Analysis of Spinal Ischemia after Frozen Elephant Trunk for Acute Aortic Dissection: An Observational, Single-Center Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.-G.; Sun, L.-Z.; Chang, Q.; Zhu, J.-M.; Dong, C.; Yu, C.-T.; Liu, Y.-M.; Zhang, H.-T. Should the “elephant trunk” be skeletonized? Total arch replacement combined with stented elephant trunk implantation for Stanford type A aortic dissection. J. Thorac. Cardiovasc. Surg. 2006, 131, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Uchida, N.; Shibamura, H.; Katayama, A.; Shimada, N.; Sutoh, M.; Ishihara, H. Operative Strategy for Acute Type A Aortic Dissection: Ascending Aortic or Hemiarch Versus Total Arch Replacement With Frozen Elephant Trunk. Ann. Thorac. Surg. 2009, 87, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Hori, D.; Kusadokoro, S.; Adachi, K.; Kimura, N.; Yuri, K.; Matsumoto, H.; Yamaguchi, A. Risk factors for spinal cord injury in patients undergoing frozen elephant trunk technique for acute aortic dissection. Gen. Thorac. Cardiovasc. Surg. 2019, 68, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; De Rango, P.; Czerny, M.; Evangelista, A.; Fattori, R.; Nienaber, C.; Rousseau, H.; Schepens, M. Systematic review of clinical outcomes in hybrid procedures for aortic arch dissections and other arch diseases. J. Thorac. Cardiovasc. Surg. 2012, 144, 1286–1300.e2. [Google Scholar] [CrossRef]
- Lin, H.-H.; Liao, S.-F.; Wu, C.-F.; Li, P.-C.; Li, M.-L. Outcome of Frozen Elephant Trunk Technique for Acute Type A Aortic Dissection. Medicine 2015, 94, e694. [Google Scholar] [CrossRef]
- Roy, A.; Mc Gorrian, C.; Treacy, C.; Kavanaugh, E.; Brennan, A.; Mahon, N.; Murray, P.T. A Comparison of Traditional and Novel Definitions (RIFLE, AKIN, and KDIGO) of Acute Kidney Injury for the Prediction of Outcomes in Acute Decompensated Heart Failure. Cardiorenal Med. 2013, 3, 26–37. [Google Scholar] [CrossRef]
- Lombardi, J.V.; Hughes, G.C.; Appoo, J.J.; Bavaria, J.E.; Beck, A.W.; Cambria, R.P.; Charlton-Ouw, K.; Eslami, M.H.; Kim, K.M.; Leshnower, B.G.; et al. Society for Vascular Surgery (SVS) and Society of Thoracic Surgeons (STS) Reporting Standards for Type B Aortic Dissections. Ann. Thorac. Surg. 2020, 109, 959–981. [Google Scholar] [CrossRef]
- Knipp, B.S.; Deeb, G.M.; Prager, R.L.; Williams, C.Y.; Upchurch, G.R.; Patel, H.J. A contemporary analysis of outcomes for operative repair of type A aortic dissection in the United States. Surgery 2007, 142, 524–528.e1. [Google Scholar] [CrossRef]
- Conzelmann, L.O.; Weigang, E.; Mehlhorn, U.; Abugameh, A.; Hoffmann, I.; Blettner, M.; Etz, C.D.; Czerny, M.; Vahl, C.F. Mortality in patients with acute aortic dissection type A: Analysis of pre- and intraoperative risk factors from the German Registry for Acute Aortic Dissection Type A (GERAADA). Eur. J. Cardio-Thorac. Surg. 2015, 49, e44–e52. [Google Scholar] [CrossRef]
- Pape, L.; Awais, M.; Woznicki, E. Presentation, Diagnosis, and Outcomes of Acute Aortic Dissection: Seventeen-Year Trends From the International Registry of Acute Aortic Dissection. J. Vasc. Surg. 2016, 63, 552–553. [Google Scholar] [CrossRef]
- Hobbs, R.; Si, M.-S. Commentary: Modified Frozen Elephant Trunk. J. Thorac. Cardiovasc. Surg. 2022, 163, 1763–1764. [Google Scholar] [CrossRef] [PubMed]
- Berdajs, D.A.; Koechlin, L.; Reid, G.; Grob, F.; Gahl, B.; Schurr, U.; Reuthebuch, O.; Eckstein, F. Modified frozen elephant trunk procedure as standard approach in acute type A aortic dissection: A propensity-weighted analysis. J. Thorac. Cardiovasc. Surg. 2022, 163, 1754–1761.e3. [Google Scholar] [CrossRef] [PubMed]
- Katayama, K.; Uchida, N.; Katayama, A.; Takahashi, S.; Takasaki, T.; Kurosaki, T.; Imai, K.; Sueda, T. Multiple factors predict the risk of spinal cord injury after the frozen elephant trunk technique for extended thoracic aortic disease. Eur. J. Cardio-Thorac. Surg. 2014, 47, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Roselli, E.E.; Bakaeen, F.G.; Johnston, D.R.; Soltesz, E.G.; Tong, M.Z. Role of the frozen elephant trunk procedure for chronic aortic dissection. Eur. J. Cardio-Thorac. Surg. 2017, 51, i35–i39. [Google Scholar] [CrossRef]
- Kozlov, B.N.; Panfilov, D.S.; Ponomarenko, I.V.; Miroshnichenko, A.G.; A Nenakhova, A.; I Maksimov, A.; Shipulin, V.M. The risk of spinal cord injury during the frozen elephant trunk procedure in acute aortic dissection. Interact. Cardiovasc. Thorac. Surg. 2018, 26, 972–976. [Google Scholar] [CrossRef] [PubMed]
- Liakopoulos, O.J. Commentary: Spinal Cord Injury after the Frozen Elephant Trunk Procedure: Are We Really Safe Now? J. Thorac. Cardiovasc. Surg. 2020, 159, 1199–1200. [Google Scholar] [CrossRef]
- Spanos, K.; Kölbel, T.; Kubitz, J.C.; Wipper, S.; Konstantinou, N.; Heidemann, F.; Rohlffs, F.; Debus, S.E.; Tsilimparis, N. Risk of spinal cord ischemia after fenestrated or branched endovascular repair of complex aortic aneurysms. J. Vasc. Surg. 2019, 69, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Sosnowski, P.; Mikrut, K.; Krauss, H. Hypothermia—Mechanism of action and pathophysiological changes in the human body. Postępy Hig. I Med. Doświadczalnej 2015, 69, 69–79. [Google Scholar] [CrossRef]
- Barnett, H.J.; Mohr, J.P.; Stein, B.M.; Yatsu, F.M. (Eds.) Spinal Cord Ischemia. In Stroke Pathophysiology, Diagnosis, and Management; Churchill Livingstone: Philadelphia, PA, USA, 1998; p. 423. [Google Scholar]
- Radiology Key. Spinal Cord Infarction. 2022. Available online: https://radiologykey.com/spinal-cord-infarction/ (accessed on 13 June 2022).
- Ius, F.; Hagl, C.; Haverich, A.; Pichlmaier, M. Elephant trunk procedure 27 years after Borst: What remains and what is new? Eur. J. Cardio-Thorac. Surg. 2011, 40, 1–12. [Google Scholar] [CrossRef]
- Uchida, N.; Shibamura, H.; Katayama, A.; Sutoh, M.; Kuraoka, M.; Ishihara, H. Long-term results of the frozen elephant trunk technique for the extensive arteriosclerotic aneurysm. J. Thorac. Cardiovasc. Surg. 2010, 139, 913–917. [Google Scholar] [CrossRef]
- Dagenais, F.; Shetty, R.; Normand, J.-P.; Turcotte, R.; Mathieu, P.; Voisine, P. Extended Applications of Thoracic Aortic Stent Grafts. Ann. Thorac. Surg. 2006, 82, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.C.; Cheng, S.W.; Ting, A.C.; Ho, P. Supra-aortic hybrid endovascular procedures for complex thoracic aortic disease: Single center early to midterm results. J. Vasc. Surg. 2008, 48, 571–579. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Etz, C. Spinale Ischämie. Gefässchirurgie 2017, 22, 81–82. [Google Scholar] [CrossRef][Green Version]
Variable | Total (n = 31) | SCI (n = 4) | Non-SCI (n = 27) | p-Value |
---|---|---|---|---|
Demographic characteristic | ||||
Age (years), mean ± SD | 57.1 ± 1.6 | 62.5 ± 3 | 62.5 ± 3 | 0.379 |
Female gender, n (%) | 6 (19.3) | 3 (75) | 3 (11.1) | 0.016 |
BMI (kg/m2), mean ± SD | 27.7 ± 0.90 | 24.6 ± 0.66 | 27 ± 0.98 | 0.272 |
Medical history, n (%) | ||||
Hypertension | 22 (70.9) | 2 (50) | 20 (74.0) | 0.560 |
Previous stroke/TIA | 2 (6.4) | 0 (0) | 2 (7.4) | 0.747 |
COPD | 3 (9.6) | 1 (25.0) | 2 (7.4) | 0.349 |
Diabetes | 1 (3.2) | 0 (0) | 1 (3.7) | 0.871 |
Coronary artery disease | 6 (19.3) | 1 (25.0) | 5 (18.5) | 0.745 |
Chronic heart disease | 2 (6.4) | 0 (0) | 2 (7.4) | 0.755 |
Current/previous smoker | 9 (29.0) | 2 (50) | 7 (25.9) | 0.345 |
Atrial fibrillation | 5 (16.1) | 1 (25) | 4 (14.8) | 0.525 |
Preoperative cerebral ischemia | 0 | 0 | 0 | 0 |
Postoperative visceral ischemia | 5 (16.1) | 0 (0) | 5 (18.5) | 0.589 |
Medication treatment, n (%) | ||||
ß-blocker | 12 (38.7) | 0 (0) | 12 (44.4) | 0.121 |
ACE inhibitor | 5 (16.1) | 0 (0) | 5 (18.5) | 0.475 |
Aspirin | 5 (16.1) | 1 (25) | 4 (14.8) | 0.553 |
Statin | 4 (12.9) | 0 (0) | 4 (14.8) | 0.558 |
Anticoagulation | 2 (6.4) | 0 (0) | 2 (7.4) | 0.747 |
Variable | Total (n = 31) | SCI (n = 4) | Non-SCI (n = 27) | p-Value |
---|---|---|---|---|
CPB time (min) (mean ± SD) | 216.4 ± 8.0 | 209.7 ± 6.4 | 217,5 ± 9.4 | 0.743 |
Aorta clamping time (min) (mean ± SD) | 138 ± 9.1 | 140.7 ± 10.7 | 137.6 ± 10.5 | 0.908 |
Hypothermic circulatory arrest time (min) (mean ± SD) | 49.2 ± 1.7 | 54.5 ± 8.8 | 48.4 ± 1.5 | 0.240 |
CABG, n (%) | 2 (6.4) | 0 | 2 (7.4) | 0.755 |
Concomitant aortic valve replacement, n (%) | 20 (64.5) | 4 (100) | 16(59.2) | 0.237 |
PRBC units (mean ± SD) | 9.7 ± 1.1 | 9 ± 1.0 | 9.8 ± 1.2 | 0.809 |
PC units (mean ± SD) | 2.3 ± 0.45 | 1 ± 0.40 | 2.5 ± 0.50 | 0.268 |
Fibrinogen units (mean ± SD) | 5.1 ± 0.44 | 4.2 ± 0.62 | 5.3 ± 0.50 | 0.419 |
PL units (mean ± SD) | 4.6 ± 1.1 | 2.2 ± 1.3 | 4.9 ± 1.3 | 0.452 |
PCC units (mean ± SD) | 4 ± 0.58 | 2.5 ± 1.04 | 4.2 ± 0.64 | 0.291 |
FET prothesis length 150 mm | 11 (0.35) | 1 (0.25) | 10 (37.0) | 0.712 |
Variable | Total (n = 31) | SCI (n = 4) | Non-SCI (n = 27) | p-Value |
---|---|---|---|---|
Laboratory data | ||||
Creatinine (mg/dL) | 0.96 ± 0.06 | 1.0 ± 0.06 | 0.667 ± 0.08 | 0.032 |
Hemoglobin (mg/dL) | 13.2 ± 0.34 | 11.3 ± 1.5 | 13.5 ± 0.3 | 0.29 |
Platelet count (×1000/μL) | 199.5 ± 16.73 | 288 ± 113.6 | 188 ± 12.4 | 0.472 |
Risk factor for SCI, n (%) | ||||
Hypoxemia (day 0) (mmHg) | 5 (16.1) | 1 (25.0) | 4 (14.8) | 0.553 |
Hypoxemia (POD 1) (mmHg) | 11 (35.4) | 2 (50.0) | 9 (33.3) | 0.336 |
Hypoxemia (POD 2) (mmHg) | 13 (41.9) | 3 (75.0) | 10 (37.0) | 0.124 |
Hypoxemia (POD 3) (mmHg) | 26 (83.8) | 3 (75.0) | 23 (85.1) | 0.454 |
Hypotension (day 0) (mmHg) | 26 (83.8) | 3 (75.0) | 23 (85.1) | 0.454 |
Hypotension (POD 1) (mmHg) | 1 (3.2) | 0 (0) | 1 (3.7) | 0.871 |
Hypotension (POD 2) (mmHg) | 18 (58.0) | 2 (50.0) | 16 (59.2) | 0.452 |
Hypotension (POD 3) (mmHg) | 12 (38.7) | 2 (50.0) | 10 (37.0) | 0.705 |
Dominating left vertebral artery | 16 (51.6) | 1(25.0) | 15(55.5) | 0.275 |
Postoperative cerebral ischemia | 4 (12.9) | 1 (0.25) | 3 (11.1) | 0.429 |
Postoperative visceral ischemia | 9 (29.0) | 2 (50) | 7 (25.9) | 0.429 |
Thrombosis extension in false lumen, n (%) | ||||
Zones 3–4 | 24 (77.4) | 0 (0) | 24 (88.8) | |
Zones 5–6 | 5 (16.1) | 2 (50.0) | 3 (11.1) | |
Zones 7–9 | 2 (6.4) | 2 (50.0) | 0 (0) | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuellar, F.L.; Oberhuber, A.; Martens, S.; Rukosujew, A.; Marchiori, E.; Ibrahim, A. Analysis of Spinal Ischemia after Frozen Elephant Trunk for Acute Aortic Dissection: An Observational, Single-Center Study. Diagnostics 2022, 12, 2781. https://doi.org/10.3390/diagnostics12112781
Cuellar FL, Oberhuber A, Martens S, Rukosujew A, Marchiori E, Ibrahim A. Analysis of Spinal Ischemia after Frozen Elephant Trunk for Acute Aortic Dissection: An Observational, Single-Center Study. Diagnostics. 2022; 12(11):2781. https://doi.org/10.3390/diagnostics12112781
Chicago/Turabian StyleCuellar, Frederico Lomonaco, Alexander Oberhuber, Sven Martens, Andreas Rukosujew, Elena Marchiori, and Abdulhakim Ibrahim. 2022. "Analysis of Spinal Ischemia after Frozen Elephant Trunk for Acute Aortic Dissection: An Observational, Single-Center Study" Diagnostics 12, no. 11: 2781. https://doi.org/10.3390/diagnostics12112781
APA StyleCuellar, F. L., Oberhuber, A., Martens, S., Rukosujew, A., Marchiori, E., & Ibrahim, A. (2022). Analysis of Spinal Ischemia after Frozen Elephant Trunk for Acute Aortic Dissection: An Observational, Single-Center Study. Diagnostics, 12(11), 2781. https://doi.org/10.3390/diagnostics12112781