No Ergogenic Effect of Caffeine or Sodium Bicarbonate on Resistance Exercise Performance: A Double-Blind Crossover Study with Sex-Based Analysis
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Design
2.3. Familiarization
2.4. Body Composition and Water Content
2.5. Supplement Protocol
2.6. 12 RM Testing Protocol
2.7. Electromyography (EMG)
2.8. Blood Lactate, Heart Rate (HR), and Ratings of Perceived Exertion (RPE)
2.9. Statistical Analysis
3. Results
3.1. Knee Extension (KE) and Chest Press (CP) Repetitions
3.2. EMG and RPE
3.3. Diastolic Blood Pressure
3.4. Extracellular Water/Total Body Water (ECW/TBW)
3.5. Main Effects for Time and Sets
3.6. Sex Differences
4. Discussion
4.1. Knee Extension (KE) and Chest Press (CP) Repetitions
4.2. Rating of Perceived Exertion (RPE)
4.3. Electromyography (EMG)
4.4. Blood Pressure
4.5. Extracellular Water/Total Body Water (ECW/TBW)
4.6. Sex Differences
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilding, A.E.; Overton, C.; Gleave, J. Effects of caffeine, sodium bicarbonate, and their combined ingestion on high-intensity cycling performance. Intern. J. Sport. Nutr. Exerc. Metab. 2012, 22, 175–183. [Google Scholar] [CrossRef]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef]
- Ribeiro, J.A.; Sebastião, A.M. Caffeine and adenosine. J. Alzheimer’s Dis. 2010, 20 (Suppl. 1), S3–S15. [Google Scholar] [CrossRef]
- Ferragut, C.; Gonzalo-Encabo, P.; López-Samanes, Á.; Valadés, D.; Pérez-López, A. Effect of Acute Sodium Bicarbonate and Caffeine Coingestion on Repeated-Sprint Performance in Recreationally Trained Individuals: A Randomized Controlled Trial. Intern. J. Sports Physiol. Perform. 2024, 19, 427–434. [Google Scholar] [CrossRef]
- Behm, D.G. Neuromuscular Implications and Applications of Resistance Training. J. Strength Cond. Res. 1995, 9, 264. [Google Scholar]
- Grgic, J.; Mikulic, P.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. The Influence of Caffeine Supplementation on Resistance Exercise: A Review. Sports Med. 2019, 49, 17–30. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Intern. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.H.B.; Forbes, S.C.; Barros, M.P.; Smolarek, A.C.; Enes, A.; Lancha-Junior, A.H.; Martins, G.L.; Souza-Junior, T.P. High doses of caffeine increase muscle strength and calcium release in the plasma of recreationally trained men. Nutrients 2022, 14, 4921. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Pedisic, Z.; Saunders, B.; Artioli, G.G.; Schoenfeld, B.J.; McKenna, M.J.; Bishop, D.J.; Kreider, R.B.; Stout, J.R.; Kalman, D.S.; et al. International Society of Sports Nutrition position stand: Sodium bicarbonate and exercise performance. J. Intern. Soc. Sports Nutr. 2021, 18, 61. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Grgic, I.; Del Coso, J.; Schoenfeld, B.J.; Pedisic, Z. Effects of sodium bicarbonate supplementation on exercise performance: An umbrella review. J. Intern. Soc. Sports Nutr. 2021, 18, 71. [Google Scholar] [CrossRef]
- Domaszewski, P.; Pakosz, P.; Konieczny, M.; Baczkowicz, D.; Sadowska-Krepa, E. Caffeine-induced effects on human skeletal muscle contraction time and maximal displacement measured by tensiomyography. Nutrients 2021, 13, 815. [Google Scholar] [CrossRef]
- Martins, G.L.; Guilherme, J.P.L.F.; Ferreira, L.H.B.; de Souza-Junior, T.P.; Lancha, A.H. Caffeine and Exercise Performance: Possible Directions for Definitive Findings. Front. Sports Act. Living 2020, 2, 574854. [Google Scholar] [CrossRef]
- Bilondi, H.T.; Valipour, H.; Khoshro, S.; Jamilian, P.; Ostadrahimi, A.; Zarezadeh, M. The effect of caffeine supplementation on muscular strength and endurance: A meta-analysis of meta-analyses. Heliyon 2024, 10, e35025. [Google Scholar] [CrossRef] [PubMed]
- Serra-Prat, M.; Lorenzo, I.; Papiol, M.; Palomera, E.; Bartolomé, M.; Pleguezuelos, E.; Burdoy, E. Intracellular Water Content in Lean Mass as an Indicator of Muscle Quality in an Older Obese Population. J. Clin. Med. 2020, 9, 1580. [Google Scholar] [CrossRef] [PubMed]
- Schoffstall, J.E.; Branch, J.D.; Leutholtz, B.C.; Swain, D.P. Effects of Dehydration and Rehydration on the One-Repetition Maximum Bench Press of Weight-Trained Males. J. Strength Cond. Res. 2001, 15, 102–108. [Google Scholar]
- Ribeiro, A.S.; Avelar, A.; Schoenfeld, B.J.; Ritti Dias, R.M.; Altimari, L.R.; Cyrino, E.S. Resistance training promotes increase in intracellular hydration in men and women. Eur. J. Sport. Sci. 2014, 14, 578–585. [Google Scholar] [CrossRef]
- Cholewa, J.M.; Rossi, F.E.; MacDonald, C.; Hewins, A.; Gallo, S.; Micenski, A.; Norton, L.; Campbell, B.I. The Effects of Moderate- Versus High-Load Resistance Training on Muscle Growth, Body Composition, and Performance in Collegiate Women. J. Strength Cond. Res. 2018, 32, 1511–1524. [Google Scholar] [CrossRef]
- Antonio, J.; Newmire, D.E.; Stout, J.R.; Antonio, B.; Gibbons, M.; Lowery, L.M.; Harper, J.; Willoughby, D.; Evans, C.; Anderson, D.; et al. Common questions and misconceptions about caffeine supplementation: What does the scientific evidence really show? J. Intern. Soc. Sports Nutr. 2024, 21, 2323919. [Google Scholar] [CrossRef]
- Silva, A.M.; Júdice, P.B.; Matias, C.N.; Santos, D.A.; Magalhães, J.P.; St-Onge, M.-P.; Gonçalves, E.M.; Armada-da-Silva, P.; Sardinha, L.B. Total body water and its compartments are not affected by ingesting a moderate dose of caffeine in healthy young adult males. Appl. Physiol. Nutr. Metab. 2013, 38, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Sabol, F.; Grgic, J.; Mikulic, P. The Effects of 3 Different Doses of Caffeine on Jumping and Throwing Performance: A Randomized, Double-Blind, Crossover Study. Intern. J. Sports Physiol. Perform. 2019, 14, 1170–1177. [Google Scholar] [CrossRef]
- Siquier-Coll, J.; Delgado-García, G.; Soto-Méndez, F.; Liñán-González, A.; García, R.; González-Fernández, F.T. The Effect of Caffeine Supplementation on Female Volleyball Players’ Performance and Wellness during a Regular Training Week. Nutrients 2023, 16, 29. [Google Scholar] [CrossRef]
- Hadzic, M.; Eckstein, M.L.; Schugardt, M. The Impact of Sodium Bicarbonate on Performance in Response to Exercise Duration in Athletes: A Systematic Review. J. Sports Sci. Med. 2019, 18, 271–281. [Google Scholar] [PubMed]
- Saunders, B.; de Oliveira, L.F.; Dolan, E.; Durkalec-Michalski, K.; McNaughton, L.; Artioli, G.G.; Swinton, P.A. Sodium bicarbonate supplementation and the female athlete: A brief commentary with small scale systematic review and meta-analysis. Eur. J. Sport. Sci. 2022, 22, 745–754. [Google Scholar] [CrossRef]
- McNaughton, L.R.; Gough, L.; Deb, S.; Bentley, D.; Sparks, S.A. Recent Developments in the Use of Sodium Bicarbonate as an Ergogenic Aid. Curr. Sports Med. Rep. 2016, 15, 233–244. [Google Scholar] [CrossRef]
- Montalvo-Alonso, J.J.; Ferragut, C.; Del Val-Manzano, M.; Valadés, D.; Roberts, J.; Pérez-López, A. Sex Differences in the Ergogenic Response of Acute Caffeine Intake on Muscular Strength, Power and Endurance Performance in Resistance-Trained Individuals: A Randomized Controlled Trial. Nutrients 2024, 16, 1760. [Google Scholar] [CrossRef]
- Lew, L.A.; Williams, J.S.; Stone, J.C.; Au, A.K.W.; Pyke, K.E.; MacDonald, M.J. Examination of Sex-Specific Participant Inclusion in Exercise Physiology Endothelial Function Research: A Systematic Review. Front. Sports Act. Living 2022, 4, 860356. [Google Scholar] [CrossRef]
- Battazza, R.A.; Kalytczak, M.M.; Leite, D.F.C.; Rica, R.L.; Lamolha, M.A.; Maia, A.H.; Bergamin, A.F.; Baker, J.S.; Politti, F.; Bocalini, D.S. Effect of Sodium Bicarbonate Supplementation on Muscle Performance and Muscle Damage: A Double Blind, Randomized Crossover Study. J. Diet. Suppl. 2023, 20, 689–705. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, V.L.; Messias, F.R.; Zanchi, N.E.; Gerlinger-Romero, F.; Duncan, M.J.; Guimarães-Ferreira, L. Effects of acute caffeine ingestion on resistance training performance and perceptual responses during repeated sets to failure. J. Sports Med. Phys. Fit. 2015, 55, 383–389. [Google Scholar]
- Romero-Moraleda, B.; Coso, J.D.; Gutiérrez-Hellín, J.; Ruiz-Moreno, C.; Grgic, J.; Lara, B. The Influence of the Menstrual Cycle on Muscle Strength and Power Performance. J. Human. Kinet. 2019, 68, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Romero-Moraleda, B.; Del Coso, J.; Gutiérrez-Hellín, J.; Lara, B. The Effect of Caffeine on the Velocity of Half-Squat Exercise during the Menstrual Cycle: A Randomized Controlled Trial. Nutrients 2019, 11, 2662. [Google Scholar] [CrossRef]
- Lara, B.; Gutiérrez-Hellín, J.; García-Bataller, A.; Rodríguez-Fernández, P.; Romero-Moraleda, B.; Del Coso, J. Ergogenic effects of caffeine on peak aerobic cycling power during the menstrual cycle. Eur. J. Nutr. 2020, 59, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Gutiérrez-Hellín, J.; Ruíz--Moreno, C.; Romero--Moraleda, B.; Del Coso, J. Acute caffeine intake increases performance in the 15--s Wingate test during the menstrual cycle. Br. J. Clin. Pharmacol. 2020, 86, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Umlauff, L.; Weil, P.; Zimmer, P.; Hackney, A.C.; Bloch, W.; Schumann, M. Oral Contraceptives Do Not Affect Physiological Responses to Strength Exercise. J. Strength Cond. Res. 2021, 35, 894–901. [Google Scholar] [CrossRef]
- Miyazaki, M.; Maeda, S. Changes in hamstring flexibility and muscle strength during the menstrual cycle in healthy young females. J. Phys. Ther. Sci. 2022, 34, 92–98. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Jamnik, V.K.; Bredin, S.S.D.; Gledhill, N. The Physical Activity Readiness Questionnaire for Everyone (PAR-Q+) and Electronic Physical Activity Readiness Medical Examination (ePARmed-X+). Health Fit. J. Can. 2011, 4, 3–17. [Google Scholar]
- National Strength and Conditioning Association. NSCA Tools and Resources. NSCA Tools and Resources. [Online]. 2012. Available online: https://www.nsca.com/education/tools-and-resources/ (accessed on 22 April 2025).
- Grgic, J. Effects of Caffeine on Resistance Exercise: A Review of Recent Research. Sports Med. 2021, 51, 2281–2298. [Google Scholar] [CrossRef]
- Siegler, J.C.; Marshall, P.W.M.; Finn, H.; Cross, R.; Mudie, K. Acute attenuation of fatigue after sodium bicarbonate supplementation does not manifest into greater training adaptations after 10-weeks of resistance training exercise. PLoS ONE 2018, 13, e0196677. [Google Scholar] [CrossRef]
- Halperin, I.; Aboodarda, S.J.; Basset, F.A.; Behm, D.G. Knowledge of repetitions range affects force production in trained females. J. Sports Sci. Med. 2014, 13, 736–741. [Google Scholar]
- Ramsay, E.; Alizadeh, S.; Summers, D.; Hodder, A.; Behm, D.G. The Effect of a Mental Task versus Unilateral Physical Fatigue on Non-local Muscle Fatigue in Recreationally Active Young Adults. J. Sports Sci. Med. 2023, 22, 548–557. [Google Scholar] [CrossRef]
- Glenn, J.M.; Gray, M.; Wethington, L.N.; Stone, M.S.; Stewart, R.W.; Moyen, N.E. Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. Eur. J. Nutr. 2017, 56, 775–784. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Lippincott, Williams and Wilkins: London, UK, 2014. [Google Scholar]
- Behm, D.G.; Colwell, E.M.; Power, G.M.J.; Ahmadi, H.; Behm, A.S.M.; Bishop, A.; Murphy, C.; Pike, J.; McAssey, B.; Fraser, K.; et al. Transcutaneous Electrical Nerve Stimulation Improves Fatigue Performance of the Treated and Contralateral Knee Extensors. Eur. J. Appl. Physiol. 2019, 119, 2745–2755. [Google Scholar] [CrossRef]
- Halperin, I.; Copithorne, D.; Behm, D.G. Unilateral isometric muscle fatigue decreases force production and activation of contralateral knee extensors but not elbow flexors. Appl. Physiol Nutr. Metab. 2014, 39, 1–7. [Google Scholar] [CrossRef]
- Zahiri, A.; Goudini, R.; Alizadeh, S.; Daneshjoo, A.; Mahmoud, M.M.I.; Konrad, A.; Granacher, U.; Behm, D.G. The duration of non-local muscle fatigue effects. J. Sport. Sci. Med. 2024, 23, 425–435. [Google Scholar] [CrossRef]
- Graham, A.P.; Gardner, H.; Chaabene, H.; Talpey, S.; Alizadeh, S.; Behm, D.G. Maximal and Submaximal Intensity Isometric Knee Extensions Induce an Underestimation of Time Estimates with both Younger and Older Adults: A Randomized Crossover Trial. J. Sport. Sci. Med. 2023, 22, 405–415. [Google Scholar] [CrossRef]
- Ferreira, T.T.; Da Silva, J.V.F.; Bueno, N.B. Effects of caffeine supplementation on muscle endurance, maximum strength, and perceived exertion in adults submitted to strength training: A systematic review and meta-analyses. Crit. Rev. Food Sci. Nutr. 2021, 61, 2587–2600. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test–Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: A Systematic Review. Sports Med.-Open 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Lyons, M.; Hankey, J. Placebo effects of caffeine on short-term resistance exercise to failure. Intern. J. Sports Physiol. Perform. 2009, 4, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Fontanella, L.R.; Azara, C.; Scudese, E.; Silva, D.d.O.; Nogueira, C.J.; Costa, M.S.E.; Senna, G.W. Sodium bicarbonate supplementation in resistance exercise performance, perceived exertion and blood lactate concentration. Mot. Rev. De Educ. Física 2020, 26, e10200215. [Google Scholar] [CrossRef]
- Carr, B.M.; Webster, M.J.; Boyd, J.C.; Hudson, G.M.; Scheett, T.P. Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance. Eur. J. Appl. Physiol. 2013, 113, 743–752. [Google Scholar] [CrossRef]
- Bouissou, P.; Defer, G.; Guezennec, C.Y.; Estrade, P.Y.; Serrurier, B. Metabolic and blood catecholamine responses to exercise during alkalosis. Med. Sci. Sports Exerc. 1988, 20, 228. [Google Scholar] [CrossRef]
- Ferreira, L.H.B.; Smolarek, A.C.; Chilibeck, P.D.; Barros, M.P.; McAnulty, S.R.; Schoenfeld, B.J.; Zandona, B.A.; Souza-Junior, T.P. High doses of sodium bicarbonate increase lactate levels and delay exhaustion in a cycling performance test. Nutrition 2019, 60, 94–99. [Google Scholar] [CrossRef]
- Pollo, A.; Carlino, E.; Benedetti, F. The top--down influence of ergogenic placebos on muscle work and fatigue. Eur. J. Neurosci. 2008, 28, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Green, J.M.; Wickwire, P.J.; McLester, J.R.; Gendle, S.; Hudson, G.; Pritchett, R.C.; Laurent, C.M. Effects of caffeine on repetitions to failure and ratings of perceived exertion during resistance training. Intern. J. Sports Physiol. Perform. 2007, 2, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Hudson, G.M.; Green, J.M.; Bishop, P.A.; Richardson, M.T. Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J. Strength Cond. Res. 2008, 22, 1950–1957. [Google Scholar] [CrossRef] [PubMed]
- Pakulak, A.; Candow, D.G.; Totosy de Zepetnek, J.; Forbes, S.C.; Basta, D. Effects of Creatine and Caffeine Supplementation During Resistance Training on Body Composition, Strength, Endurance, Rating of Perceived Exertion and Fatigue in Trained Young Adults. J. Diet. Suppl. 2022, 19, 587–602. [Google Scholar] [CrossRef]
- Doherty, M.; Smith, P.M. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scand. J. Med. Sci. Sports 2005, 15, 69–78. [Google Scholar] [CrossRef]
- Birnbaum, L.J.; Herbst, J.D. Physiologic Effects of Caffeine on Crosscountry Runners. J. Strength Cond. Res. 2004, 18, 463. [Google Scholar] [CrossRef]
- Killen, L.G.; Green, J.M.; O’Neal, E.K.; McIntosh, J.R.; Hornsby, J.; Coates, T.E. Effects of caffeine on session ratings of perceived exertion. Eur. J. Appl. Physiol. 2013, 113, 721–727. [Google Scholar] [CrossRef]
- Duncan, M.J.; Weldon, A.; Price, M.J. The Effect of Sodium Bicarbonate Ingestion on Back Squat and Bench Press Exercise to Failure. J. Strength Cond. Res. 2014, 28, 1358. [Google Scholar] [CrossRef]
- Marriott, M.; Krustrup, P.; Mohr, M. Ergogenic effects of caffeine and sodium bicarbonate supplementation on intermittent exercise performance preceded by intense arm cranking exercise. J. Intern. Soc. Sports Nutr. 2015, 12, 13. [Google Scholar] [CrossRef]
- Greer, F.; Morales, J.; Coles, M. Wingate performance and surface EMG frequency variables are not affected by caffeine ingestion. Appl. Physiol. Nutr. Metab. 2006, 31, 597–603. [Google Scholar] [CrossRef]
- Franco-Alvarenga, P.E.; Brietzke, C.; Canestri, R.; Goethel, M.F.; Viana, B.F.; Pires, F.O. Caffeine Increased Muscle Endurance Performance Despite Reduced Cortical Activation and Unchanged Neuromuscular Efficiency and Corticomuscular Coherence. Nutrients 2019, 11, 2471. [Google Scholar] [CrossRef]
- Trevino, M.A.; Coburn, J.W.; Brown, L.E.; Judelson, D.A.; Malek, M.H. Acute Effects of Caffeine on Strength and Muscle Activation of the Elbow Flexors. J. Strength Cond. Res. 2015, 29, 513. [Google Scholar] [CrossRef]
- Mor, A.; Acar, K.; Alexe, D.I.; Mor, H.; Abdioğlu, M.; Man, M.C.; Karakaș, F.; Waer, F.B.; Yılmaz, A.K.; Alexe, C.I. Moderate-dose caffeine enhances anaerobic performance without altering hydration status. Front. Nutr. 2024, 11, 1359999. [Google Scholar] [CrossRef] [PubMed]
- Kaçoğlu, C.; Kirkaya, İ.; Ceylan, H.İ.; De Assis, G.G.; Almeida-Neto, P.; Bayrakdaroğlu, S.; Chaves Oliveira, C.; Özkan, A.; Nikolaidis, P.T. Pre-Exercise Caffeine and Sodium Bicarbonate: Their Effects on Isometric Mid-Thigh Pull Performance in a Crossover, Double-Blind, Placebo-Controlled Study. Sports 2024, 12, 206. [Google Scholar] [CrossRef]
- Szivak, T.K.; Hooper, D.R.; Dunn-Lewis, C.; Comstock, B.A.; Kupchak, B.R.; Apicella, J.M.; Saenz, C.; Maresh, C.M.; Denegar, C.R.; Kraemer, W.J. Adrenal Cortical Responses to High-Intensity, Short Rest, Resistance Exercise in Men and Women. J. Strength Cond. Res. 2013, 27, 748. [Google Scholar] [CrossRef] [PubMed]
- Holfelder, B.; Brown, N.; Bubeck, D. The Influence of Sex, Stroke and Distance on the Lactate Characteristics in High Performance Swimming. PLoS ONE 2013, 8, e77185. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, Y.; Saito, M.; Homma, H.; Inoguchi, T.; Naito, T.; Sakamaki-Sunaga, M.; Kikuchi, N. Does resistance exercise lifting velocity change with different rest intervals? J. Sports Med. Phys. Fit. 2022, 63, 402–408. [Google Scholar] [CrossRef]
- Hunter, S.K. Sex differences in human fatigability: Mechanisms and insight to physiological responses. Acta Physiol. 2014, 210, 768–789. [Google Scholar] [CrossRef]
- Nuzzo, J.L. Narrative Review of Sex Differences in Muscle Strength, Endurance, Activation, Size, Fiber Type, and Strength Training Participation Rates, Preferences, Motivations, Injuries, and Neuromuscular Adaptations. J. Strength Cond. Res. 2023, 37, 494. [Google Scholar] [CrossRef]
- Genovesi, S.; Zaccaria, D.; Rossi, E.; Valsecchi, M.G.; Stella, A.; Stramba-Badiale, M. Effects of exercise training on heart rate and QT interval in healthy young individuals: Are there gender differences? EP Eur. 2007, 9, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Castinheiras-Neto, A.G.; Costa-Filho, I.R.; da and Farinatti, P.T.V. Cardiovascular responses to resistance exercise are affected by workload and intervals between sets. Arq. Bras. De Cardiol. 2010, 95, 493–501. [Google Scholar] [CrossRef]
- Ritti-Dias, R.M.; Avelar, A.; Salvador, E.P.; Cyrino, E.S. Influence of Previous Experience on Resistance Training on Reliability of One-Repetition Maximum Test. J. Strength Cond. Res. 2011, 25, 1418. [Google Scholar] [CrossRef] [PubMed]


| Pre-Test Means (95% CI) | Post-Test Means (95% CI) | F Values | p Value and Effect Size | Observed Power | |
|---|---|---|---|---|---|
| ECW/TBW | 0.370 (0.364–0.376) | 0.374 (0.369–0.380) | 114.54 | <0.001 ηp2: 0.927 | 1.00 |
| Blood Lactate (mg/dL) | 37.13 (26.5–47.7) | 130.11 (112.5–147.6) | 63.15 | <0.001 ηp2: 0.875 | 1.00 |
| Systolic Blood Pressure (mmHg) | 115.71 (110.8–120.5) | 132.04 (127.3–136.7) | 24.87 | <0.001 ηp2: 0.713 | 1.00 |
| Set 1 | Set 2 | Set 3 | Set 4 | Set 5 | Set 6 | F | p | Power | |
|---|---|---|---|---|---|---|---|---|---|
| Knee extension repetitions | 13.46 (11.5–15.3) | 8.71 (7.6–9.8) | 7.2 (6.1–8.2) | 6.5 (5.6–7.4) | 5.6 (4.7–6.5) | 6.03 (5.1–7.0) | 99.1 | <0.001 ηp2: 0.908 | 1.00 |
| Sig different from other sets | 2–6 | 1, 3–6 | 1, 2, 4–6 | 1–3, 5 | 1–4 | 1–3 | |||
| Knee extension RPE | 7.67 (6.6–8.7) | 8.39 (7.6–9.1) | 8.75 (8.1–9.3) | 9.03 (8.5–9.5) | 9.31 (8.8–9.7) | 9.45 (9.0–9.8) | 20.1 | <0.001 ηp2: 0.668 | 1.00 |
| Sig | 2–6 | 1, 5, 6 | 1, 6 | 1, 5 | 1, 2, 4 | 1–3 | |||
| Rectus femoris EMG (final/1st rep)*100 | 30.46 (1.3–62.2) | 18.18 (2.6–33.6) | 10.84 (5.5–27.2) | 6.08 (8.1–20.3) | 6.79 (4.6–18.2) | 6.96 (2.2–16.1) | 2.7 | 0.08 ηp2: 0.217 | 0.78 |
| Sig | NS | NS | NS | NS | NS | NS | |||
| Chest press repetitions | 15.04 (13.6–16.4) | 7.81 (6.8–8.8) | 5.62 (4.7–6.5) | 4.80 (4.2–5.4) | 4.51 (3.8–5.1) | 4.58 (3.7–5.4) | 118.1 | <0.001 ηp2: 0.922 | 1.00 |
| Sig | 2–6 | 1, 3–6 | 1, 2 | 1, 2 | 1, 2 | 1, 2 | |||
| Chest press RPE | 7.46 (6.4–8.4) | 8.02 (7.2–8.8) | 8.57 (7.9–9.1) | 8.88 (8.3–9.4) | 9.05 (8.5–9.5) | 9.3 (8.7–9.8) | 21.3 | <0.001 ηp2: 0.681 | 1.00 |
| Sig different from other sets | 3–6 | 3–6 | 1, 2, 4–6 | 1–3 | 1–3 | 1–3 |
| RHR | Set 1 | Set 2 | Set 3 | Set 4 | Set 5 | Set 6 | F | p | Power | |
|---|---|---|---|---|---|---|---|---|---|---|
| KE HR | 64.79 (61.3–68.3) | 142.62 (120.2–165.1) | 135.69 (115.9–155.4) | 137.38 (119.9–154.8) | 137.06 (121.7–152.4) | 135.31 (119.7–150.9) | 138.61 (123.5–153.7) | 64.28 | <0.001 ηp2: 0.865 | 1.00 |
| Sig | 1–6 | |||||||||
| CP HR | 64.79 (61.3–68.3) | 142.07 (123.6–160.4) | 134.40 (116.8–151.9) | 134.12 (119.5–148.7) | 127.47 (111.6–143.3) | 130.78 (115.1–146.4) | 134.5 (120.0–149.1) | 74.84 | <0.001 ηp2: 0.887 | 1.00 |
| Sig | 1–6 | 4–5 | 4 | 1, 2, 6 | 1 | 4 |
| Males | Females | F | p | Power | |
|---|---|---|---|---|---|
| Blood lactate | 98.15 (84.1–112.1) | 77.38 (64.59–90.17) | 6.13 | 0.035 ηp2: 0.405 | 0.598 |
| Chest press repetitions | 4.3 (3.5–5.1) | 9.8 (9.1–10.5) | 138.49 | <0.001 ηp2: 0.933 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, M.L.A.; Barrett, C.M.E.; Lawson, E.; Major, C.P.; Shea, A.S.M.; Squires, K.; Squires, M.; Zare, R.; Heinrich, K.M.; Behm, D.G. No Ergogenic Effect of Caffeine or Sodium Bicarbonate on Resistance Exercise Performance: A Double-Blind Crossover Study with Sex-Based Analysis. Sports 2025, 13, 427. https://doi.org/10.3390/sports13120427
Williams MLA, Barrett CME, Lawson E, Major CP, Shea ASM, Squires K, Squires M, Zare R, Heinrich KM, Behm DG. No Ergogenic Effect of Caffeine or Sodium Bicarbonate on Resistance Exercise Performance: A Double-Blind Crossover Study with Sex-Based Analysis. Sports. 2025; 13(12):427. https://doi.org/10.3390/sports13120427
Chicago/Turabian StyleWilliams, Melissa L. A., Catherine Mary Evelyn Barrett, Ethan Lawson, Colin P. Major, Ashley Sandra May Shea, Karlie Squires, Megan Squires, Reza Zare, Katie M. Heinrich, and David George Behm. 2025. "No Ergogenic Effect of Caffeine or Sodium Bicarbonate on Resistance Exercise Performance: A Double-Blind Crossover Study with Sex-Based Analysis" Sports 13, no. 12: 427. https://doi.org/10.3390/sports13120427
APA StyleWilliams, M. L. A., Barrett, C. M. E., Lawson, E., Major, C. P., Shea, A. S. M., Squires, K., Squires, M., Zare, R., Heinrich, K. M., & Behm, D. G. (2025). No Ergogenic Effect of Caffeine or Sodium Bicarbonate on Resistance Exercise Performance: A Double-Blind Crossover Study with Sex-Based Analysis. Sports, 13(12), 427. https://doi.org/10.3390/sports13120427

