Diagnosis of Multiple Organ Dysfunction in Neonates with Hypoxic–Ischemic Encephalopathy: Vasoactive Inotropic Score, Renal Score, Fibrosis-5 Index and Lactate/Albumin Ratio
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Data
2.3. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greco, P.; Nencini, G.; Piva, I.; Scioscia, M.; Volta, C.A.; Spadaro, S.; Neri, M.; Bonaccorsi, G.; Greco, F.; Cocco, I.; et al. Pathophysiology of hypoxic-ischemic encephalopathy: A review of the past and a view on the future. Acta Neurol. Belg. 2020, 120, 277–288. [Google Scholar] [CrossRef]
- Wu, L.; Chang, E.; Zhao, H.; Ma, D. Regulated cell death in hypoxic-ischaemic encephalopathy: Recent development and mechanistic overview. Cell Death Discov. 2024, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Huntingford, S.L.; Boyd, S.M.; McIntyre, S.J.; Goldsmith, S.C.; Hunt, R.W.; Badawi, N. Long-Term Outcomes Following Hypoxic Ischemic Encephalopathy. Clin. Perinatol. 2024, 51, 683–709. [Google Scholar] [CrossRef] [PubMed]
- Gunn, A.J.; Thoresen, M. Hypothermic neuroprotection. NeuroRx 2006, 3, 154–169. [Google Scholar] [CrossRef] [PubMed]
- Thoresen, M.; Tooley, J.; Liu, X.; Jary, S.; Fleming, P.; Luyt, K.; Jain, A.; Cairns, P.; Harding, D.; Sabir, H. Time is brain: Starting therapeutic hypothermia within three hours after birth improves motor outcome in asphyxiated newborns. Neonatology 2013, 104, 228–233. [Google Scholar] [CrossRef]
- Low, E.; Boylan, G.B.; Mathieson, S.R.; Murray, D.M.; Korotchikova, I.; Stevenson, N.J.; Livingstone, V.; Rennie, J.M. Cooling and seizure burden in term neonates: An observational study. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, 267–272. [Google Scholar] [CrossRef]
- Celik, Y.; Atıcı, A.; Gulası, S.; Okuyaz, C.; Makharoblıdze, K.; Sungur, M.A. Comparison of selective head cooling versus whole-body cooling. Pediatr. Int. 2016, 58, 27–33. [Google Scholar] [CrossRef]
- Prempunpong, C.; Chalak, L.F.; Garfinkle, J.; Shah, B.; Kalra, V.; Rollins, N.; Boyle, R.; Nguyen, K.-A.; Mir, I.; Pappas, A.; et al. Prospective research on infants with mild encephalopathy: The PRIME study. J. Perinatol. 2018, 38, 80–85. [Google Scholar] [CrossRef]
- Chalak, L.F.; Nguyen, K.A.; Prempunpong, C.; Heyne, R.; Thayyil, S.; Shankaran, S.; Laptook, A.R.; Rollins, N.; Pappas, A.; Koclas, L.; et al. Prospective research in infants with mild encephalopathy identified in the first six hours of life: Neurodevelopmental outcomes at 18–22 months. Pediatr. Res. 2018, 84, 861–868. [Google Scholar] [CrossRef]
- Murray, D.M.; O’Connor, C.M.; Ryan, C.A.; Korotchikova, I.; Boylan, G.B. Early EEG grade and outcome at 5 years after mild neonatal hypoxic ischemic encephalopathy. Pediatrics 2016, 138, e20160659. [Google Scholar] [CrossRef]
- Conway, J.M.; Walsh, B.H.; Boylan, G.B.; Murray, D.M. Mild hypoxic ischaemic encephalopathy and longterm neurodevelopmental outcome—A systematic review. Early Hum. Dev. 2018, 120, 80–87. [Google Scholar] [CrossRef]
- Chong, W.H.; Ong, H.Y.; Ooi, J.S.; Eleen Khaw, Y.Y.; Lim, L.M.; Tew, M.M.; Koo, H.W.; Aishah, A.R.; Goh, P.W. The effect of hypoxic ischemic encephalopathy towards multi-organ complications and its early outcome at a Malaysian district hospital. Med. J. Malays. 2024, 79, 184–190. [Google Scholar]
- Michniewicz, B.; Al Saad, S.R.; Karbowski, L.M.; Gadzinowski, J.; Szymankiewicz, M.; Szpecht, D. Organ Complications of Infants with Hypoxic Ischemic Encephalopathy Before Therapeutic Hypothermia. Ther. Hypothermia Temp. Manag. 2021, 11, 58–63. [Google Scholar] [CrossRef]
- Alsina, M.; Martín-Ancel, A.; Alarcon-Allen, A.; Arca, G.; Gayá, F.; García-Alix, A. The Severity of Hypoxic-Ischemic Encephalopathy Correlates With Multiple Organ Dysfunction in the Hypothermia Era. Pediatr. Crit. Care Med. 2017, 18, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Sweetman, D.U.; Strickland, T.; Isweisi, E.; Kelly, L.; Slevin, M.T.; Donoghue, V.; Meehan, J.; Boylan, G.; Murphy, J.F.A.; El-Khuffash, A.; et al. Multi-organ dysfunction scoring in neonatal encephalopathy (MODE Score) and neurodevelopmental outcomes. Acta Paediatr. 2022, 111, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Toptan, H.H.; Tezel, K.G.; Tezel, O.; Ataç, Ö.; Vardar, G.; Gülcan Kersin, S.; Özek, E. Inflammatory and Hematologic Liver and Platelet (HALP) Scores in Hypothermia-Treated Hypoxic-Ischemic Encephalopathy (HIE). Children 2024, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Committee on Fetus and Newborn. Hypothermia and neonatal encephalopathy. Pediatrics 2014, 133, 1146–1150. [Google Scholar] [CrossRef]
- Sarnat, H.B.; Sarnat, M.S. Neonatal encephalopathy following fetal distress. a clinical and electroencephalographicstudy. Arch. Neurol. 1976, 33, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, E.; Tanidir, I.C.; Gunes, M.; Genc, S.B.; Yildiz, O.; Onan, I.S.; Haydin, S.; Guzeltas, A. The effects of Vasoactive-Ventilation-Renal score on pediatric heart surgery. North. Clin. Istanb. 2020, 7, 329–334. [Google Scholar] [CrossRef]
- Maeda, D.; Kanzaki, Y.; Sakane, K.; Tsuda, K.; Akamatsu, K.; Hourai, R.; Okuno, T.; Tokura, D.; Nakayama, S.; Hasegawa, H.; et al. Prognostic value of the liver fibrosis marker fibrosis-5 index in patients with acute heart failure. ESC Heart Fail. 2022, 9, 1380–1387. [Google Scholar] [CrossRef]
- Armstrong, K.; Franklin, O.; Sweetman, D.; Molloy, E.J. Cardiovascular dysfunction in infants with neonatal encephalopathy. Arch. Dis. Child. 2012, 97, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.; Thoresen, M. Physiological responses to hypothermia. Semin. Fetal Neonatal Med. 2015, 20, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, C.M.; Knuepfer, M.; Robel-Tillig, E.; Pulzer, F.; Vogtmann, C. Hemodynamics among neonates with hypoxic-ischemic encephalopathy during whole-body hypothermia and passive rewarming. Pediatrics 2006, 117, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Riphagen, S.; Beyene, J.; Perlman, M. Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed. 2004, 89, 152–155. [Google Scholar] [CrossRef]
- Martin-Ancel, A.; Garcia-Alix, A.; Gaya, F.; Cabanas, F.; Burgueros, M.; Quero, J. Multiple organ involvement in perinatal asphyxia. J. Pediatr. 1995, 127, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Hankins, G.D.; Koen, S.; Gei, A.F.; Lopez, S.M.; Van Hook, J.W.; Anderson, G.D. Neonatal organ system injury in acute birth asphyxia sufficient to result in neonatal encephalopathy. Obs. Gynecol. 2002, 99, 688–691. [Google Scholar]
- Szakmar, E.; Jermendy, A.; El-Dib, M. Respiratory management during therapeutic hypothermia for hypoxic-ischemic encephalopathy. J. Perinatol. 2019, 39, 763–773. [Google Scholar] [CrossRef]
- Gaies, M.G.; Jeffries, H.E.; Niebler, R.A.; Pasquali, S.K.; Donohue, J.E.; Yu, S.; Gall, C.; Rice, T.B.; Thiagarajan, R.R. Vasoactive-inotropic score is associated with outcome after infant cardiac surgery: An analysis from the Pediatric Cardiac Critical Care Consortium and Virtual PICU System Registries. Pediatr. Crit. Care Med. 2014, 15, 529–537. [Google Scholar] [CrossRef]
- Miletic, K.G.; Spiering, T.J.; Delius, R.E.; Walters, H.L., 3rd; Mastropietro, C.W. Use of a novel vasoactive-ventilation-renal score to predict outcomes after paediatric cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2015, 20, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Akunuri, S.; Jain, A.; Mazahir, R.; Hegde, R. Vasoactive-ventilation-renal score in predicting outcome postcardiac surgery in children. Int. J. Crit. Illn. Inj. Sci. 2018, 8, 143–148. [Google Scholar] [PubMed]
- Miletic, K.G.; Delius, R.E.; Walters, H.L., 3rd; Mastropietro, C.W. Prospective Validation of a Novel Vasoactive-Ventilation-Renal Score as a Predictor of Outcomes After Pediatric Cardiac Surgery. Ann. Thorac. Surg. 2016, 101, 1558–1563. [Google Scholar] [CrossRef]
- Scherer, B.; Moser, E.A.; Brown, J.W.; Rodefeld, M.D.; Turrentine, M.W.; Mastropietro, C.W. Vasoactive-ventilation-renal score reliably predicts hospital length of stay after surgery for congenital heart disease. J. Thorac. Cardiovasc. Surg. 2016, 152, 1423–1429. [Google Scholar] [CrossRef]
- Cashen, K.; Costello, J.M.; Grimaldi, L.M.; Narayana Gowda, K.M.; Moser, E.A.S.; Piggott, K.D.; Wilhelm, M.; Mastropietro, C.W. Multicenter Validation of the Vasoactive-Ventilation-Renal Score as a Predictor of Prolonged Mechanical Ventilation After Neonatal Cardiac Surgery. Pediatr. Crit. Care Med. 2018, 19, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Chock, V.Y.; Frymoyer, A.; Yeh, C.G.; Van Meurs, K.P. Renal Saturation and Acute Kidney Injury in Neonates with Hypoxic Ischemic Encephalopathy Undergoing Therapeutic Hypothermia. J. Pediatr. 2018, 200, 232–239. [Google Scholar] [CrossRef]
- Askenazi, D.J.; Ambalavanan, N.; Goldstein, S.L. Acute kidney injury in critically ill newborns: What do we know? What do we need to learn? Pediatr. Nephrol. 2009, 24, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Selewski, D.T.; Jordan, B.K.; Askenazi, D.J.; Dechert, R.E.; Sarkar, S. Acute kidney injury in asphyxiated newborns treated with therapeutic hypothermia. J. Pediatr. 2013, 162, 725–729. [Google Scholar] [CrossRef]
- Sarkar, S.; Askenazi, D.J.; Jordan, B.K.; Bhagat, I.; Bapuraj, J.R.; Dechert, R.E.; Selewski, D.T. Relationship between acute kidney injury and brain MRI findings in asphyxiated newborns after therapeutic hypothermia. Pediatr. Res. 2014, 75, 431–435. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney DiseaseMineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2009, 76, 1–130. [Google Scholar]
- Sweetman, D.U. Neonatal acute kidney injury-Severity and recovery prediction and the role of serum and urinary biomarkers. Early Hum. Dev. 2017, 105, 57–61. [Google Scholar] [CrossRef]
- Choudhary, M.; Sharma, D.; Dabi, D.; Lamba, M.; Pandita, A.; Shastri, S. Hepatic dysfunction in asphyxiated neonates: Prospective case-controlled study. Clin. Med. Insights Pediatr. 2015, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Muniraman, H.; Gardner, D.; Skinner, J.; Paweletz, A.; Vayalakkad, A.; Chee, Y.H.; Clifford, C.; Sanka, S.; Venkatesh, V.; Curley, A.; et al. Biomarkers of hepatic injury and function in neonatal hypoxic ischemic encephalopathy and with therapeutic hypothermia. Eur. J. Pediatr. 2017, 176, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.H.; Khan, M.; Minard, C.G.; Guffey, D.; Ramm, L.E.; Clouston, A.D.; Miller, G.; Lewindon, P.J.; Shepherd, R.W.; Ramm, G.A. Aspartate aminotransferase to platelet ratio and fibrosis-4 as biomarkers in biopsy-validated pediatric cystic fibrosis liver disease. Hepatology 2015, 62, 1576–1583. [Google Scholar] [CrossRef]
- Chen, S.; Yin, T.; Li, L.; Diao, M.; Huang, T. Development and validation of non-invasive models in predicting advanced fibrosis of choledochal cyst. Pediatr. Surg. Int. 2023, 39, 87. [Google Scholar] [CrossRef]
- Okamoto, C.; Tsukamoto, O.; Hasegawa, T.; Hitsumoto, T.; Matsuoka, K.; Amaki, M.; Kanzaki, H.; Izumi, C.; Takashima, S.; Ito, S.; et al. Candidate Screening for Heart Failure With Preserved Ejection Fraction Clinic by Fib-4 Index From Subclinical Subjects. Gastro Hep Adv. 2022, 2, 170–181. [Google Scholar] [CrossRef]
- Eto, F.; Nezu, T.; Aoki, S.; Kuzume, D.; Hosomi, N.; Maruyama, H. Liver fibrosis index is associated with functional outcome among acute ischemic stroke patients. J. Stroke Cerebrovasc. Dis. 2024, 33, 107537. [Google Scholar] [CrossRef]
- Wang, Z.; Li, G.; Huang, R.; Chang, L.; Gong, C.; Chen, K.; Wang, L. Prognostic value of fibrosis-5 index combined with C-reactive protein in patients with acute decompensated heart failure. BMC Cardiovasc. Disord. 2023, 23, 492. [Google Scholar] [CrossRef] [PubMed]
- Gharipour, A.; Razavi, R.; Gharipour, M.; Mukasa, D. Lactate/albumin ratio: An early prognostic marker in critically ill patients. Am. J. Emerg. Med. 2020, 38, 2088–2095. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, L.; Zhao, H.; Zeng, F.; Peng, C.; Guo, W.; Yan, H. The value of lactate/albumin ratio for predicting the clinical outcomes of critically ill patients with heart failure. Ann. Transl. Med. 2021, 9, 118. [Google Scholar] [CrossRef] [PubMed]
- Kabra, R.; Acharya, S.; Shukla, S.; Kumar, S.; Wanjari, A.; Mahajan, S.; Gaidhane, S.A.; Bhansali, P.J.; Wasnik, P.; Gaidhane, S.A.; et al. Serum lactate-albumin ratio: Soothsayer for outcome in sepsis. Cureus 2023, 15, e36816. [Google Scholar] [CrossRef]
- Nishioka, N.; Kobayashi, D.; Izawa, J.; Irisawa, T.; Yamada, T.; Yoshiya, K.; Park, C.; Nishimura, T.; Ishibe, T.; Yagi, Y.; et al. Association between serum lactate level during cardiopulmonary resuscitation and survival in adult out-of-hospital cardiac arrest: A multicenter cohort study. Sci. Rep. 2021, 11, 1639. [Google Scholar] [CrossRef]
- Shi, X.; Zhong, L.; Lu, J.; Hu, B.; Shen, Q.; Gao, P. Clinical significance of the lactate-to-albumin ratio on prognosis in critically ill patients with acute kidney injury. Ren. Fail. 2024, 46, 2350238. [Google Scholar] [CrossRef]
- Wang, R.; He, M.; Qu, F.; Zhang, J.; Xu, J. Lactate albumin ratio is associated with mortality in patients with moderate to severe traumatic brain injury. Front. Neurol. 2022, 13, 662385. [Google Scholar] [CrossRef] [PubMed]
- Sai, I.N.; Prasad, R. Assessing the prognostic value of crp/albumin ratio and lactate/albumin ratio in critically ill patients. J. Assoc. Physicians India. 2022, 70, 11–12. [Google Scholar] [PubMed]
- Zhu, X.; Xue, J.; Liu, Z.; Dai, W.; Xu, H.; Zhou, Q.; Zhao, S.; Zhou, Q.; Chen, W. The lactate/albumin ratio predicts mortality in critically ill patients with acute kidney injury: An observational multicenter study on the eICU database. Int. J. Gen. Med. 2021, 14, 10511–10525. [Google Scholar] [CrossRef] [PubMed]
- Arı, H.F.; Keskin, A.; Arı, M.; Aci, R. Importance of lactate/albumin ratio in pediatric nosocomial infection and mortality at different times. Future Microbiol. 2024, 19, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Aygün, F.; Durak, C.; Varol, F.; Çokuğraş, H.; Camcıoğlu, Y. The Lactate/Albumin Ratio is an Effective Predictor for Mortality in Critically Ill Children. Türkiye Çocuk Hast. Derg. 2020, 14, 493–499. [Google Scholar]
- Sweetman, D.U.; Molloy, E.J. Biomarkers of acute kidney injury in neonatal encephalopathy. Eur. J. Pediatr. 2013, 172, 305–316. [Google Scholar] [CrossRef]
- Sweetman, D.U.; Onwuneme, C.; Watson, W.R.; O’Neill, A.; Murphy, J.F.; Molloy, E.J. Renal function and novel urinary biomarkers in infants with neonatal encephalopathy. Acta Paediatr. 2016, 105, 513–519. [Google Scholar] [CrossRef]
Characteristics | |
---|---|
Maternal age (yr) (mean ± SD), (min-max) | 28 ± 5.4 (18–40) |
Gestational week (mean ± SD), (min-max) | 38.7 ± 1.4 (36–41) |
Gestational weight (grams) (mean ± SD), (min-max) | 3181 ± 445 (2000–4660) |
Gender (male), n (%) | 67 (63.2) |
Delivery type (Cesarean section), n (%) | 42 (39.6) |
Gravida 1, Parity 1 | 55 (51.8) |
Gravida 2, Parity 2 | 24 (22.6) |
APGAR score (mean ± SD), (min-max) | |
1st minute | 3.65 ±1.7 (0–9) |
5th minute | 6 ± 1.7 (1–10) |
10th minute | 6.7 ± 1.7 (1–10) |
HIE stage | |
Stage 1 n (%) | 54 (%51) |
Stage 2–3 n (%) | 52 (%49) |
Lactate/Albumin | Fibrosis-5 Index | Renal Score | Vasoactive Inotropic Score | |
---|---|---|---|---|
p Value | ||||
HIE Stage (Modified Sarnat stage) | ||||
Mild (Stage1) Moderate-Severe (Stage1–2) | 0.016 * | 0.02 * | ||
Cardiovascular system | ||||
Echocardiographic evaluation (At the first 24 h) Pulmonary hypertension Mitral insufficiency | 0.01 * | 0.013 * 0.028 * | 0.017 * | |
CK-MB level (Normal <25 U/L) >250 U/L | 0.002 * | 0.006 * | ||
Troponin I level (Normal <0.037 ng/mL) >0.037 >0.12 | 0.03 * - | - 0.03 * | - 0.015 * | |
Hypotension (with inotropes) Bradycardia | 0.02 * 0.001 * | 0.03 * 0.018 ** (0.013 *) | ||
Respiratory system | ||||
Cardiopulmonary resuscitation in the delivery room | 0.02 * | 0.039 * | 0.05 * | |
Respiratory distress syndrome | 0.02 * | 0.016 * | ||
Invasive mechanical ventilatory support | 0.05 * | 0.068 * | <0.001 * | |
Central nervous system | ||||
aEEG disorder | 0.04 * | |||
Conventional EEG | 0.04 * | |||
Clinical seizure | 0.06 * | |||
Antiepileptic treatment (≥2 drugs) | 0.04 * | 0.05 * | 0.011 * | |
Central nervous system imaging (finding of hypoxic effect) Transfontanel ultrasonography Diffusion magnetic resonance imaging | 0.002 * | 0.001 * | 0.012 * 0.012 * | |
Gastrointestinal system | ||||
Liver dysfunction (AST and ALT > 100 U/L) | 0.007 * | 0.048 * | 0.002 * | |
TDP support | 0.001 * | <0.001 * | 0.048 * | |
Crio support | 0.02 * | 0.01 * | ||
Vitamin K support (>2) | 0.035 * | 0.02 * | ||
Platelet support | 0.03 * | 0.022 * | ||
Prognosis | ||||
Prolonged hospital stay > 2 week | 0.022 * | <0.001 * | 0.04 * | |
Mortality | 0.006 * | 0.03 * | 0.003 * | 0.011 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, B.; Akduman, H.; Dilli, D.; Ünsal, N.; Fettah, N.D.; Zenciroğlu, A. Diagnosis of Multiple Organ Dysfunction in Neonates with Hypoxic–Ischemic Encephalopathy: Vasoactive Inotropic Score, Renal Score, Fibrosis-5 Index and Lactate/Albumin Ratio. Diagnostics 2024, 14, 2796. https://doi.org/10.3390/diagnostics14242796
Kaya B, Akduman H, Dilli D, Ünsal N, Fettah ND, Zenciroğlu A. Diagnosis of Multiple Organ Dysfunction in Neonates with Hypoxic–Ischemic Encephalopathy: Vasoactive Inotropic Score, Renal Score, Fibrosis-5 Index and Lactate/Albumin Ratio. Diagnostics. 2024; 14(24):2796. https://doi.org/10.3390/diagnostics14242796
Chicago/Turabian StyleKaya, Başak, Hasan Akduman, Dilek Dilli, Nilden Ünsal, Nurdan Dinlen Fettah, and Ayşegül Zenciroğlu. 2024. "Diagnosis of Multiple Organ Dysfunction in Neonates with Hypoxic–Ischemic Encephalopathy: Vasoactive Inotropic Score, Renal Score, Fibrosis-5 Index and Lactate/Albumin Ratio" Diagnostics 14, no. 24: 2796. https://doi.org/10.3390/diagnostics14242796
APA StyleKaya, B., Akduman, H., Dilli, D., Ünsal, N., Fettah, N. D., & Zenciroğlu, A. (2024). Diagnosis of Multiple Organ Dysfunction in Neonates with Hypoxic–Ischemic Encephalopathy: Vasoactive Inotropic Score, Renal Score, Fibrosis-5 Index and Lactate/Albumin Ratio. Diagnostics, 14(24), 2796. https://doi.org/10.3390/diagnostics14242796