---|---|---|---|
| Organizations use artificial intelligence unethically. | 3.31 | 1.150 | 3 | 1 |
| I believe artificial intelligence systems make many errors. | 3.40 | 1.093 | 3 | 1 |
| Variable | Categories | N | F1—Perceived AI Threat Mean Rank | F2—Distrust in Fairness and Ethics of AI Mean Rank | Test Statistic/Result |
|---|---|---|---|---|---|
| Gender | Male | 205 | 497.61 | 594.33 | Z = −2.869, p = 0.004 (F1) Z = −1.946, p = 0.052 (F2) |
| Female | 905 | 568.61 | 546.70 | ||
| Residence | Urban | 773 | 553.13 | 575.72 | Z = −0.374, p = 0.709 (F1) Z = −3.225, p = 0.001 (F2) |
| Rural | 337 | 560.94 | 509.12 | ||
| Teaching Degree | No teaching degree | 126 | 518.61 | 561.94 | H = 2.454, p = 0.484 (F1) H = 2.284, p = 0.516 (F2) |
| Teacher Tenure Exam | 173 | 560.17 | 553.12 | ||
| Degree II | 132 | 579.38 | 517.47 | ||
| Degree I | 679 | 556.51 | 562.30 |
| Dimensions/Factors | Information Literacy | Web Navigation Literacy | Data & Security Literacy |
|---|---|---|---|
| Perceived AI Threat (F1) | −0.287 ** | −0.207 ** | −0.140 * |
| Distrust in Fairness and Ethics of AI (F2) | −0.172 * | −0.144 * | −0.003 |
| Dimensions/Factors | Information Literacy | Web Navigation Literacy | Data & Security Literacy |
|---|---|---|---|
| Perceived AI Threat (F1) | −0.250 ** | −0.096 ** | −0.114 ** |
| Distrust in Fairness and Ethics of AI (F2) | −0.074 * | 0.133 ** | 0.125 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Țîru, L.G.; Gherheș, V.; Stoicov, I.; Stanici, M. Not Ready for AI? Exploring Teachers’ Negative Attitudes Toward Artificial Intelligence. Societies 2025, 15, 337. https://doi.org/10.3390/soc15120337
Țîru LG, Gherheș V, Stoicov I, Stanici M. Not Ready for AI? Exploring Teachers’ Negative Attitudes Toward Artificial Intelligence. Societies. 2025; 15(12):337. https://doi.org/10.3390/soc15120337
Chicago/Turabian StyleȚîru, Laurențiu Gabriel, Vasile Gherheș, Ionela Stoicov, and Miroslav Stanici. 2025. "Not Ready for AI? Exploring Teachers’ Negative Attitudes Toward Artificial Intelligence" Societies 15, no. 12: 337. https://doi.org/10.3390/soc15120337
APA StyleȚîru, L. G., Gherheș, V., Stoicov, I., & Stanici, M. (2025). Not Ready for AI? Exploring Teachers’ Negative Attitudes Toward Artificial Intelligence. Societies, 15(12), 337. https://doi.org/10.3390/soc15120337

