Deep Learning Analysis of Mammography for Breast Cancer Risk Prediction in Asian Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Mammographic Examinations and Data Categorization
2.3. Model Development
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Sample
3.2. Performance of Risk Prediction Models
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Myers, E.R.; Moorman, P.; Gierisch, J.M.; Havrilesky, L.J.; Grimm, L.J.; Ghate, S.; Davidson, B.; Mongtomery, R.C.; Crowley, M.J.; McCrory, D.C.; et al. Benefits and Harms of Breast Cancer Screening: A Systematic Review. JAMA 2015, 314, 1615–1634. [Google Scholar] [CrossRef] [PubMed]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Benbrahim-Tallaa, L.; Bouvard, V.; Bianchini, F.; Straif, K.; International Agency for Research on Cancer Handbook Working Group. Breast-cancer screening—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2015, 372, 2353–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolb, T.M.; Lichy, J.; Newhouse, J.H. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: An analysis of 27,825 patient evaluations. Radiology 2002, 225, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freer, P.E. Mammographic breast density: Impact on breast cancer risk and implications for screening. Radiographics 2015, 35, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.I.; Chen, L.E.; Elmore, J.G. Risk-based Breast Cancer Screening: Implications of Breast Density. Med. Clin. N. Am. 2017, 101, 725–741. [Google Scholar] [CrossRef]
- Mann, R.M.; Athanasiou, A.; Baltzer, P.A.T.; Camps-Herrero, J.; Clauser, P.; Fallenberg, E.M.; Forrai, G.; Fuchsjager, M.H.; Helbich, T.H.; Killburn-Toppin, F.; et al. Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI). Eur. Radiol. 2022, 32, 4036–4045. [Google Scholar] [CrossRef]
- Carney, P.A.; Miglioretti, D.L.; Yankaskas, B.C.; Kerlikowske, K.; Rosenberg, R.; Rutter, C.M.; Geller, B.M.; Abraham, L.A.; Taplin, S.H.; Dignan, M.; et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann. Intern. Med. 2003, 138, 168–175. [Google Scholar] [CrossRef]
- Boyd, N.F.; Guo, H.; Martin, L.J.; Sun, L.; Stone, J.; Fishell, E.; Jong, R.A.; Hislop, G.; Chiarelli, A.; Minkin, S.; et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 2007, 356, 227–236. [Google Scholar] [CrossRef] [Green Version]
- McCormack, V.A.; dos Santos Silva, I. Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.M.; Kim, E.H. Breast Density and Risk of Breast Cancer in Asian Women: A Meta-analysis of Observational Studies. J. Prev. Med. Pub. Health 2016, 49, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Bodewes, F.T.H.; van Asselt, A.A.; Dorrius, M.D.; Greuter, M.J.W.; de Bock, G.H. Mammographic breast density and the risk of breast cancer: A systematic review and meta-analysis. Breast 2022, 66, 62–68. [Google Scholar] [CrossRef]
- Advani, S.M.; Zhu, W.; Demb, J.; Sprague, B.L.; Onega, T.; Henderson, L.M.; Buist, D.S.M.; Zhang, D.; Schousboe, J.T.; Walter, L.C.; et al. Association of Breast Density with Breast Cancer Risk Among Women Aged 65 Years or Older by Age Group and Body Mass Index. JAMA Netw. Open 2021, 4, e2122810. [Google Scholar] [CrossRef]
- Boyd, N.F.; Martin, L.J.; Yaffe, M.J.; Minkin, S. Mammographic density and breast cancer risk: Current understanding and future prospects. Breast Cancer Res. 2011, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- Amir, E.; Freedman, O.C.; Seruga, B.; Evans, D.G. Assessing women at high risk of breast cancer: A review of risk assessment models. J. Natl. Cancer Inst. 2010, 102, 680–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gail, M.H. Personalized estimates of breast cancer risk in clinical practice and public health. Stat. Med. 2011, 30, 1090–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claus, E.B.; Risch, N.; Thompson, W.D. The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res. Treat. 1993, 28, 115–120. [Google Scholar] [CrossRef]
- Tyrer, J.; Duffy, S.W.; Cuzick, J. A breast cancer prediction model incorporating familial and personal risk factors. Stat. Med. 2004, 23, 1111–1130. [Google Scholar] [CrossRef] [Green Version]
- Gail, M.H.; Brinton, L.A.; Byar, D.P.; Corle, D.K.; Green, S.B.; Schairer, C.; Mulvihill, J.J. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J. Natl. Cancer Inst. 1989, 81, 1879–1886. [Google Scholar] [CrossRef]
- Tice, J.A.; Cummings, S.R.; Ziv, E.; Kerlikowske, K. Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population. Breast Cancer Res. Treat. 2005, 94, 115–122. [Google Scholar] [CrossRef]
- Brentnall, A.R.; Harkness, E.F.; Astley, S.M.; Donnelly, L.S.; Stavrinos, P.; Sampson, S.; Fox, L.; Sergeant, J.C.; Harvie, M.N.; Wilson, M.; et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015, 17, 147. [Google Scholar] [CrossRef]
- Yala, A.; Lehman, C.; Schuster, T.; Portnoi, T.; Barzilay, R. A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction. Radiology 2019, 292, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Yala, A.; Mikhael, P.G.; Strand, F.; Lin, G.; Satuluru, S.; Kim, T.; Banerjee, I.; Gichoya, J.; Trivedi, H.; Lehman, C.D.; et al. Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk Model. J. Clin. Oncol. 2022, 40, 1732–1740. [Google Scholar] [CrossRef]
- Eriksson, M.; Czene, K.; Vachon, C.; Conant, E.F.; Hall, P. Long-Term Performance of an Image-Based Short-Term Risk Model for Breast Cancer. J. Clin. Oncol. 2023, 41, 2536–2545. [Google Scholar] [CrossRef] [PubMed]
- Lehman, C.D.; Mercaldo, S.; Lamb, L.R.; King, T.A.; Ellisen, L.W.; Specht, M.; Tamimi, R.M. Deep Learning vs. Traditional Breast Cancer Risk Models to Support Risk-Based Mammography Screening. J. Natl. Cancer Inst. 2022, 114, 1355–1363. [Google Scholar] [CrossRef]
- Rajaram, N.; Mariapun, S.; Eriksson, M.; Tapia, J.; Kwan, P.Y.; Ho, W.K.; Harun, F.; Rahmat, K.; Czene, K.; Taib, N.A.; et al. Differences in mammographic density between Asian and Caucasian populations: A comparative analysis. Breast Cancer Res. Treat. 2017, 161, 353–362. [Google Scholar] [CrossRef]
- Jo, H.M.; Lee, E.H.; Ko, K.; Kang, B.J.; Cha, J.H.; Yi, A.; Jung, H.K.; Jun, J.K. Prevalence of Women with Dense Breasts in Korea: Results from a Nationwide Cross-sectional Study. Cancer Res. Treat. 2019, 51, 1295–1301. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Yap, Y.S.; Lee, K.H.; Im, S.A.; Naito, Y.; Yeo, W.; Ueno, T.; Kwong, A.; Li, H.; Huang, S.M.; et al. Contrasting Epidemiology and Clinicopathology of Female Breast Cancer in Asians vs the US Population. J. Natl. Cancer Inst. 2019, 111, 1298–1306. [Google Scholar] [CrossRef]
- Sickles, E.A.; D’Orsi, C.J.; Bassett, L.W. American College of Radiology Breast Imaging Reporting and Data System Atlas (ACR BI-RADS Atlas); American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Bissell, M.C.S.; Kerlikowske, K.; Sprague, B.L.; Tice, J.A.; Gard, C.C.; Tossas, K.Y.; Rauscher, G.H.; Trentham-Dietz, A.; Henderson, L.M.; Onega, T.; et al. Breast Cancer Population Attributable Risk Proportions Associated with Body Mass Index and Breast Density by Race/Ethnicity and Menopausal Status. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2048–2056. [Google Scholar] [CrossRef] [PubMed]
- Schousboe, J.T.; Kerlikowske, K.; Loh, A.; Cummings, S.R. Personalizing mammography by breast density and other risk factors for breast cancer: Analysis of health benefits and cost-effectiveness. Ann. Intern. Med. 2011, 155, 10–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saccarelli, C.R.; Bitencourt, A.G.V.; Morris, E.A. Is It the Era for Personalized Screening? Radiol. Clin. N. Am. 2021, 59, 129–138. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Training Examinations | Validation Examinations | Test Examinations | |||
---|---|---|---|---|---|---|
(n = 701) | (n = 160) | (n = 162) | ||||
Negative | Cancer | Negative | Cancer | Negative | Cancer | |
(n = 506) | (n = 195) | (n = 111) | (n = 49) | (n = 119) | (n = 43) | |
Age (years) | ||||||
<40 | 39 (7.7) | 15 (7.7) | 14 (12.6) | 3 (6.1) | 12 (10.1) | 2 (4.7) |
40–50 | 204 (40.3) | 75 (38.5) | 37 (33.3) | 10 (20.4) | 36 (30.3) | 27 (62.8) |
51–60 | 138 (27.3) | 60 (30.8) | 32 (28.8) | 26 (53.1) | 41 (34.5) | 9 (20.9) |
>60 | 125 (24.7) | 45 (23.1) | 28 (25.2) | 10 (20.4) | 30 (25.2) | 5 (11.6) |
Mean ± SD | 51 ± 10 | 53 ± 11 | 51 ± 10 | 54 ± 9 | 53 ± 10 | 48 ± 7 |
Breast density | ||||||
Almost entirely fatty | 48 (9.5) | 0 (0) | 12 (10.8) | 1 (2.0) | 9 (7.6) | 1 (2.3) |
Scattered areas of FGT | 107 (21.1) | 39 (20.0) | 24 (21.6) | 10 (20.4) | 28 (23.5) | 7 (16.3) |
Heterogeneously dense | 276 (54.5) | 114 (58.5) | 58 (52.3) | 29 (59.2) | 60 (50.4) | 22 (51.2) |
Extremely dense | 75 (14.8) | 42 (21.5) | 17 (15.3) | 9 (18.4) | 22 (18.5) | 13 (30.2) |
Nondense vs. dense | ||||||
Nondense breasts | 155 (30.6) | 39 (20.0) | 36 (32.4) | 11 (22.4) | 37 (31.1) | 8 (18.6) |
Dense breasts | 351 (69.4) | 156 (80.0) | 75 (67.6) | 38 (77.6) | 82 (68.9) | 35 (81.4) |
Histologic type | ||||||
Invasive carcinoma | - | 172 (88.2) | - | 46 (93.9) | - | 36 (83.7) |
DCIS | - | 23 (11.8) | - | 3 (6.1) | - | 7 (16.3) |
Metrics | Image-Level Model | Examination-Level Model | ||
---|---|---|---|---|
Whole | Dense-Only | Whole | Dense-Only | |
Accuracy (%) | 76.0 (424 of 558) | 82.7 (329 of 398) | 74.7 (121 of 162) | 75.2 (88 of 117) |
Precision (%) | 30.4 (38 of 125) | 50.9 (29 of 57) | 52.6 (20 of 38) | 61.5 (16 of 26) |
Sensitivity (%) | 44.7 (38 of 85) | 41.4 (29 of 70) | 46.5 (20 of 43) | 45.7 (16 of 35) |
Specificity (%) | 81.6 (386 of 473) | 91.5 (300 of 328) | 84.9 (101 of 119) | 87.8 (72 of 82) |
F1 score | 0.362 | 0.457 | 0.494 | 0.525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Lim, J.; Kim, H.-G.; Lim, Y.; Seo, B.K.; Bae, M.S. Deep Learning Analysis of Mammography for Breast Cancer Risk Prediction in Asian Women. Diagnostics 2023, 13, 2247. https://doi.org/10.3390/diagnostics13132247
Kim H, Lim J, Kim H-G, Lim Y, Seo BK, Bae MS. Deep Learning Analysis of Mammography for Breast Cancer Risk Prediction in Asian Women. Diagnostics. 2023; 13(13):2247. https://doi.org/10.3390/diagnostics13132247
Chicago/Turabian StyleKim, Hayoung, Jihe Lim, Hyug-Gi Kim, Yunji Lim, Bo Kyoung Seo, and Min Sun Bae. 2023. "Deep Learning Analysis of Mammography for Breast Cancer Risk Prediction in Asian Women" Diagnostics 13, no. 13: 2247. https://doi.org/10.3390/diagnostics13132247
APA StyleKim, H., Lim, J., Kim, H.-G., Lim, Y., Seo, B. K., & Bae, M. S. (2023). Deep Learning Analysis of Mammography for Breast Cancer Risk Prediction in Asian Women. Diagnostics, 13(13), 2247. https://doi.org/10.3390/diagnostics13132247