Clinical Validation of DNA Methylation Detection in Cervical Exfoliated Cells for Endometrial Cancer in Women with Suspected Lesions
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Materials
2.2. Clinical Trial Flow Chart
2.3. Collection of Clinical Data
2.4. DNA Extraction and Methylation Detection of Exfoliated Cervical Cells
2.5. Sample Collection and Detection Process
2.6. Statistical Methods
3. Results
3.1. General Conditions and Pathological Results of Patients
3.2. Clinical Efficacy Analysis of EC Detection Indicators
3.3. Clinical Efficacy Analysis of EIN Screening Indicators
3.4. Analytical Results of Reagent Detection Accuracy
3.5. Performance of Methylation Detection Stratified by Menopausal Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Sun, Y.; Wu, W.; Cheng, X.; Chen, X.; Ren, F. Association between metabolic disorders and clinicopathologic features in endometrial cancer. Front. Endocrinol. 2024, 15, 1351982. [Google Scholar] [CrossRef]
- Wang, M.; Hui, P. A Timely Update of Immunohistochemistry and Molecular Classification in the Diagnosis and Risk Assessment of Endometrial Carcinomas. Arch. Pathol. Lab. Med. 2021, 145, 1367–1378. [Google Scholar] [CrossRef]
- Ma, X.; Cao, D.; Zhou, H.; Wang, T.; Wang, J.; Zhang, Y.; Yu, M.; Cheng, N.; Peng, P.; Yang, J.; et al. Survival outcomes and the prognostic significance of clinicopathological features in patients with endometrial clear cell carcinoma: A 35-year single-center retrospective study. World J. Surg. Oncol. 2023, 21, 106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, Y.; Qian, G.; Su, T.; Xu, H. Value of endometrial thickness for the detection of endometrial cancer and atypical hyperplasia in asymptomatic postmenopausal women. BMC Women Health 2022, 22, 517. [Google Scholar] [CrossRef]
- Heavy Menstrual Bleeding: Assessment and Management; National Institute for Health and Care Excellence (NICE): London, UK, 2021.
- Creutzberg, C.L.; Kim, J.-W.; Eminowicz, G.; Allanson, E.; Eberst, L.; Kim, S.I.; Nout, R.A.; Park, J.-Y.; Lorusso, D.; Mileshkin, L.; et al. Clinical research in endometrial cancer: Consensus recommendations from the Gynecologic Cancer Inter Group. Lancet Oncol. 2024, 25, e420–e431. [Google Scholar] [CrossRef] [PubMed]
- Giannini, A.; D’oria, O.; Corrado, G.; Bruno, V.; Sperduti, I.; Bogani, G.; Laganà, A.S.; Chiantera, V.; Caserta, D.; Vizza, E. The role of L1CAM as predictor of poor prognosis in stage I endometrial cancer: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2024, 309, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.G.; Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 2003, 349, 2042–2054. [Google Scholar] [CrossRef]
- Saavedra, K.P.; Brebi, P.M.; Roa, J.C.S. Epigenetic alterations in preneoplastic and neoplastic lesions of the cervix. Clin. Epigenet 2012, 4, 13. [Google Scholar] [CrossRef]
- Jones, A.; Lechner, M.; Fourkala, E.-O.; Kristeleit, R.; Widschwendter, M. Emerging promise of epigenetics and DNA methylation for the diagnosis and management of women’s cancers. Epigenomics 2010, 2, 9–38. [Google Scholar] [CrossRef]
- Wang, B.; Wang, M.; Lin, Y.; Zhao, J.; Gu, H.; Li, X. Circulating tumor DNA methylation: A promising clinical tool for cancer diagnosis and management. Clin. Chem. Lab. Med. 2024, 62, 2111–2127. [Google Scholar] [CrossRef]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; de Vet, V.H.; et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015, 351, h5527. [Google Scholar]
- Gentry-Maharaj, A.; Karpinskyj, C. Current and future approaches to screening for endometrial cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2020, 65, 79–97. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, W.; Liu, J.; Zhang, Y. Minimally invasive approaches for the early detection of endometrial cancer. Mol. Cancer 2023, 22, 53. [Google Scholar] [CrossRef]
- Papanicolau-Sengos, A.; Aldape, K. DNA Methylation Profiling: An Emerging Paradigm for Cancer Diagnosis. Annu. Rev. Pathol. 2022, 17, 295–321. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Joosten, S.C.; Feng, Z.; de Ruijter, T.C.; Draht, M.X.; Melotte, V.; Smits, K.M.; Veeck, J.; Herman, J.G.; Van Neste, L.; et al. Analysis of DNA methylation in cancer: Location revisited. Nat. Rev. Clin. Oncol. 2018, 15, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Vizza, E.; Corrado, G.; De Angeli, M.; Carosi, M.; Mancini, E.; Baiocco, E.; Chiofalo, B.; Patrizi, L.; Zampa, A.; Piaggio, G.; et al. Serum DNA integrity index as a potential molecular biomarker in endometrial cancer. J. Exp. Clin. Cancer Res. 2018, 37, 16. [Google Scholar] [CrossRef] [PubMed]
- Odashima, H.; Yoshioka, H.; Ota, K.; Goto, Y.; Noro, M.; Horie, K.; Watanabe, J. Morphological Differences between Liquid-Based Cytology and Conventional Preparation in Endometrial Endometrioid Carcinoma Grade 1 and Grade 3, and the Differentiation of Grades in Each Method. Acta Cytol. 2021, 65, 227–234. [Google Scholar] [CrossRef]
- Akahane, T.; Kitazono, I.; Yanazume, S.; Kamio, M.; Togami, S.; Sakamoto, I.; Nohara, S.; Yokoyama, S.; Kobayashi, H.; Hiraki, T.; et al. Next-generation sequencing analysis of endometrial screening liquid-based cytology specimens: A comparative study to tissue specimens. BMC Med. Genom. 2020, 13, 101. [Google Scholar] [CrossRef]
- Buglyó, G.; Styk, J.; Pös, O.; Csók, Á.; Repiska, V.; Soltész, B.; Szemes, T.; Nagy, B. Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome. Int. J. Mol. Sci. 2022, 23, 4284. [Google Scholar] [CrossRef]
- Srivastava, A.; Moxley, K.; Ruskin, R.; Dhanasekaran, D.N.; Zhao, Y.D.; Ramesh, R. A Non-invasive Liquid Biopsy Screening of Urine-Derived Exosomes for miRNAs as Biomarkers in Endometrial Cancer Patients. AAPS J. 2018, 20, 82. [Google Scholar] [CrossRef] [PubMed]
- Silveira, A.B.; Bidard, F.-C.; Kasperek, A.; Melaabi, S.; Tanguy, M.-L.; Rodrigues, M.; Bataillon, G.; Cabel, L.; Buecher, B.; Pierga, J.-Y.; et al. High-Accuracy Determination of Microsatellite Instability Compatible with Liquid Biopsies. Clin. Chem. 2020, 66, 606–613. [Google Scholar] [CrossRef]
- Martinez-Garcia, E.; Lesur, A.; Devis, L.; Cabrera, S.; Matias-Guiu, X.; Hirschfeld, M.; Asberger, J.; Van Oostrum, J.; Casares de Cal, M.D.L.A.; Gómez-Tato, A.; et al. Targeted Proteomics Identifies Proteomic Signatures in Liquid Biopsies of the Endometrium to Diagnose Endometrial Cancer and Assist in the Prediction of the Optimal Surgical Treatment. Clin. Cancer Res. 2017, 23, 6458–6467. [Google Scholar] [CrossRef] [PubMed]
- O’fLynn, H.; Ryan, N.A.J.; Narine, N.; Shelton, D.; Rana, D.; Crosbie, E.J. Diagnostic accuracy of cytology for the detection of endometrial cancer in urine and vaginal samples. Nat. Commun. 2021, 12, 952. [Google Scholar] [CrossRef]
- Huang, R.-L.; Su, P.-H.; Liao, Y.-P.; Wu, T.-I.; Hsu, Y.-T.; Lin, W.-Y.; Wang, H.-C.; Weng, Y.-C.; Ou, Y.-C.; Huang, T.H.-M.; et al. Integrated Epigenomics Analysis Reveals a DNA Methylation Panel for Endometrial Cancer Detection Using Cervical Scrapings. Clin. Cancer Res. 2017, 23, 263–272. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Ryder-Burbidge, C.; McNeil, J. Physical activity, obesity and sedentary behavior in cancer etiology: Epidemiologic evidence and biologic mechanisms. Mol. Oncol. 2021, 15, 790–800. [Google Scholar] [CrossRef]
- Yang, X.; Ma, K.; Chen, R.; Meng, Y.-T.; Wen, J.; Zhang, Q.-Q.; Zhu, J.; Yang, J.-K.; Zhao, X.-L.; Huang, X.; et al. A study evaluating liquid-based endometrial cytology test and transvaginal ultrasonography as a screening tool for endometrial cancer in 570 postmenopausal women. J. Gynecol. Obstet. Hum. Reprod. 2023, 52, 102643. [Google Scholar] [CrossRef]

| Parameter, Mean ± SD or n | Endometrial Cancer Group a (n = 33) | Endometrial Pre-Cancerous Lesion Group b (n = 31) | Non-Endometrial Pre-Cancerous Lesion Group c (n = 2100) | abc Groups Statistical Values F Value | Pabc= | Pab= | Pac= | Pbc= |
|---|---|---|---|---|---|---|---|---|
| Age | 51.7 ± 6.4 | 49.5 ± 8.9 | 44.7 ± 9.8 | 11.97 | <0.001 | 1.000 | <0.001 | 0.02 |
| BMI (kg/m2) | 26.5 ± 2.2 | 25.9 ± 2.7 | 23.2 ± 2.1 | 60.06 | <0.001 | 0.693 | <0.001 | <0.001 |
| BMI ≥ 25 | 24 (72.73%) | 20 (64.51%) | 613 (29.2%) | 46.480 | <0.001 | 0.592 | <0.001 | <0.001 |
| Diabetes | 6 (18.2%) | 6 (19.4%) | 196 (9.3%) | 6.364 | 0.041 | 1.000 | 0.122 | 0.066 |
| PCOS | 8 (24.2%) | 8 (25.8%) | 208 (9.9%) | 16.901 | <0.001 | 1.000 | 0.014 | 0.01 |
| AUB | 28 (84.8%) | 22 (71.0%) | 898 (42.8%) | 32.802 | <0.001 | 0.149 | <0.001 | 0.002 |
| Endometrial thickening | 11 (33.3%) | 15 (48.4%) | 423 (20.1%) | 18.048 | <0.001 | 0.166 | 0.055 | <0.001 |
| methylation-positive | 31 (93.9%) | 26 (83.9%) | 114 (5.4%) | 599.149 | <0.001 | 0.188 | <0.001 | <0.001 |
| Sensitivity (%) | Specificity (%) | Positive Predictive Value (%) | Negative Predictive Value (%) | |
|---|---|---|---|---|
| CDO1m/CELF4m (+) | 93.94 (79.77–99.26) | 96.7 (95.92–97.47) | 31.0 (25.96–36.53) | 99.90 (99.63–99.98) |
| CDO1m (+) | 83.87 (65.53–93.91) | 96.53 (95.64–97.25) | 26.00 (17.97–35.90) | 99.76 (99.40–99.91) |
| CELF4m (+) | 90.91 (74.53–97.62) | 96.72 (95.84–97.41) | 30.00 (21.45–40.11) | 99.85 (99.54–99.96) |
| Endometrial thickening/heterogeneity | 50.0 (28.22–71.78) | 78.60 (76.73–80.39) | 2.53 (1.67–3.83) | 99.30 (98.93–99.54) |
| AUB/Postmenopausal bleeding | 69.70 (51.13–83.79) | 62.62 (60.50–64.69) | 2.85 (1.85–4.31) | 99.25 (98.57–99.62) |
| TVS + CDO1m/CELF4m (+) | 100 (87.02–100) | 75.72 (73.76–77.58) | 6.43 (4.53–9.01) | 100 (99.68–100) |
| Sensitivity (%) | Specificity (%) | Positive Predictive Value (%) | Negative Predictive Value (%) | |
|---|---|---|---|---|
| CDO1m/CELF4m (+) | 83.87 (66.27–94.55) | 97.95 (97.25–98.51) | 37.68 (30.22–45.77) | 99.76 (99.46–99.89) |
| CDO1m (+) | 70.97 (51.76–85.11) | 97.76 (97.01–98.33) | 31.88 (21.47–44.33) | 99.56 (99.14–99.79) |
| CELF4m (+) | 77.42 (58.46–89.72) | 97.86 (97.12–98.42) | 34.78 (23.98–47.29) | 99.66 (99.27–99.85) |
| Endometrial thickening/heterogeneity | 51.72 (32.53–70.55) | 79.06 (77.18–80.84) | 3.55 (2.50–5.02) | 99.10 (98.69–99.38) |
| AUB/Postmenopausal bleeding | 64.52 (45.38–80.17) | 62.62 (60.50–64.69) | 2.48 (1.57–3.88) | 99.17 (98.47–99.56) |
| TVS + CDO1m/CELF4m (+) | 93.55 (77.16–98.87) | 98.10 (97.39–98.62) | 42.03 (30.45–54.50) | 99.90 (99.61–99.98) |
| Positive Coincidence Rate (%) | Negative Coincidence Rate (%) | Total Compliance Rate (%) | Kappa Value | |
|---|---|---|---|---|
| CDO1 | 100 (96.90–100) | 98.86 (93.83–99.97) | 99.51 (97.31–99.99) | 0.9900 (0.9705–1) |
| CELF4 | 100 (97.44–100) | 98.41 (91.47–99.96) | 99.51 (97.31–99.99) | 0.9885 (0.9660–1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yu, Y.; Su, T.; Zhang, H.; Li, Q.; Cong, Q.; Sui, L.; Chen, L. Clinical Validation of DNA Methylation Detection in Cervical Exfoliated Cells for Endometrial Cancer in Women with Suspected Lesions. Diagnostics 2026, 16, 174. https://doi.org/10.3390/diagnostics16020174
Yu Y, Su T, Zhang H, Li Q, Cong Q, Sui L, Chen L. Clinical Validation of DNA Methylation Detection in Cervical Exfoliated Cells for Endometrial Cancer in Women with Suspected Lesions. Diagnostics. 2026; 16(2):174. https://doi.org/10.3390/diagnostics16020174
Chicago/Turabian StyleYu, Yi, Tingting Su, Hongwei Zhang, Qing Li, Qing Cong, Long Sui, and Limei Chen. 2026. "Clinical Validation of DNA Methylation Detection in Cervical Exfoliated Cells for Endometrial Cancer in Women with Suspected Lesions" Diagnostics 16, no. 2: 174. https://doi.org/10.3390/diagnostics16020174
APA StyleYu, Y., Su, T., Zhang, H., Li, Q., Cong, Q., Sui, L., & Chen, L. (2026). Clinical Validation of DNA Methylation Detection in Cervical Exfoliated Cells for Endometrial Cancer in Women with Suspected Lesions. Diagnostics, 16(2), 174. https://doi.org/10.3390/diagnostics16020174

