Daily School Physical Activity from before to after Puberty Improves Bone Mass and a Musculoskeletal Composite Risk Score for Fracture
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cooper, C.; Dennison, E.M.; Leufkens, H.G.M.; Bishop, N.; van Staa, T.P. Epidemiology of childhood fractures in Britain: A study using the general practice research database. J. Bone Miner. Res. 2004, 19, 1976–1981. [Google Scholar] [CrossRef] [Green Version]
- Johnell, O.; Kanis, J. Epidemiology of osteoporotic fractures. Osteoporos. Int. 2005, 16, 3–7. [Google Scholar] [CrossRef]
- Borgstrom, F.; Zethraeus, N.; Johnell, O.; Lidgren, L.; Ponzer, S.; Svensson, O.; Abdon, P.; Ornstein, E.; Lunsjö, K.; Thorngren, K.G.; et al. Costs and quality of life associated with osteoporosis-related fractures in Sweden. Osteoporos. Int. 2006, 17, 637–650. [Google Scholar] [CrossRef]
- Karlsson, M.K.; Magnusson, H.; von Schewelov, T.; Rosengren, B.E. Prevention of falls in the elderly: A review. Scand. J. Public Health 2013, 41, 442–454. [Google Scholar] [CrossRef]
- Cummings, S.R.; Browner, W.; Cummings, S.R.; Black, D.M.; Nevitt, M.C.; Browner, W.; Genant, H.K.; Cauley, J.; Ensrud, K.; Scott, J.; et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 1993, 341, 72–75. [Google Scholar] [CrossRef]
- Rosengren, B.E.; Ribom, E.L.; Nilsson, J.A.; Mallmin, H.; Ljunggren, O.; Ohlsson, C.; Mellström, D.; Lorentzon, M.; Stefanick, M.; Lapidus, J.; et al. Inferior physical performance test results of 10,998 men in the MrOS Study is associated with high fracture risk. Age Ageing 2012, 41, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Clark, E.M.; Ness, A.R.; Bishop, N.J.; Tobias, J.H. Association between bone mass and fractures in children: A prospective cohort study. J. Bone Miner. Res. 2006, 21, 1489–1495. [Google Scholar] [CrossRef] [Green Version]
- Tan, V.P.; Macdonald, H.M.; Kim, S.; Nettlefold, L.; Gabel, L.; Ashe, M.C.; McKay, H.A. Influence of physical activity on bone strength in children and adolescents: A systematic review and narrative synthesis. J. Bone Miner. Res. 2014, 29, 2161–2181. [Google Scholar] [CrossRef]
- Behringer, M.; Gruetzner, S.; McCourt, M.; Mester, J. Effects of weight-bearing activities on bone mineral content and density in children and adolescents: A meta-analysis. J. Bone Miner. Res. 2014, 29, 467–478. [Google Scholar] [CrossRef] [Green Version]
- Coster, M.E.; Rosengren, B.E.; Karlsson, C.; Dencker, M.; Karlsson, M.K. Effects of an 8-year childhood physical activity intervention on musculoskeletal gains and fracture risk. Bone 2016, 93, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Fritz, J.; Cöster, M.E.; Nilsson, J.; Rosengren, B.E.; Dencker, M.; Karlsson, M.K. The associations of physical activity with fracture risk—A 7-year prospective controlled intervention study in 3534 children. Osteoporos. Int. 2016, 27, 915–922. [Google Scholar] [CrossRef]
- Nordstrom, A.; Karlsson, C.; Nyquist, F.; Olsson, T.; Nordström, P.; Karlsson, M. Bone loss and fracture risk after reduced physical activity. J. Bone Miner. Res. 2005, 20, 202–207. [Google Scholar] [CrossRef]
- Tveit, M.; Ahlborg, H.; Rosengren, B. Bone Loss and Fracture Risk after High Level of Physical Activity at Growth and Young Adulthood. J. Bone Miner. Res. 2010, 25, 308. [Google Scholar]
- Tveit, M.; Rosengren, B.E.; Nilsson, J.Å.; Ahlborg, H.G.; Karlsson, M.K. Bone mass following physical activity in young years: A mean 39-year prospective controlled study in men. Osteoporos. Int. 2013, 24, 1389–1397. [Google Scholar] [CrossRef]
- Tveit, M.; Rosengren, B.E.; Nilsson, J.Å.; Karlsson, M.K. Exercise in youth: High bone mass, large bone size, and low fracture risk in old age. Scand. J. Med. Sci. Sports 2015, 25, 453–461. [Google Scholar] [CrossRef]
- Bailey, D.A.; McKay, H.A.; Mirwald, R.L.; Crocker, P.R.E.; Faulkner, R.A. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The university of Saskatchewan bone mineral accrual study. J. Bone Miner. Res. 1999, 14, 1672–1679. [Google Scholar] [CrossRef]
- Stenevi Lundgren, S.; Rosengren, B.E.; Dencker, M.; Nilsson, J.; Karlsson, C.; Karlsson, M.K. Low physical activity is related to clustering of risk factors for fracture-a 2-year prospective study in children. Osteoporos. Int. 2017, 28, 3373–3378. [Google Scholar] [CrossRef] [Green Version]
- Berenson, G.S.; Srinivasan, S.R.; Bao, W.; Newman, W.; Tracy, R.; Wattigney, W.A. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 1998, 338, 1650–1656. [Google Scholar] [CrossRef]
- Kanis, J.A.; Johnell, O.; Oden, A.; Johansson, H.; McCloskey, E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 2008, 19, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Cronholm, F.; Rosengren, B.E.; Nilsson, J.Å.; Ohlsson, C.; Mellström, D.; Ribom, E.; Karlsson, M.K. The fracture predictive ability of a musculoskeletal composite score in old men - data from the MrOs Sweden study. BMC Geriatr. 2019, 19, 90. [Google Scholar] [CrossRef] [Green Version]
- Coster, M.E.; Fritz, J.; Nilsson, J.A.; Karlsson, C.; Rosengren, B.E.; Dencker, M.; Karlsson, M.K. How does a physical activity programme in elementary school affect fracture risk? A prospective controlled intervention study in Malmo, Sweden. BMJ Open 2017, 7, e012513. [Google Scholar] [CrossRef] [PubMed]
- Linden, C.; Ahlborg, H.G.; Besjakov, J.; Gardsell, P.; Karlsson, M.K. A School Curriculum Based Exercise Program Increase Bone Mineral Accrual in Boys and Girls during Early Adolescence—Three year data from the POP study (pediatric preventive osteoporotic study) – a prospective controlled intervention study in 223 children. J. Bone Miner. Res. 2004, 19, 38. [Google Scholar]
- Tanner, J.M.; Whitehouse, R.H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Fritz, J.; Cöster, M.; Stenevi-Lundgren, S.; Nilsson, J.; Dencker, M.; Rosengren, B.; Karlsson, M.K. A 5-year exercise program in children improves muscle strength without affecting fracture risk. Eur. J. Appl. Physiol. 2016, 116, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Stenevi-Lundgren, S.; Daly, R.M.; Lindén, C.; Gärdsell, P.; Karlsson, M.K. Effects of a daily school based physical activity intervention program on muscle development in prepubertal girls. Eur. J. Appl. Physiol. 2009, 105, 533–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njeh, C.F.; Boivin, C.M.; Langton, C.M. The role of ultrasound in the assessment of osteoporosis: A review. Osteoporos. Int. 1997, 7, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Linden, C.; Ahlborg, H.G.; Besjakov, J.; Gardsell, P.; Karlsson, M.K. A school curriculum-based exercise program increases bone mineral accrual and bone size in prepubertal girls: Two-year data from the pediatric osteoporosis prevention (POP) study. J. Bone Miner. Res. 2006, 21, 829–835. [Google Scholar] [CrossRef]
- Moayyeri, A.; Adams, J.E.; Adler, R.A.; Krieg, M.A.; Hans, D.; Compston, J.; Lewiecki, E.M. Quantitative ultrasound of the heel and fracture risk assessment: An updated meta-analysis. Osteoporos. Int. 2012, 23, 143–153. [Google Scholar] [CrossRef]
- Karlsson, M.K.; Linden, C.; Karlsson, C.; Johnell, O.; Obrant, K.; Seeman, E. Exercise during growth and bone mineral density and fractures in old age. Lancet 2000, 355, 469–470. [Google Scholar] [CrossRef]
- Kannus, P.; Haapasalo, H.; Sankelo, M.; Sievänen, H.; Pasanen, M.; Heinonen, A.; Oja, P.; Vuori, I. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann. Intern. Med. 1995, 123, 27–31. [Google Scholar] [CrossRef]
- Fritz, J.; Duckham, R.; Rantalainen, T.; Rosengren, B.E.; Karlsson, M.K.; Daly, R.M. Influence of a School-based Physical Activity Intervention on Cortical Bone Mass Distribution: A 7-year Intervention Study. Calcif. Tissue Int. 2016, 99, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwis, G.; Linden, C.; Stenevi-Lundgren, S.; Ahlborg, H.G.; Dencker, M.; Besjakov, J.; Gardsell, P.; Karlsson, M.K. A school-curriculum-based exercise intervention program for two years in pre-pubertal girls does not influence hip structure. Dyn. Med. 2008, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, R.M. The effect of exercise on bone mass and structural geometry during growth. In Optimizing Bone Mass and Strength: The Role of Physical Activity and Nutrition during Growth; Daly, R.M., Petit, M.A., Eds.; Karger Medical and Scientific Publishers: Basel, Switzerland, 2007; Volume 51, pp. 33–49. [Google Scholar]
- McKay, H.A.; Petit, M.A.; Schutz, R.W.; Prior, J.C.; Barr, S.I.; Khan, K.M. Augmented trochanteric bone mineral density after modified physical education classes: A randomized school-based exercise intervention study in prepubescent and early pubescent children. J. Pediatr. 2000, 136, 156–162. [Google Scholar] [CrossRef]
- McKay, H.A.; Maclean, L.; Petit, M. Bounce at the Bell: A novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br. J. Sports Med. 2005, 39, 521–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannus, P.; Sievanen, H.; Vuori, I. Physical loading, exercise, and bone. Bone 1996, 18, 1S–3S. [Google Scholar] [CrossRef]
- Sundberg, M.; Gärdsell, P.; Johnell, O.; Karlsson, M.K.; Ornstein, E.; Sandstedt, B.; Sernbo, I. Physical activity increases bone size in prepubertal boys and bone mass in prepubertal girls: A combined cross-sectional and 3-year longitudinal study. Calcif. Tissue Int. 2002, 71, 406–415. [Google Scholar] [CrossRef]
- Blimkie, C.J.; Rice, S.; Webber, C.E.; Martin, J.; Levy, D.; Gordon, C.L. Effects of resistance training on bone mineral content and density in adolescent females. Can. J. Physiol. Pharmacol. 1996, 74, 1025–1033. [Google Scholar] [CrossRef]
- Cronholm, F.; Rosengren, B.E.; Karlsson, C.; Karlsson, M.K. A comparative study found that a seven-year school-based exercise programme increased physical activity levels in both sexes. Acta Paediatr. 2018, 107, 701–707. [Google Scholar] [CrossRef]
- Lahti, A.; Rosengren, B.E.; Nilsson, J.A.; Karlsson, C.; Karlsson, M.K. Long-term effects of daily physical education throughout compulsory school on duration of physical activity in young adulthood: An 11-year prospective controlled study. BMJ Open Sport Exerc. Med. 2018, 4, e000360. [Google Scholar] [CrossRef]
Boys | Girls | |||
---|---|---|---|---|
Intervention (n = 63) | Control (n = 26) | Intervention (n = 34) | Control (n = 17) | |
Before intervention start | ||||
Total organized PA (hours/week) | 3.1 (3.5) | 3.4 (3.4) | 1.6 (1.7) | 1.9 (1.6) |
After intervention start | ||||
Age (years) | 7.6 (0.6) | 8.2 (0.6) | 7.5 (0.4) | 8.0 (0.6) |
Height (cm) | 128.7 (6.0) | 131.5 (5.5) | 127.8 (5.6) | 130.9 (7.5) |
Weight (kg) | 28.2 (5.3) | 29.0 (5.0) | 28.6 (5.8) | 27.5 (5.2) |
BMI (kg/m2) | 16.9 (2.4) | 16.7 (2.0) | 17.4 (2.8) | 16.0 (1.8) |
Exclusion of dairy products | 0 (0%) | 4 (16%) | 0 (0%) | 0 (0%) |
Chronic medical conditions | 9 (14%) | 2 (8%) | 5 (15%) | 0 (0%) |
Current medication | 13 (21%) | 2 (8%) | 5 (15%) | 0 (0%) |
Total organized PA (hours/week) | 6.3 (3.5) | 4.2 (3.4) | 4.9 (1.7) | 2.7 (1.6) |
Follow-up | ||||
Age (years) | 15.2 (0.4) | 15.3 (0.5) | 15.1 (0.5) | 15.3 (0.5) |
Height (cm) | 175.6 (6.9) | 175.8 (6.7) | 166.6 (5.0) | 168.4 (6.0) |
Weight (kg) | 66.0 (11.3) | 64.7 (10.7) | 62.5 (10.1) | 56.6 (8.6) |
BMI (kg/m2) | 21.4 (3.2) | 20.9 (3.0) | 22.5 (3.1) | 19.7 (2.5) |
Smoking | 3 (5%) | 1 (4%) | 3 (9%) | 4 (24%) |
Drinking alcohol | 15 (24%) | 2 (8%) | 6 (18%) | 3 (18%) |
Total organized PA (hours/week) | 9.5 (4.9) | 6.4 (3.2) | 7.7 (3.2) | 5.0 (3.2) |
Boys | Girls | |||||
---|---|---|---|---|---|---|
Intervention (n = 63) | Control (n = 26) | Mean Difference | Intervention (n = 34) | Control (n = 17) | Mean Difference | |
BC (kg) | ||||||
Lean mass | 21.8 (2.6) | 22.5 (2.7) | −0.6 (−1.9, 0.6) | 19.8 (2.5) | 20.6 (2.6) | −0.8 (−2.4, 0.7) |
BMC (g) | ||||||
Total body less head | 673.1 (144.9) | 712.6 (141.8) | −39.5 (−106.2, 27.2) | 638.4 (143.9) | 644.9 (137.8) | −6.5 (−93.5, 80.5) |
L1L4 | 19.9 (4.5) | 21.2 (4.4) | −1.2 (−3.3, 0.8) | 19.5 (4.8) | 19.2 (3.5) | 0.3 (−2.3, 3.0) |
Femoral neck | 2.9 (0.6) | 3.0 (0.4) | −0.1 (−0.3, 0.2) | 2.6 (0.5) | 2.4 (0.3) | 0.2 (−0.1, 0.5) |
aBMD (g/cm2) | ||||||
Total body less head | 0.70 (0.05) | 0.71 (0.05) | −0.01 (−0.04, 0.01) | 0.69 (0.05) | 0.69 (0.05) | 0.00 (−0.03, 0.03) |
L1L4 | 0.67 (0.11) | 0.69 (0.07) | −0.02 (−0.07, 0.02) | 0.69 (0.12) | 0.66 (0.07) | 0.03 (−0.03, 0.10) |
Femoral neck | 0.80 (0.10) | 0.81 (0.11) | −0.01 (−0.06, 0.04) | 0.72 (0.10) | 0.68 (0.06) | 0.04 (−0.01, 0.09) |
BA (cm2) | ||||||
L1L4 | 29.6 (3.4) | 30.3 (3.4) | −0.8 (−2.3, 0.8) | 27.8 (3.4) | 29.0 (3.5) | −1.2 (−3.2, 0.9) |
Femoral neck | 3.6 (0.4) | 3.7 (0.3) | −0.1 (−0.2, 0.1) | 3.6 (0.3) | 3.6 (0.4) | 0.0 (−0.2, 0.2) |
QUS | ||||||
SOS (m/s) | 1533.6 (23.4) | 1532.6 (18.4) | 1.0 (−12.0, 13.9) | 1525.3 (17.5) | 1522.7 (15.9) | 2.6 (−9.1, 14.3) |
PT (Nm) | ||||||
PTflex60 | 23.7 (6.5) | 25.9 (7.0) | −2.2 (−5.3, 0.9) | 21.1 (5.7) | 24.5 (5.3) | −3.4 (−6.7, −0.1) |
PTflex180 | 21.5 (5.5) | 24.7 (6.6) | −3.2 (−5.9, −0.5) | 19.1 (6.3) | 22.1 (4.5) | −3.1 (−6.6, 0.4) |
Composite score | −0.07 (0.70) | 0 | −0.06 (−0.40, 0.28) | 0.23 (1.25) | 0 | 0.24 (−0.33, 0.81) |
Boys | Girls | |||||||
---|---|---|---|---|---|---|---|---|
Intervention (n = 63) | Control (n = 26) | Mean Difference a | p Value a | Intervention (n = 34) | Control (n = 17) | Mean Difference a | p Value a | |
BC (kg) | ||||||||
Lean mass | 29.6 (4.8) | 28.8 (4.2) | 1.2 (−0.8, 3.3) | 0.24 | 18.6 (2.8) | 18.3 (3.4) | 0.6 (−1.2, 2.5) | 0.49 |
BMC (g) | ||||||||
Total body less head | 1710.5 (352.4) | 1666.9 (386.1) | 96.1 (−58.9, 251.1) | 0.22 | 1437.9 (295.5) | 1287.5 (252.1) | 171.0 (31.1, 310.9) | 0.02 |
L1L4 | 43.2 (10.3) | 39.9 (11.8) | 5.3 (1.0, 9.6) | 0.02 | 41.6 (9.4) | 35.3 (7.4) | 6.6 (2.3, 10.9) | 0.003 |
Femoral neck | 3.1 (0.7) | 2.9 (0.9) | 0.1 (−0.2, 0.5) | 0.44 | 2.8 (0.8) | 2.2 (0.7) | 0.6 (0.1, 1.1) | 0.03 |
aBMD (g/cm2) | ||||||||
Total body less head | 0.37 (0.07) | 0.36 (0.08) | 0.02 (−0.02, 0.05) | 0.30 | 0.35 (0.06) | 0.30 (0.05) | 0.05 (0.02, 0.08) | 0.004 |
L1L4 | 0.43 (0.10) | 0.39 (0.10) | 0.05 (0.01, 0.10) | 0.03 | 0.50 (0.11) | 0.41 (0.08) | 0.10 (0.04, 0.16) | 0.002 |
Femoral neck | 0.28 (0.10) | 0.27 (0.13) | 0.02 (−0.04, 0.07) | 0.52 | 0.34 (0.10) | 0.30 (0.11) | 0.05 (−0.02, 0.11) | 0.17 |
BA (cm2) | ||||||||
L1L4 | 27.4 (4.4) | 25.7 (4.7) | 2.2 (0.2, 4.1) | 0.03 | 23.1 (3.1) | 21.7 (2.8) | 1.9 (0.2, 3.6) | 0.03 |
Femoral neck | 1.9 (0.4) | 1.8 (0.5) | 0.0 (−0.2, 0.2) | 0.80 | 1.5 (0.5) | 1.2 (0.5) | 0.3 (0.0, 0.6) | 0.03 |
QUS | ||||||||
SOS (m/s) | 61.1 (39.4) | 72.8 (37.9) | −10.1 (−32.3, 12.1) | 0.37 | 86.4 (35.7) | 42.5 (24.9) | 41.4 (15.6, 67.3) | 0.003 |
PT (Nm) | ||||||||
PTflex60 | 68.4 (21.1) | 66.2 (16.4) | 2.9 (−6.6, 12.4) | 0.55 | 44.3 (11.3) | 38.3 (13.3) | 7.7 (−0.2, 15.7) | 0.06 |
PTflex180 | 51.5 (13.4) | 43.7 (9.9) | 8.2 (2.2, 14.2) | 0.008 | 30.7 (8.8) | 25.8 (9.5) | 4.6 (−1.4, 10.5) | 0.13 |
Composite score | 0.30 (0.55) | 0 (1) | 0.29 (0.05, 0.54) | 0.02 | 0.31 (0.88) | 0 (1) | 0.43 (0.08, 0.78) | 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cronholm, F.; Lindgren, E.; Rosengren, B.E.; Dencker, M.; Karlsson, C.; Karlsson, M.K. Daily School Physical Activity from before to after Puberty Improves Bone Mass and a Musculoskeletal Composite Risk Score for Fracture. Sports 2020, 8, 40. https://doi.org/10.3390/sports8040040
Cronholm F, Lindgren E, Rosengren BE, Dencker M, Karlsson C, Karlsson MK. Daily School Physical Activity from before to after Puberty Improves Bone Mass and a Musculoskeletal Composite Risk Score for Fracture. Sports. 2020; 8(4):40. https://doi.org/10.3390/sports8040040
Chicago/Turabian StyleCronholm, Felix, Erik Lindgren, Björn E. Rosengren, Magnus Dencker, Caroline Karlsson, and Magnus K. Karlsson. 2020. "Daily School Physical Activity from before to after Puberty Improves Bone Mass and a Musculoskeletal Composite Risk Score for Fracture" Sports 8, no. 4: 40. https://doi.org/10.3390/sports8040040
APA StyleCronholm, F., Lindgren, E., Rosengren, B. E., Dencker, M., Karlsson, C., & Karlsson, M. K. (2020). Daily School Physical Activity from before to after Puberty Improves Bone Mass and a Musculoskeletal Composite Risk Score for Fracture. Sports, 8(4), 40. https://doi.org/10.3390/sports8040040