An Insight into Biology, Function and Pest Management Guidance of Gut Microbiota in Spodoptera frugiperda
Simple Summary
Abstract
1. Introduction
2. Composition of Gut Microbiota in Spodoptera frugiperda
3. Diversity of Spodoptera frugiperda Gut Symbionts
4. Methods for Exploring Gut Microbiota
4.1. Culture-Dependent Methods
4.2. Culture-Independent Methods
5. Function Modulated by Gut Microbiota
5.1. Role of Gut Symbionts in Xenobiotic Degradation In Vitro
5.2. Role of Gut Symbionts in Altering Host Tolerance In Vivo
5.3. Interactive Relationships Involving Gut Symbionts
6. Techniques for Insect Pest Control
6.1. Incompatible Insect Techniques (IIT)
6.1.1. Symbiont Discovery and Screening
6.1.2. Laboratory Validation
6.1.3. Contained Field Trial (e.g., Large Field Cages)
6.2. Genetic Modification of Symbionts
6.2.1. Engineer Symbiont
6.2.2. Assess Efficacy
6.2.3. Risk Assessment
6.3. Chemicals Applied in Field Management
7. Future Perspectives and Challenges
7.1. Core Breakthrough: Addressing Ecological Complexity in Field
7.2. Technical Foundation: Breaking Through the Bottleneck of Axenic Insect Rearing
7.3. Method Innovation: Advancing Gut Microbiome Culturomics
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AMPs | Antimicrobial peptides |
| CI | Cytoplasmic Incompatibility |
| dsRNA | Double-stranded RNA |
| ERA | Environmental Risk Assessment |
| EU | European Union |
| GMO | Genetically Modified Organism |
| HGT | Horizontal Gene Transfer |
| IIT | Incompatible insect techniques |
| IPM | Integrated pest management |
| LMOs | Living Modified Organisms |
| MARA | The Ministry of Agriculture and Rural Affairs of the People’s Republic of China |
| MEL | Mannose erythritol lipid |
| PVC | Polyvinyl chloride |
References
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef]
- Sun, X.; Hu, C.; Jia, H.; Wu, Q.; Shen, X.; Zhao, S.; Jiang, Y.; Wu, K. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. J. Integr. Agric. 2021, 20, 664–672. [Google Scholar] [CrossRef]
- Yan, X.R.; Wang, Z.Y.; Feng, S.Q.; Zhao, Z.H.; Li, Z.H. Impact of temperature change on the Fall Armyworm, Spodoptera frugiperda under global climate change. Insects 2022, 13, 981. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.R.; Zhao, Z.H.; Feng, S.Q.; Zhang, Y.J.; Wang, Z.Y.; Li, Z.H. Multi-omics analysis reveal the fall armyworm Spodoptera frugiperda tolerate high temperature by mediating chitin-related genes. Insect Biochem. Mol. Biol. 2024, 174, 104192. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E.; Abbott, J. The Natural History of the Rarer Lepidopterous Insects of Georgia Including Their Systematic Characters, the Particulars of Their Several Metamorphoses, and the Plants on Which They Feed; Collected from the Observation of Mr. John Abbot, Many Years Resident in That Country; The Lepidopterists’ News: London, UK, 1797. [Google Scholar]
- Glover, T. Insects Frequenting the Cotton-Plant; U. S. Commissioner of Patents for the Year 1855. Agriculture; Cornelius Wendell, Printer: Washington, DC, USA, 1856; pp. 64–115. [Google Scholar]
- Luginbill, P. The Fall Armyworm: USDA Technical Bulletin No. 34; United States Department of Agriculture: Washington, DC, USA, 1928; Volume 34, 92p. [Google Scholar]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef] [PubMed]
- Mendesil, E.; Tefera, T.; Blanco, C.A.; Paula-Moraes, S.V.; Huang, F.; Viteri, D.M.; Hutchison, W.D. The invasive fall armyworm, Spodoptera frugiperda, in Africa and Asia: Responding to the food security challenge, with priorities for integrated pest management research. J. Plant Dis. Prot. 2023, 130, 1175–1206. [Google Scholar] [CrossRef]
- Yousaf, S.; Rehman, A.; Masood, M.; Ali, K.; Suleman, N. Occurrence and molecular identification of an invasive rice strain of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Sindh, Pakistan, using mitochondrial cytochrome c oxidase I gene sequences. J. Plant Dis. Prot. 2022, 129, 71–78. [Google Scholar] [CrossRef]
- Bajracharya, A.S.R.; Bhat, B.; Sharma, P.; Pathour, S.; Meshram Naresh, M.; Raza, H.T. First record of fall armyworm Spodoptera frugiperda (J.E. Smith) from Nepal. Indian J. Entomol. 2019, 81, 635–639. [Google Scholar] [CrossRef]
- Lee, G.S.; Seo, B.Y.; Lee, J.; Kim, H.; Song, J.H.; Lee, W. First report of the fall armyworm, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae), a new migratory pest in Korea. Korean J. Appl. Entomol. 2020, 59, 73–78. [Google Scholar]
- Wu, M.F.; Qi, G.J.; Chen, H.; Ma, J.; Liu, J.; Jiang, Y.Y.; Lee, G.S.; Otuka, A.; Hu, G. Overseas immigration of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) invading Korea and Japan in 2019. Insect Sci. 2022, 29, 505–520. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Liu, J.; Xie, M.C.; Li, Y.H.; Yang, J.J.; Zhang, M.L.; Qiu, K. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Prot. 2019, 45, 10–19. [Google Scholar]
- National Agro-Tech Extension and Service Center (NATESC). Forecast of Disease and Pest Occurrence Trends in Corn During the Middle and Late Growth Stages. 2025. Available online: https://www.natesc.org.cn/news/des?id=95f817ee-95b4-460d-b24f-5124523fc3ae&Category=%E5%85%A8%E6%96%87%E6%90%9C%E7%B4%A2&CategoryId=d6a35339-e804-4f90-bf93-927382b1fd22 (accessed on 24 July 2025).
- EPPO. EPPO Datasheet: Spodoptera frugiperda. 2020. Available online: https://gd.eppo.int/taxon/LAPHFR/datasheet (accessed on 25 June 2020).
- MARA. Announcement No. 567. 2022. Available online: https://www.moa.gov.cn/govpublic/KJJYS/202211/t20221109_6415160.htm (accessed on 20 December 2022).
- MARA. Announcement No. 654. 2023. Available online: https://www.moa.gov.cn/govpublic/ZZYGLS/202303/t20230314_6422981.htm (accessed on 7 March 2023).
- Douglas, A.E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 2015, 60, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Akami, M.; Ren, X.; Qi, X.; Mansour, A.; Gao, B.; Cao, S.; Niu, C. Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera: Tephritidae). BMC Microbiol. 2019, 19, 229. [Google Scholar] [CrossRef]
- Schwab, D.B.; Riggs, H.E.; Newton, I.L.; Moczek, A.P. Developmental and ecological benefits of the maternally transmitted microbiota in a dung beetle. Am. Nat. 2016, 188, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Mason, C.J.; Felton, G.W. Toward an integrated understanding of the Lepidoptera microbiome. Annu. Rev. Entomol. 2024, 69, 117–137. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, H.; Lai, Y.; Chen, Q.; Yu, X.Q.; Wang, X. Gut microbiota dysbiosis influences metabolic homeostasis in Spodoptera frugiperda. Front. Microbiol. 2021, 12, 727434. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Fan, X.; Yu, C.; Feng, L.; Yi, L. An insight into diversity and functionalities of gut microbiota in insects. Curr. Microbiol. 2020, 77, 1976–1986. [Google Scholar] [CrossRef]
- Ugwu, J.A.; Wenzi, R.; Asiegbu, F.O. Monocot diet sources drive diversity of gut bacterial communities in Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. J. Appl. Entomol. 2022, 146, 942–956. [Google Scholar] [CrossRef]
- Wu, L.; Hu, C.; Liu, T. Metagenomic profling of gut microbiota in Fall Armyworm (Spodoptera frugiperda) larvae fed on different host plants. BMC Microbiol. 2024, 24, 337. [Google Scholar] [CrossRef]
- Chen, J.; Ma, Y.; Huang, S.; Li, J.; Zhang, Y.; Wang, H.; Qi, G.; Shi, Q.; Zhang, Z.; Yang, M.; et al. The dynamics of the microbial community in fall armyworm Spodoptera frugiperda during a life cycle. Entomol. Exp. Appl. 2023, 171, 502–513. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, T.; Huang, Y.; Chen, C.; Nai, Y. Investigation of the fall armyworm (Spodoptera frugiperda) gut microbiome and entomopathogenic fungus-induced pathobiome. J. Invertebr. Pathol. 2023, 200, 107976. [Google Scholar] [CrossRef]
- Lü, D.; Dong, Y.; Yan, Z.; Liu, X.; Zhang, Y.; Yang, D.; He, K.; Wang, Z.; Wang, P.; Yuan, X.; et al. Dynamics of gut microflora across the life cycle of Spodoptera frugiperda and its effects on the feeding and growth of larvae. Pest Manag. Sci. 2023, 79, 173–182. [Google Scholar] [CrossRef]
- Gichuhi, J.; Sevgan, S.; Khamis, F.; Van den Berg, J.; du Plessis, H.; Ekesi, S.; Herren, J.K. Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. PeerJ 2020, 8, e8701. [Google Scholar] [CrossRef]
- Colston, T.J.; Jackson, C.R. Microbiome evolution along divergent branches of the vertebrate tree of life: What is known and unknown. Mol. Ecol. 2016, 25, 3776–3800. [Google Scholar] [CrossRef]
- Mannaa, M.; Mansour, A.; Park, I.; Lee, D.W.; Seo, Y.S. Insectbased agri-food waste valorization: Agricultural applications and roles of insect gut microbiota. Environ. Sci. Ecotechnol. 2024, 17, 100287. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, S.; Yang, X.; Cheng, J.; Wei, H.; Li, Z.; Michaud, J.P.; Liu, X. Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 2020, 11, 1366. [Google Scholar] [CrossRef]
- Landry, M.; Comeau, A.M.; Derome, N.; Cusson, M.; Levesque, R.C. Composition of the spruce budworm (Choristoneura fumiferana) midgut microbiota as affected by rearing conditions. PLoS ONE 2015, 10, e0144077. [Google Scholar] [CrossRef]
- Xia, X.; Zheng, D.; Zhong, H.; Qin, B.; Gurr, G.M.; Vasseur, L.; Lin, H.; Bai, J.; He, W.; You, M. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 2013, 8, e68852. [Google Scholar] [CrossRef]
- Snyman, M.; Gupta, A.K.; Bezuidenhout, C.C.; Claassens, S.; Van den Berg, J. Gut microbiota of Busseola fusca (Lepidoptera: Noctuidae). World J. Microb. Bio. 2016, 32, 115. [Google Scholar] [CrossRef]
- Belda, E.; Pedrola, L.; Peretó, J.; Martínez-Blanch, J.F.; Montagud, A.; Navarro, E.; Urchueguía, J.; Ramón, D.; Moya, A.; Porcar, M. Microbial diversity in the midguts of field and lab-reared populations of the European corn borer Ostrinia nubilalis. PLoS ONE 2011, 6, e21751. [Google Scholar] [CrossRef] [PubMed]
- Paniagua Voirol, L.R.; Frago, E.; Kaltenpoth, M.; Hilker, M.; Fatouros, N.E. Bacterial symbionts in lepidoptera: Their diversity, transmission, and impact on the host. Front. Microbiol. 2018, 9, 556. [Google Scholar] [CrossRef]
- Fu, J.; Wang, J.; Huang, X.; Guan, B.; Feng, Q.; Deng, H. Composition and diversity of gut microbiota across developmental stages of Spodoptera frugiperda and its effect on the reproduction. Front. Microbiol. 2023, 14, 1237684. [Google Scholar] [CrossRef]
- Gomes, A.F.F.; Omoto, C.; Cônsoli, F.L. Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J. Pest Sci. 2020, 93, 833–851. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, Z.; Yu, J.; Li, Z.; Liu, X.; Xu, H. Comparison of gut bacterial communities and their associations with host diets in four fruit borers. Pest Manag. Sci. 2020, 76, 1353–1362. [Google Scholar] [CrossRef]
- Morales-Jiménez, J.; Zúñiga, G.; Ramírez-Saad, H.C.; Hernández-Rodríguez, C. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb. Ecol. 2012, 64, 268–278. [Google Scholar] [CrossRef]
- Palacio, M.F.H.; Montoya, O.I.; Saldamando, C.I.; García-Bonilla, E.; Junca, H.; CadavidRestrepo, G.E.; Moreno-Herrera, C.X. Dry and rainy seasons significantly alter the gut microbiome composition and reveal a key enterococcus sp. (Lactobacillales: Enterococcaceae) core component in Spodoptera frugiperda (Lepidoptera: Noctuidae) corn strain from Northwestern Colombia. J. Insect Sci. 2021, 21, 10. [Google Scholar] [CrossRef]
- Chen, B.; Du, K.; Sun, C.; Vimalanathan, A.; Liang, X.; Li, Y.; Wang, B.; Lu, X.; Li, L.; Shao, Y. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 2018, 12, 2252–2262. [Google Scholar] [CrossRef]
- Tang, X.; Freitak, D.; Vogel, H.; Ping, L.; Shao, Y.; Cordero, E.A.; Andersen, G.; Westermann, M.; Heckel, D.G.; Boland, W. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE 2012, 7, e36978. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Geng, J.K.; Xu, S.; Tang, Y.L.; Gu, R.C.; Wei, J.H.; Pang, G.Q.; Zhou, Z.Y. Isolation and identification of intestinal fungi of fall armyworm larvae in Chongqing area. J. Southwest Univ. (Nat. Sci. Ed.) 2019, 41, 1–8. [Google Scholar]
- Shu, S.O.; McHugh, J.V.; Pollock, D.D.; Blackwell, M. The beetle gut: A hyperdiverse source of novel yeasts. Mycol. Res. 2005, 109, 261–265. [Google Scholar] [CrossRef]
- Tarayre, C.; Bauwens, J.; Brasseur, C.; Mattéotti, C.; Millet, C.; Guiot, P.A.; Destain, J.; Vandenbol, M.; Portetelle, D.; De Pauw, E.; et al. Isolation and cultivation of xylanolytic and cellulolytic Sarocladium kiliense and Trichoderma virens from the gut of the termite Reticulitermes santonensis. Environ. Sci. Pollut. Res. 2015, 2, 4369–4382. [Google Scholar] [CrossRef]
- Zhao, D.Y. Research progress on microbial degradation of petroleum hydrocarbon pollutants. Environ. Prot. Circ. Econ. 2012, 32, 48–51. [Google Scholar]
- Tanaka, E.; Koitabashi, M.; Kitamoto, H. A teleomorph of the ustilaginalean yeast Moesziomyces antarcticus on barnyardgrass in Japan provides bioresources that degrade biodegradable plastics. Antonie Van Leeuwenhoek 2019, 112, 599–614. [Google Scholar] [CrossRef]
- Wang, L.Y. The Study on Liquid Submerged Culture and Industrial Application of Acinomucor elegans; Hebei University: Baoding, China, 2002. [Google Scholar]
- Xu, Y.; Alia, T.; Li, X.Y.; Shi, W.P.; Cao, C. The discovery of viruses associated with the fall armyworm Spodoptera frugiperda by high-throughput sequencing. J. Plant Prot. 2020, 47, 807–814. [Google Scholar]
- Huang, K.; Wang, J.; Huang, J.; Zhang, S.; Vogler, A.P.; Liu, Q.; Li, Y.; Yang, M.; Li, Y.; Zhou, X. Host phylogeny and diet shape gut microbial communities within bamboo-feeding insects. Front. Microbiol. 2021, 12, 633075. [Google Scholar] [CrossRef]
- Marín-Miret, J.; González-Serrano, F.; Rosas, T.; Baixeras, J.; Latorre, A.; PérezCobas, A.E.; Moya, A. Temporal variations shape the gut microbiome ecology of the moth Brithys crini. Environ. Microbiol. 2022, 24, 3939–3953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; He, J.; Shen, X.; Sun, C.; Muhammad, A.; Shao, Y. Contribution of sample processing to gut microbiome analysis in the model Lepidoptera, silkworm Bombyx mori. Comput. Struct. Biotec. 2021, 19, 4658–4668. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, D.T.; Ren, Q.L.; Zhang, L.; Cheng, Y.X.; Jiang, X.F. Feeding experience on hairy vetch induces a loss of host-specifc adaptation to maize and changes in the gut microbiota communities of the fall armyworm. J. Pest Sci. 2024, 97, 777–792. [Google Scholar] [CrossRef]
- Oliveira, N.C.d.; Cônsoli, F.L. Dysbiosis of the larval gut microbiota of Spodoptera frugiperda strains feeding on different host plants. Symbiosis 2023, 89, 197–211. [Google Scholar] [CrossRef]
- Xu, X.; De Mandal, S.; Wu, H.; Zhu, S.; Kong, J.; Lin, S.; Jin, F. Effect of diet on the midgut microbial composition and host immunity of the fall armyworm, Spodoptera frugiperda. Biology 2022, 11, 1602. [Google Scholar] [CrossRef]
- Lv, D.; Liu, X.; Dong, Y.; Yan, Z.; Zhang, X.; Wang, P.; Yuan, X.; Li, Y. Comparison of gut bacterial communities of fall armyworm (Spodoptera frugiperda) reared on different host plants. Int. J. Mol. Sci. 2021, 22, 11266. [Google Scholar] [CrossRef]
- Castañeda-Molina, Y.; Marulanda-Moreno, S.M.; Saldamando-Benjumea, C.; Junca, H.; Moreno-Herrera, C.X.; CadavidRestrepo, G. Microbiome analysis of Spodoptera frugiperda (Lepidoptera, Noctuidae) larvae exposed to Bacillus thuringiensis (Bt) endotoxins. PeerJ 2023, 11, e15916. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Fan, R.; Liu, Y.; Syed, A.H.; Benlin, Y.; Chu, Q.; Ding, Z.; Ghani, M.I.; Liu, X.; Wakil, W.; et al. The larval gut of Spodoptera frugiperda harbours culturable bacteria with metabolic versatility after insecticide exposure. Insect Mol. Biol. 2025, 34, 452–469. [Google Scholar] [CrossRef]
- Hammer, T.J.; Janzen, D.H.; Hallwachs, W.; Jafe, S.P.; Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. USA 2017, 114, 9641–9646. [Google Scholar] [CrossRef]
- Mason, C.J.; St Clair, A.; Peiffer, M.; Gomez, E.; Jones, A.G.; Felton, G.W.; Hoover, K. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 2020, 15, e0229848. [Google Scholar] [CrossRef]
- Lü, J.; Guo, W.; Chen, S.; Guo, M.; Qiu, B.; Yang, C.; Lian, T.; Pan, H. Host plants influence the composition of the gut bacteria in Henosepilachna vigintioctopunctata. PLoS ONE 2019, 14, e0224213. [Google Scholar] [CrossRef] [PubMed]
- Ingber, D.A.; McDonald, J.H.; Mason, C.E.; Flexner, L. Oviposition preferences, Bt susceptibilities, and tissue feeding of fall armyworm (Lepidoptera: Noctuidae) host strains. Pest Manag. Sci. 2021, 77, 4091–4099. [Google Scholar] [CrossRef]
- Chen, Y.P.; Li, Y.H.; Sun, Z.X.; Du, E.W.; Lu, Z.H.; Li, H.; Gui, F.R. Effects of host plants on bacterial community structure in larvae midgut of Spodoptera frugiperda. Insects 2022, 13, 373. [Google Scholar] [CrossRef] [PubMed]
- Han, W.K.; Tang, F.X.; Yan, Y.Y.; Wang, Y.; Liu, Z.W. Plasticity of the gene transcriptional level and microbiota in the gut contributes to the adaptability of the fall armyworm to rice plants. J. Agric. Food Chem. 2023, 71, 18546–18556. [Google Scholar] [CrossRef]
- Jones, A.G.; Mason, C.J.; Felton, G.W.; Hoover, K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci. Rep. 2019, 9, 2792. [Google Scholar] [CrossRef]
- Watson, M.; May, G.; Bushley, K.E. Sources of fungal symbionts in the microbiome of a mobile insect host Spodoptera frugiperda. Microb. Ecol. 2023, 86, 900–913. [Google Scholar] [CrossRef]
- Mereghetti, V.; Chouaia, B.; Montagna, M. New insights into the microbiota of moth pests. Int. J. Mol. Sci. 2017, 18, 2450. [Google Scholar] [CrossRef]
- Liu, Y.P. Study on the Mechanism of Gut Bacteria-Mediated Gluttony of Spodoptera frugiperda, a Major Invasive Pest in China. Ph.D. Thesis, Hubei University, Wuhan, China, 2024. [Google Scholar]
- Almeida, L.G.d.; Moraes, L.A.B.d.; Trigo, J.R.; Omoto, C.; Cônsoli, F.L. The gut microbiota of insecticide-resistant insects houses insecticide degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE 2017, 12, e0174754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mao, K.; Chen, K.; Zhao, Z.; Ju, F. Symbiont community assembly shaped by insecticide exposure and feedback on insecticide resistance of Spodoptera frugiperda. Commun. Biol. 2024, 7, 1194. [Google Scholar] [CrossRef] [PubMed]
- Hoefel, D.; Monis, P.T.; Grooby, W.L.; Andrews, S.; Saint, C.P. Culture-independent techniques for rapid detection of bacteria associated with loss of chloramine residual in a drinking water system. Appl. Environ. Microbiol. 2005, 71, 6479–6488. [Google Scholar] [CrossRef]
- Kisand, V.; Wikner, J. Combining culture-dependent and—Independent methodologies for estimation of richness of estuarine bacterioplankton consuming riverine dissolved organic matter. Appl. Environ. Microbiol. 2003, 69, 3607–3616. [Google Scholar] [CrossRef]
- Vaz-Moreira, I.; Egas, C.; Nunes, O.C.; Manaia, C.M. Culture-dependent and culture-independent diversity surveys target different bacteria: A case study in a freshwater sample. Antonie Van Leeuwenhoek 2011, 100, 245–257. [Google Scholar] [CrossRef]
- Gong, J.; Yang, C. Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Res. Int. 2012, 48, 916–929. [Google Scholar] [CrossRef]
- Chu, B.; Ge, S.; He, W.; Sun, X.; Ma, J.; Yang, X.; Lv, C.; Xu, P.; Zhao, X.; Wu, K. Gut symbiotic bacteria enhance reproduction in Spodoptera frugiperda (J.E. Smith) by regulating juvenile hormone III and 20-hydroxyecdysone pathways. Microbiome 2025, 13, 132. [Google Scholar] [CrossRef]
- Li, Q.Y.; Tang, Y.L.; Jiang, R.X.; Zhang, Y.H.; Zhu, F.; Bai, X.R.; Gu, R.C.; Wu, Y.Y.; Wu, Y.J.; Chen, J.; et al. Isolation and identification of gut bacteria of Spodoptera frugiperda feeding on maize in Yunnan, China. J. Southwest Univ. (Nat. Sci. Ed.) 2022, 42, 1–8. [Google Scholar]
- Zhang, S.S.; Cai, H.L.; Zhang, X.X.; Yang, Z.X. Identification of the intestinal bacteria in Spodoptera frugiperda collected from Changde area and analysis of potential host plants. J. Hunan Agric. Univ. (Nat. Sci.) 2020, 46, 319–323. [Google Scholar]
- Zhang, K.; Yang, G.Y.; Chen, S.H.; Wang, G.; Jin, S.T.; Cai, H.B.; Chen, B. Effects of lufenuron median lethal concentration on intestinal culturable bacterial community of Spodoptera frugiperda (Smith) larvae. J. South. Agric. 2025, 56, 827–839. [Google Scholar]
- Romero, S.; Nastasa, A.; Chapman, A.; Kwong, W.K.; Foster, L.J. The honey bee gut microbiota: Strategies for study and characterization. Insect Mol. Biol. 2019, 28, 455–472. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Cai, X.; Yang, X.; Lin, J.; Shu, B. The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cru ciferous vegetables. Sci. Rep. 2022, 12, 13063. [Google Scholar]
- McCarthy, C.B.; Cabrera, N.A.; Virla, E.G. Metatranscriptomic analysis of larval guts from field-collected and laboratory-reared Spodoptera frugiperda from the South American subtropical region. Genome Announc. 2015, 3, e00777-15. [Google Scholar] [CrossRef]
- Rozadilla, G.; Cabrera, N.A.; Virla, E.G.; Greco, N.M.; McCarthy, C.B. Gut microbiota of Spodoptera frugiperda (J.E. Smith) larvae as revealed by metatranscriptomic analysis. J. Appl. Entomol. 2020, 144, 351–363. [Google Scholar] [CrossRef]
- Acevedo, F.E.; Peiffer, M.; Tan, C.W.; Stanley, B.A.; Stanley, A.; Wang, J.; Jones, A.G.; Hoover, K.; Rosa, C.; Luthe, D.; et al. Fall armyworm-associated gut bacteria modulate plant defense responses. Mol. Plant Microbe Interact. 2017, 30, 127–137. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, R.; Zhao, J.; Lu, S.; Liu, Y.; Huang, D.; Zhang, J.; Liu, L.; Zhou, X.; Tang, Q. Gut bacteria of the fall armyworm, Spodoptera frugiperda, promote host resistance against the toxic effects of lufenuron. J. Pest Sci. 2025, 98, 1413–1429. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, Z.; Kang, X.; Zhang, Y.; Zhang, H.; Wang, Y.; Yang, D.; Zhang, J.; Wang, Y.; Cui, L.; et al. Unveiling gut microbiota and metabolic functions contributed to polyvinyl chloride degradation in Spodoptera frugiperda larvae. J. Hazard. Mater. 2025, 492, 138209. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.J.; Ray, S.; Shikano, I.; Peiffer, M.; Jones, A.G.; Luthe, D.S.; Hoover, K.; Felton, G.W. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proc. Natl. Acad. Sci. USA 2019, 116, 15991–15996. [Google Scholar] [CrossRef]
- Cheng, D.; Guo, Z.; Riegler, M.; Xi, Z.; Liang, G.; Xu, Y. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 2017, 5, 13. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Hayatsu, M.; Hosokawa, T.; Nagayama, A.; Tago, K.; Fukatsu, T. Symbiont-mediated insecticide resistance. Proc. Nat. Acad. Sci. USA 2012, 10922, 8618–8622. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, J.A.; Khan, M.M.; Bamisile, B.S.; Hafeez, M.; Qasim, M.; Rasheed, M.T.; Rasheed, M.A.; Ahmad, S.; Shahid, M.I.; Xu, Y. Role of insect gut microbiota in pesticide degradation: A review. Front. Microbiol. 2022, 13, 870462. [Google Scholar] [CrossRef]
- Xia, X.; Sun, B.; Gurr, G.M.; Vasseur, L.; Xue, M.; You, M. Gut microbiota mediate insecticide resistance in the diamondback moth Plutella Xylostella (L). Front. Microbiol. 2018, 9, 25. [Google Scholar] [CrossRef]
- Hu, G.; Lim, K.S.; Horvitz, N.; Clark, S.J.; Reynolds, D.R.; Sapir, N.; Chapman, J.W. Mass seasonal bioflows of high-flying insect migrants. Science 2016, 354, 1584–1587. [Google Scholar] [CrossRef]
- Satterfeld, D.A.; Sillett, T.S.; Chapman, J.W.; Altizer, S.; Marra, P.P. Seasonal insect migrations: Massive, infuential, and overlooked. Front. Ecol. Environ. 2020, 18, 335–344. [Google Scholar] [CrossRef]
- Mason, C.J.; Peifer, M.; Chen, B.; Hoover, K.; Felton, G.W. Opposing growth responses of lepidopteran larvae to the establishment of gut microbiota. Microbiol. Spectr. 2022, 10, e01941-22. [Google Scholar] [CrossRef]
- Li, H.; Zhao, C.; Yang, Y.; Zhou, Z.; Qi, J.; Li, C. The influence of gut microbiota on the fecundity of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). J. Insect Sci. 2021, 21, 15. [Google Scholar] [CrossRef]
- Noman, M.S.; Shi, G.; Liu, L.J.; Li, Z.H. Diversity of bacteria in different life stages and their impact on the development and reproduction of Zeugodacus tau (Diptera: Tephritidae). Insect Sci. 2021, 28, 363–376. [Google Scholar] [CrossRef]
- Zhu, F.; Poelman, E.; Dicke, M. Insect herbivore-associated organisms affect plant responses to herbivory. New Phytol. 2014, 204, 315–321. [Google Scholar] [CrossRef]
- Wang, J.; Mason, C.J.; Ju, X.; Xue, R.; Tong, L.; Peiffer, M.; Song, Y.; Zeng, R.; Felton, G.W. Parasitoid causes cascading effects on plant-induced defenses mediated through the gut bacteria of host caterpillars. Front. Microbiol. 2021, 12, 708990. [Google Scholar] [CrossRef]
- Hammer, T.J.; Bowers, M.D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 2015, 179, 1–14. [Google Scholar] [CrossRef]
- Mithöfer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef]
- Felton, G.W.; Tumlinson, J.H. Plant-insect dialogs: Complex interactions at the plant-insect interface. Curr. Opin. Plant Biol. 2008, 11, 457–463. [Google Scholar] [CrossRef]
- Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sapsucking insects. Ann. Rev. Microbiol. 2005, 59, 155–189. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E. Symbiotic microorganisms: Untapped resources for insect pest control. Trends Biotechnol. 2007, 25, 338–342. [Google Scholar] [CrossRef]
- Montenegro, H.; Petherwick, A.S.; Hurst, G.D.D.; Klaczko, L.B. Fitness effects of Wolbachia and Spiroplasma in Drosophila melanogaster. Genetica 2006, 127, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Oliver, K.M.; Russell, J.A.; Moran, N.A.; Hunter, M.S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. USA 2003, 100, 1803–1807. [Google Scholar] [CrossRef]
- Stouthamer, R.; Breeuwer, J.A.; Hurst, G.D. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Ann. Rev. Microbiol. 1999, 53, 71–102. [Google Scholar] [CrossRef]
- Ndung’u, K.E.; Khamis, F.M.; Ajene, I.J.; Mbogo, K.O.; Akutse, K.S. Spodoptera frugiperda population structure and influence of farmers’ practices on gut biodiversity for sustainable management of the pest in Kenya. Front. Ecol. Evol. 2023, 11, 1235558. [Google Scholar] [CrossRef]
- Li, S.; De Mandal, S.; Xu, X.; Jin, F. The tripartite interaction of host immunity-Bacillus thuringiensis infection-gut microbiota. Toxins 2020, 12, 514. [Google Scholar] [CrossRef]
- Nagoshi, R.N.; Htain, N.N.; Boughton, D.; Zhang, L.; Xiao, Y.; NagoshiB, Y.; Mota-Sanchez, D. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 2020, 10, 1421. [Google Scholar] [CrossRef]
- Paddock, K.J.; Pereira, A.E.; Finke, D.L.; Ericsson, A.C.; Hibbard, B.E.; Shelby, K.S. Host resistance to Bacillus thuringiensis is linked to altered bacterial community within a specialist insect herbivore. Mol. Ecol. 2021, 30, 5438–5453. [Google Scholar] [CrossRef]
- Kogan, M. Integrated pest management: Historical perspectives and contemporary developments. Ann. Rev. Entomol. 1998, 43, 243–270. [Google Scholar] [CrossRef]
- Aksoy, S.; Weiss, B.; Attardo, G. Paratransgenesis applied for control of tsetse transmitted sleeping sickness. Adv. Exp. Med. Biol. 2008, 627, 35–48. [Google Scholar]
- Noman, M.S.; Liu, L.; Bai, Z.; Li, Z. Tephritidae bacterial symbionts: Potentials for pest management. Bull. Entomol. Res. 2019, 110, 1–14. [Google Scholar] [CrossRef]
- Ridley, E.V.; Wong, A.C.; Douglas, A.E. Microbe-dependent and nonspecific effects of procedures to eliminate the resident microbiota from Drosophila melanogaster. Appl. Environ. Microbiol. 2013, 79, 3209–3214. [Google Scholar] [CrossRef] [PubMed]
- Edenborough, K.M.; Flores, H.A.; Simmons, C.P.; Fraser, J.E. Using Wolbachia to eliminate dengue: Will the virus fight back? J. Virol. 2021, 95, 02203-20. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alla, A.M.; Bergoin, M.; Parker, A.G.; Maniania, N.K.; Vlak, J.M.; Bourtzis, K.; Boucias, D.G.; Aksoy, S. Improving sterile insect technique (SIT) for tsetse flies through research on their symbionts and pathogens. J. Invertebr. Pathol. 2013, 112, S2–S10. [Google Scholar] [CrossRef] [PubMed]
- Coon, K.L.; Vogel, K.J.; Brown, M.R.; Strand, M.R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 2014, 23, 2727–2739. [Google Scholar] [CrossRef]
- Zabalou, S.; Apostolaki, A.; Livadaras, I.; Franz, G.; Robinson, A.S.; Savakis, C.; Bourtzis, K. Incompatible insect technique: Incompatible males from a Ceratitis capitata genetic sexing strain. Entomol. Exp. Appl. 2009, 132, 232–240. [Google Scholar] [CrossRef]
- Laven, H. Eradication of Culex pipiens fatigans through Cytoplasmic Incompatibility. Nature 1967, 216, 383–384. [Google Scholar] [CrossRef]
- Hoffmann, A.; Montgomery, B.; Popovici, J.; Iturbe-Ormaetxe, I.; Johnson, P.H.; Muzzi, F.; Greenfield, M.; Durkan, M.; Leong, Y.S.; Dong, Y.; et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011, 476, 454–457. [Google Scholar] [CrossRef]
- Ross, P.A.; Wiwatanaratanabutr, I.; Axford, J.K.; White, V.L.; Endersby-Harshman, N.M.; Hoffmann, A.A. Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog. 2017, 13, e1006006. [Google Scholar] [CrossRef]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Maltz, M.A.; Weiss, B.L.; O’Neill, M.; Wu, Y.; Aksoy, S. OmpA-mediated biofilm formation is essential for the commensal bacterium Sodalis glossinidius to colonize the tsetse fly gut. Appl. Environ. Microbiol. 2012, 78, 7760–7768. [Google Scholar] [CrossRef] [PubMed]
- Rupawate, P.S.; Roylawar, P.; Khandagale, K.; Gawande, S.; Ade, A.B.; Jaiswal, D.K.; Borgave, S. Role of gut symbionts of insect pests: A novel target for insect-pest control. Front. Microbiol. 2023, 14, 1146390. [Google Scholar] [CrossRef]
- Barrangou, R.; van Pijkeren, J.P. Exploiting CRISPR-Cas immune systems for genome editing in bacteria. Curr. Opin. Biotechnol. 2016, 37, 61–68. [Google Scholar] [CrossRef]
- Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347–355. [Google Scholar] [CrossRef]
- Taracena, M.L.; Oliveira, P.L.; Almendares, O.; Umana, C.; Lowenberger, C.; Dotson, E.M.; Paiva-Silva, G.O.; Pennington, P.M. Genetically modifying the insect gut microbiota to control Chagas disease vectors through systemic RNAi. PLoS Negl. Trop. Dis. 2015, 9, e0003358. [Google Scholar] [CrossRef]
- Arora, A.K.; Douglas, A.E. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control. J. Insect Physiol. 2017, 103, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.; Nilyanimit, P.; Kozlova, E.; Anderson, E.R.; Narra, H.P.; Sahni, S.K.; Heinz, E.; Hughes, G.L. CRISPR/Cas9-mediated gene deletion of the ompA gene in symbiotic Cedecea neteri impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes. PLoS Negl. Trop. Dis. 2019, 13, e0007883. [Google Scholar] [CrossRef]
- Whyard, S.; Singh, A.D.; Wong, S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 2009, 39, 824–832. [Google Scholar] [CrossRef]
- Li, T.; Wei, Y.; Zhao, C.; Li, S.; Gao, S.; Zhang, Y.; Wu, Y.; Lu, C. Facultative symbionts are potential agents of symbiont-mediated RNAi in aphids. Front. Microbiol. 2022, 13, 4710. [Google Scholar] [CrossRef]
- Keese, P. Risks from GMOs due to horizontal gene transfer. Environ. Biosaf. Res. 2008, 7, 123–149. [Google Scholar] [CrossRef]
- Douglas, A.E. Omics and the metabolic function of insect-microbial symbioses. Curr. Opin Insect Sci. 2018, 29, 1–6. [Google Scholar] [CrossRef]
- Secretariat of the Convention on Biological Diversity. Cartagena Protocol on Biosafety to the Convention on Biological Diversity: Text and Annexes; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2000. [Google Scholar]
- Ministry of Science and Technology of China. Measures for the Safety Administration of Genetic Engineering; Order No. 17 of the State Science and Technology Commission; Ministry of Science and Technology of China: Beijing, China, 1993. [Google Scholar]
- European Parliament and Council. Regulation (EC) No. 1829/2003 on genetically modified food and feed. Off. J. Eur. Union 2003, 268, 1–23. [Google Scholar]
- Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plantphysiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- REX Consortium. Heterogeneity of selection and the evolution of resistance. Trends Ecol. Evol. 2013, 28, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Rahman, M.M.; Han, C.; Shin, J.; Sa, K.J.; Kim, J. Spodoptera frugiperda (Lepidoptera: Noctuidae) life table comparisons and gut microbiome analysis reared on corn varieties. Insects 2023, 14, 358. [Google Scholar] [CrossRef]
- Beckie, H.J.; Busi, R.; Lopez-Ruiz, F.J.; Umina, P.A. Herbicide resistance management strategies: How do they compare with those for insecticides, fungicides and antibiotics? Pest Manag. Sci. 2021, 77, 3049–3056. [Google Scholar] [CrossRef]
- Wu, Q.; Patočka, J.; Kuča, K. Insect antimicrobial peptides, a mini review. Toxins 2018, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Koo, H.; Richman, A.M.; Seeley, D.; Vezzoli, J.; Klocko, A.D.; O’Brochta, D.A. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): Effects on susceptibility to Plasmodium. J. Med. Entomol. 2004, 41, 447–455. [Google Scholar] [CrossRef]
- Kokoza, V.; Ahmed, A.; Shin, S.W.; Okafor, N.; Zou, Z.; Raikhel, A.S. Blocking of Plasmodium transmission by cooperative action of Cecropin a and Defensin a in transgenic Aedes aegypti mosquitoes. Proc. Natl. Acad. Sci. USA 2010, 107, 8111–8116. [Google Scholar] [CrossRef]
- Betancur, H.O.J. Insecticide resistance management: A long term strategy to ensure effective pest control in the future. J. Anim. Sci. Res. 2018, 2, e2576–e6457. [Google Scholar] [CrossRef]
- Helps, J.C.; Paveley, N.D.; White, S.; van den Bosch, F. Determinants ofoptimal insecticide resistance management strategies. J. Theor. Biol. 2020, 503, e110383. [Google Scholar] [CrossRef]
- IRAC. IRAC International Insecticide Mixture Statement; Insecticide Resistance Action Committee: Brussels, Belgium, 2012. [Google Scholar]
- Zhang, Y.; Zhang, S.; Xu, L. The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. npj Biofilms Microb. 2023, 9, 66. [Google Scholar] [CrossRef]
- Ma, M.; Liu, P.; Yu, J.; Han, R.; Xu, L. Preparing and rearing axenic insects with tissue cultured seedlings for host-gut microbiota interaction studies of the leaf beetle. J. Vis. Exp. 2021, 176, e63195. [Google Scholar]
- Wu, J.; Wang, Q.; Wang, D.; Wong, A.C.N.; Wang, G. Axenic and gnotobiotic insect technologies in research on host-microbiota interactions. Trends Microbiol. 2023, 31, 858–871. [Google Scholar] [CrossRef]
- Diakite, A.; Dubourg, G.; Dione, N.; Afouda, P.; Bellali, S.; Ngom, I.I.; Valles, C.; Million, M.; Levasseur, A.; Cadoret, F.; et al. Extensive culturomics of 8 healthy samples enhances metagenomics efficiency. PLoS ONE 2019, 14, e0223543. [Google Scholar] [CrossRef]
- Hongoh, Y. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell. Mol. Life Sci. 2011, 68, 1311–1325. [Google Scholar] [CrossRef]



| Variates | Dominant Gut Microbiota | References |
|---|---|---|
| Sugarcane, maize, onion | Acidobacteriia, Deltaproteobacteria, Clostridia, Alphaproteobacteria, Bacteroidia, Actinobacteria, Bacilli, etc. | [25] |
| Maize, hairy vetch | Enterococcus, Bacillus, Klebsiella, Acinetobacter, Pseudomonas, etc. | [56] |
| Corn, wild oat, oilseed rape, pepper, an artificial diet | Enterococcaceae, Muribaculaceae, Enterobacteriaceae, Lachnospiraceae, etc. | [59] |
| Developmental stage | Enterococcus, Klebsiella, Acinetobacter, Pseudomonas, Lactobacillus, Streptococcus, etc. | [29] |
| Female and male | Enterococcus, Enterobacter, Providencia, Ralstonia, Acinetobacter, etc. | [39] |
| Laboratory population | Actinobacterica, Bacteria, Bacteroidetes, Firmicutes, Proteobacteria, Thaumarchaeota, etc. | [40] |
| Field population | Actinobacterica, Bacteria, Bacteroidetes, Firmicutes, Proteobacteria, etc. | |
| Dry and rainy season | Enterobacter, Enterococcus, Klebsiella, Microbacterium, Ralstonia, Turicibacter, etc. | [43] |
| Bacillus thuringiensis exposure | Enterococcus, Weissella, Ileibacterium, Ralstonia, Dubosiella, etc. | [60] |
| Exposure to broflanilide, spinosad and indoxacarb | Acinetobacter, Pelomonas, Rhodococcus, Ralstonia, Bacteroides, etc. | [61] |
| Symbiont | Roles | References |
|---|---|---|
| Enterococcus quebecensis Klebsiella michiganensis Enterobacter hormaechei | Enhance reproduction | [78] |
| Enterococcus and Weissella | Influence metabolic homeostasis (energy production, metabolism, and the autophagy—lysosome) signal pathway | [23] |
| Pantoea ananatis Enterobacteriaceae-1 | Modulate plant defense responses | [86] |
| Klebsiella C3 | Promote host resistance against the toxic effects of lufenuron | [87] |
| Enterococcus casseli EMBL-3 | Dechlorinate and degrade polyvinyl chloride | [88] |
| Pseudomonas Stutzeri | Lambda-cyhalothrin degradation | [72] |
| Arthrobacter nicotinovorans | Deltamethrin degradation | |
| Leclercia adecarboxylata | Chlorpyrifos ethyl degradation | |
| Microbacterium arborescens | Lufenuron degradation | |
| Pseudomonas psychrotolerans | Spinosyn degradation | |
| Enterococcus, Klebsiella, Enterobacter | Exacerbate the adverse effects of plant defenses on the insect | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.-R.; Li, J.-N.; Sun, Z.-Y.; Yan, C.-C. An Insight into Biology, Function and Pest Management Guidance of Gut Microbiota in Spodoptera frugiperda. Insects 2025, 16, 1237. https://doi.org/10.3390/insects16121237
Yan X-R, Li J-N, Sun Z-Y, Yan C-C. An Insight into Biology, Function and Pest Management Guidance of Gut Microbiota in Spodoptera frugiperda. Insects. 2025; 16(12):1237. https://doi.org/10.3390/insects16121237
Chicago/Turabian StyleYan, Xiao-Rui, Jia-Ni Li, Ze-Yang Sun, and Chun-Cai Yan. 2025. "An Insight into Biology, Function and Pest Management Guidance of Gut Microbiota in Spodoptera frugiperda" Insects 16, no. 12: 1237. https://doi.org/10.3390/insects16121237
APA StyleYan, X.-R., Li, J.-N., Sun, Z.-Y., & Yan, C.-C. (2025). An Insight into Biology, Function and Pest Management Guidance of Gut Microbiota in Spodoptera frugiperda. Insects, 16(12), 1237. https://doi.org/10.3390/insects16121237
