Chronic Effects of a Dynamic Stretching and Core Stability Exercise Protocol on Physical Performance in U-16 Volleyball Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Testing Procedures
2.3.1. Anthropometric Measures
2.3.2. Countermovement Jump (CMJ)
2.3.3. Dynamic Balance Test (mSEBT)
2.3.4. Athletic Shoulder Test I-Position (ASH-I)
2.3.5. Vertec (V) Test with Run-Up Approach
2.3.6. Agility t-Test
2.3.7. StretCor Protocol
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kallerud, H.; Gleeson, N. Effects of stretching on performances involving stretch-shortening cycles. Sports Med. 2013, 43, 733–750. [Google Scholar] [CrossRef]
- Dalrymple, K.J.; Davis, S.E.; Dwyer, G.B.; Moir, G.L. Effect of static and dynamic stretching on vertical jump performance in collegiate women volleyball players. J. Strength Cond. Res. 2010, 24, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Ruffieux, J.; Wälchli, M.; Kim, K.M.; Taube, W. Countermovement Jump Training Is More Effective Than Drop Jump Training in Enhancing Jump Height in Non-professional Female Volleyball Players. Front. Physiol. 2020, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Faries, M.D.; Greenwood, M. Core Training: Stabilizing the Confusion. Strength Cond. J. 2007, 29, 10–25. [Google Scholar] [CrossRef]
- Smith, C.E.; Nyland, J.; Caudill, P.; Brosky, J.; Caborn, D.N. Dynamic trunk stabilization: A conceptual back injury prevention program for volleyball athletes. J. Orthop. Sports Phys. Ther. 2008, 38, 703–720. [Google Scholar] [CrossRef]
- Yapici, A. Effects of 6 weeks core training on balance, strength and service performance in volleyball players. Eur. J. Phys. Educ. Sport Sci. 2019, 5, 12. [Google Scholar] [CrossRef]
- Silva, L.M.; Neiva, H.P.; Marques, M.C.; Izquierdo, M.; Marinho, D.A. Effects of Warm-Up, Post-Warm-Up, and Re-Warm-Up Strategies on Explosive Efforts in Team Sports: A Systematic Review. Sports Med. 2018, 48, 2285–2299. [Google Scholar] [CrossRef]
- Zemková, E.; Zapletalová, L. The Role of Neuromuscular Control of Postural and Core Stability in Functional Movement and Athlete Performance. Front. Physiol. 2022, 13, 796097. [Google Scholar] [CrossRef]
- Behm, D.G.; Blazevich, A.J.; Kay, A.D.; McHugh, M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Appl. Physiol. Nutr. Metab. 2016, 41, 1–11. [Google Scholar] [CrossRef]
- Ficarra, S.; Scardina, A.; Nakamura, M.; Patti, A.; Şahin, F.N.; Palma, A.; Bellafiore, M.; Bianco, A.; Thomas, E. Acute effects of static stretching and proprioceptive neuromuscular facilitation on non-local range of movement. Res. Sports Med. 2024, 32, 1015–1027. [Google Scholar] [CrossRef]
- Behm, D.G.; Chaouachi, A. A review of the acute effects of static and dynamic stretching on performance. Eur. J. Appl. Physiol. 2011, 111, 2633–2651. [Google Scholar] [CrossRef]
- Alipasali, F.; Papadopoulou, S.D.; Gissis, I.; Komsis, G.; Komsis, S.; Kyranoudis, A.; Knechtle, B.; Nikolaidis, P.T. The Effect of Static and Dynamic Stretching Exercises on Sprint Ability of Recreational Male Volleyball Players. Int. J. Environ. Res. Public Health 2019, 16, 2835. [Google Scholar] [CrossRef]
- Bazett-Jones, D.M.; Gibson, M.H.; McBride, J.M. Sprint and vertical jump performances are not affected by six weeks of static hamstring stretching. J. Strength Cond. Res. 2008, 22, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, D.M.; Lima, C.S. Influence of chronic stretching on muscle performance: Systematic review. Hum. Mov. Sci. 2017, 54, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Soh, K.G.; Soh, K.L.; Sun, H.; Nasiruddin, N.J.M.; Du, C.; Zhai, X. Effect of Core Training on Skill Performance Among Athletes: A Systematic Review. Front. Physiol. 2022, 13, 915259. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Xu, Y.; Zhang, Z.; Sun, Y.; Zhong, J.; Ding, C. The impact of core training on overall athletic performance in different sports: A comprehensive meta-analysis. BMC Sports Sci. Med. Rehabil. 2025, 17, 112. [Google Scholar] [CrossRef]
- Bavli, Ö.; Koç, C.B. Effect of Different Core Exercises Applied during the Season on Strength and Technical Skills of Young Footballers. J. Educ. Train. Stud. 2018, 6, 72–76. [Google Scholar] [CrossRef]
- Dogan, O.; Savaş, S. Effect of an 8-Weeks Core Training Program Applied to 12–14 Years Old Basketball Players on Strength, Balance and Basketball. Pak. J. Med. Health Sci. 2021, 15, 823–829. [Google Scholar]
- Kamal, O. Effects of Core Strength Training on Karate Spinning Wheel Kick and Certain Physical Variables for Young Female. Sci. Mov. Health 2015, 25, 504–509. [Google Scholar]
- Martone, D.; Russomando, L.; Cosco, L.F.; Dei, S.; Emerenziani, G.P.; Buono, P. Post-activation potentiation enhancement of dynamic stretching and core stability exercise protocol on physical performance U-16 volleyball players: A pilot study. Acta Kinesiologica 2024, 18, 4–11. [Google Scholar] [CrossRef]
- Sundaram, V. The importance of randomization in clinical research. Indian J. Thorac. Cardiovasc. Surg. 2022, 38, 562–565. [Google Scholar] [CrossRef]
- Drust, B.; Whaterhouse, J.; Atkinsonm, G.; Edwards, B.; Reilly, T. Circadian rhythms in sports performance—An update. Chronobiol. Int. 2005, 22, 21–44. [Google Scholar] [CrossRef]
- Parpa, K.; Katanic, B.; Michaelides, M. Seasonal Variation and the Effect of the Transition Period on Physical Fitness Parameters in Youth Female Soccer Players. Sports 2024, 12, 84. [Google Scholar] [CrossRef] [PubMed]
- Neelly, K.; Wallmann, H.W.; Backus, C.J. Validity of measuring leg length with a tape measure compared to a computed tomography scan. Physiother. Theory Pract. 2013, 29, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.A.; McKay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.; Cameron, N.; Brasher, P.M. Enhancing a Somatic Maturity Prediction Model. Med. Sci. Sports Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Rusko, H. The effect of prolonged skeletal muscle stretch-shortening cycle on recoil of elastic energy and on energy expenditure. Acta Physiol. Scand. 1983, 119, 219–224. [Google Scholar] [CrossRef]
- Heishman, A.D.; Daub, B.D.; Miller, R.M.; Freitas, E.D.; Frantz, B.A.; Bemben, M.G. Countermovement jump reliability performed with and without an arm swing in NCAA division 1 intercollegiate basketball players. J. Strength Cond. Res. 2020, 34, 546–558. [Google Scholar] [CrossRef]
- Philipp, N.M.; Cabarkapa, D.; Eserhaut, D.A.; Cabarkapa, D.V.; Fry, A.C. Countermovement jump force-time metrics and maximal horizontal deceleration performance in professional male basketball players. J. Appl. Sports Sci. 2022, 2, 11–27. [Google Scholar] [CrossRef]
- van Lieshout, R.; Reijneveld, E.A.; van den Berg, S.M.; Haerkens, G.M.; Koenders, N.H.; de Leeuw, A.J.; van Oorsouw, R.G.; Paap, D.; Scheffer, E.; Weterings, S.; et al. Reproducibility of the modified star excursion balance test composite and specific reach direction scores. Int. J. Sports Phys. Ther. 2016, 11, 356–365. [Google Scholar]
- Gribble, P.A.; Hertel, J. Considerations for Normalizing Measures of the Star Excursion Balance Test. Meas. Phys. Educ. Exerc. Sci. 2003, 7, 89–100. [Google Scholar] [CrossRef]
- Ashworth, B.; Hogben, P.; Singh, N.; Tulloch, L.; Cohen, D.D. The Athletic Shoulder (ASH) test: Reliability of a novel upper body isometric strength test in elite rugby players. BMJ Open Sport Exerc. Med. 2018, 4, e000365. [Google Scholar] [CrossRef]
- Sattler, T.; Hadžić, V.; Dervišević, E.; Markovic, G. Vertical jump performance of professional male and female volleyball players: Effects of playing position and competition level. J. Strength Cond. Res. 2015, 29, 1486–1493. [Google Scholar] [CrossRef]
- Semenick, D. Tests and measurements: The t-test. Strength Cond. J. 2012, 12, 36–37. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- The Jamovi Project. Jamovi, version 2.6.28; Computer Software; The Jamovi Project: Sydney, Australia, 2023. Available online: https://www.jamovi.org (accessed on 25 March 2025).
- Şahin, E.; Özdal, M. Effect of core exercises on balance and vertical jump of 12–14 aged female volleyball players. Eur. J. Phys. Educ. Sport Sci. 2020, 6, 47–55. [Google Scholar]
- Sharma, A.; Geovinson, S.G.; Singh Sandhu, J. Effects of a nine-week core strengthening exercise program on vertical jump performances and static balance in volleyball players with trunk instability. J. Sports Med. Phys. Fitness. 2012, 52, 606–615. [Google Scholar]
- Fogliata, A.; Silvestri, F.; Marcelli, L.; Gallotta, M.C.; Curzi, D. How Body-Centering improves the effects of core stability Training on the motor skills in adolescent female volleyball players. J. Funct. Morphol. Kinesiol. 2025, 10, 144. [Google Scholar] [CrossRef]
- Wdowski, M.M.; Rosicka, K.; Hill, M. Influence of lower-limb muscular and tendon mechanical properties and strength on countermovement jump performance. J. Sports Med. Phys. Fitness. 2023, 63, 16–22. [Google Scholar] [CrossRef]
- Kubo, K.; Morimoto, M.; Komuro, T.; Tsunoda, N.; Kanehisa, H.; Fukunaga, T. Influences of tendon stiffness, joint stiffness, and electromyographic activity on jump performances using single joint. Eur. J. Appl. Physiol. 2007, 99, 235–243. [Google Scholar] [CrossRef]
- Pentidis, N.; Mersmann, F.; Bohm, S.; Giannakou, E.; Aggelousis, N.; Arampatzis, A. Effects of long-term athletic training on muscle morphology and tendon stiffness in preadolescence: Association with jump performance. Eur. J. Appl. Physiol. 2020, 120, 2715–2727. [Google Scholar] [CrossRef]
- Fuchs, P.X.; Fusco, A.; Cortis, C.; Wagner, H. Effects of Differential Jump Training on Balance Performance in Female Volleyball Players. Appl. Sci. 2020, 10, 5921. [Google Scholar] [CrossRef]
- Samson, M.; Button, D.C.; Chaouachi, A.; Behm, D.G. Effects of dynamic and static stretching within general and activity specific warm-up protocols. J. Sports Sci. Med. 2012, 11, 279–285. [Google Scholar]
- Molla, R.Y.; Fatahi, A.; Khezri, D.; Ceylan, H.I.; Nobari, H. Relationship between impulse and kinetic variables during jumping and landing in volleyball players. BMC Musculoskelet. Disord. 2023, 24, 619. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; van den Tillaar, R.; Seiler, S. Effect of core stability training on throwing velocity in female handball players. J. Strength Cond. Res. 2011, 25, 712–718. [Google Scholar] [CrossRef]
- Konrad, A.; Alizadeh, S.; Daneshjoo, A.; Anvar, S.H.; Graham, A.; Zahiri, A.; Goudini, R.; Edwards, C.; Scharf, C.; Behm, D.G. Chronic effects of stretching on range of motion with consideration of potential moderating variables: A systematic review with meta-analysis. J. Sport Health Sci. 2024, 13, 186–194. [Google Scholar] [CrossRef]



| IG (n = 12; 5 M, 7 F) | CG (n = 6 M; 3 F) | p-Value | |
|---|---|---|---|
| Age (years) | 15.2 ± 0.3 | 15.1 ± 0.8 | 0.782 |
| Stature (m) | 1.65 ± 0.1 | 1.63 ± 0.1 | 0.630 |
| Body mass (kg) | 61.9 ± 13.7 | 62.3 ± 8.0 | 0.943 |
| Body mass index (kg·m−2) | 22.7 ± 4.0 | 23.4 ± 2.6 | 0.640 |
| Lower limb length right (cm) | 86.0 ± 3.5 | 85.5 ± 5.4 | 0.801 |
| Lower limb length left (cm) | 85.8 ± 3.4 | 85.3 ± 5.4 | 0.800 |
| Test (Units) | ICC | 95% CI | CV | 95% CI | |
|---|---|---|---|---|---|
| mSEBT normANT (%) normPM (%) normPL (%) COMP (%) mSEBT normANT (%) normPM (%) normPL (%) COMP (%) Vertec (V) test Jump height (cm) ASH-I MIF—right limb (kg) MIF—left limb (kg) CMJ Jump height (cm) Peak power/BM (W/kg) T-test (s) | Right lower limb Left lower limb | 0.89 0.80 0.68 0.79 0.61 0.86 0.77 0.57 0.92 0.96 0.89 0.97 0.94 0.70 | 0.80–0.95 0.62–0.92 0.44–0.86 0.60–0.91 0.35–0.82 0.73–0.947 0.58–0.90 0.30–0.80 0.80–0.95 0.92–0.98 0.80–0.95 0.94–0.98 0.90–0.96 0.54–0.95 | 3.15 3.34 2.03 3.10 4.89 3.02 4.62 4.28 1.50 4.23 10.67 3.78 3.08 3.29 | 2.10–5.35 2.23–5.67 1.35–3.45 2.07–5.27 3.15–8.93 1.94–5.52 2.97–8.44 2.99–7.51 1.14–1.97 2.98–7.53 7.50–19.00 2.36–6.03 2.36–4.62 3.04–7.00 |
| Variable (Units) | IG (n = 12) | CG (n = 9) | Main Effects | |||
|---|---|---|---|---|---|---|
| Pre | Post | Pre | Post | Time × Group | Time | |
| mSEBT Right lower limb | F(1,19) | F(1,19) | ||||
| normANT (%) | 70.23 ± 8.48 | 77.16 ± 7.50 * | 70.57 ± 4.87 | 70.53 ± 4.47 | F = 30.2 (p < 0.001, η2 = 0.61) | F = 30.8 (p < 0.001, η2 = 0.61) |
| normPM (%) | 91.62 ± 4.18 | 96.26 ± 4.20 * | 95.12 ± 6.29 | 95.91 ± 6.44 | F = 28.8 (p < 0.001, η2 = 0.62) | F = 57.2 (p < 0.001, η2 = 0.75) |
| normPL (%) | 101.49 ± 12.37 | 106.43 ± 12.20 * | 98.83 ± 7.46 | 99.83 ± 8.04 | F = 34.2 (p < 0.001, η2 = 0.64) | F = 77.6 (p < 0.001, η2 = 0.80) |
| COMPs (%) | 87.78 ± 7.48 | 93.28 ± 7.24 * | 88.17 ± 3.58 | 88.61 ± 3.29 | F = 78.0 (p < 0.001, η2 = 0.80) | F = 107.9 (p < 0.001, η2 = 0.85) |
| mSEBT Left lower limb | F(1,19) | F(1,19) | ||||
| normANT (%) | 70.26 ± 6.84 | 76.41 ± 7.64 * | 69.89 ± 5.31 | 70.94 ± 5.89 | F = 28.0 (p < 0.001, η2 = 0.59) | F = 56.1 (p < 0.001, η2 = 0.75) |
| normPM (%) | 89.79 ± 4.82 | 94.13 ± 4.62 * | 91.83 ± 6.15 | 93.51 ± 7.88 | F = 6.3 (p < 0.001, η2 = 0.25) | F = 32.6 (p < 0.001, η2 = 0.63) |
| normPL (%) | 97.89 ± 10.46 | 104.28 ± 11.64 * | 96.53 ± 7.73 | 96.26 ± 8.75 | F = 21.8 (p < 0.001, η2 = 0.53) | F = 18.4 (p < 0.001, η2 = 0.49) |
| COMPs (%) | 85.99 ± 6.96 | 91.11 ± 7.32 * | 86.08 ± 4.20 | 86.81 ± 4.61 | F = 102.0 (p < 0.001, η2 = 0.84) | F = 191.0 (p < 0.001, η2 = 0.90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancini, A.; Cosco, L.F.; Monda, V.; Emerenziani, G.P.; Martone, D.; Buono, P. Chronic Effects of a Dynamic Stretching and Core Stability Exercise Protocol on Physical Performance in U-16 Volleyball Players. Sports 2025, 13, 413. https://doi.org/10.3390/sports13110413
Mancini A, Cosco LF, Monda V, Emerenziani GP, Martone D, Buono P. Chronic Effects of a Dynamic Stretching and Core Stability Exercise Protocol on Physical Performance in U-16 Volleyball Players. Sports. 2025; 13(11):413. https://doi.org/10.3390/sports13110413
Chicago/Turabian StyleMancini, Annamaria, Loretta Francesca Cosco, Vincenzo Monda, Gian Pietro Emerenziani, Domenico Martone, and Pasqualina Buono. 2025. "Chronic Effects of a Dynamic Stretching and Core Stability Exercise Protocol on Physical Performance in U-16 Volleyball Players" Sports 13, no. 11: 413. https://doi.org/10.3390/sports13110413
APA StyleMancini, A., Cosco, L. F., Monda, V., Emerenziani, G. P., Martone, D., & Buono, P. (2025). Chronic Effects of a Dynamic Stretching and Core Stability Exercise Protocol on Physical Performance in U-16 Volleyball Players. Sports, 13(11), 413. https://doi.org/10.3390/sports13110413

