# Artificial Neural Network-Based Predictive Model for Finite Element Analysis of Additive-Manufactured Components

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Test Sample Preparation

#### 2.2. Tensile Testing

#### 2.3. Neural Network Development and Training

#### 2.4. Finite Element Analysis Using Predicted Mechanical Properties

#### 2.5. Corroborating Predicted Results with Real-World Data

## 3. Results

#### 3.1. Tensile Test Results

#### 3.2. Neural Network Training and Prediction Results

#### 3.3. Finite Element Analysis Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Sterca, A.D.; Calin, R.A.; Cristian, L.; Walcher, E.M.; Bodur, O.; Ceclan, V.; Grozav, S.D.; Durakbasa, N.M. Evaluation of Fused Deposition Modeling Process Parameters Influence on 3D Printed Components by High Precision Metrology. In Digitizing Production Systems; Lecture Notes in Mechanical Engineering; Durakbasa, N.M., Gençyılmaz, M.G., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Grozav, S.D.; Sterca, A.D.; Kočiško, M.; Pollák, M.; Ceclan, V. Feasibility of Predictive Models for the Quality of Additive Manufactured Components Based on Artificial Neural Networks. Machines
**2022**, 10, 128. [Google Scholar] [CrossRef] - Travieso-Rodriguez, J.A.; Jerez-Mesa, R.; Llumà, J.; Traver-Ramos, O.; Gomez-Gras, G.; Roa Rovira, J.J. Mechanical Properties of 3D-Printing Polylactic Acid Parts subjected to Bending Stress and Fatigue Testing. Materials
**2019**, 12, 3859. [Google Scholar] [CrossRef] [PubMed] - Tura, A.D.; Lemu, H.G.; Mamo, H.B. Experimental Investigation and Prediction of Mechanical Properties in a Fused Deposition Modeling Process. Crystals
**2022**, 12, 844. [Google Scholar] [CrossRef] - Yadav, D.; Chhabra, D.; Garg, R.K.; Ahlawat, A.; Phogat, A. Optimization of FDM 3D printing process parameters for multi-material using artificial neural network. Mater. Today Proc.
**2020**, 21, 1583–1591. [Google Scholar] [CrossRef] - Saleh, M.; Anwar, S.; Al-Ahmari, A.M.; AlFaify, A.Y. Prediction of Mechanical Properties for Carbon fiber/PLA Composite Lattice Structures Using Mathematical and ANFIS Models. Polymers
**2023**, 15, 1720. [Google Scholar] [CrossRef] [PubMed] - Jatti, V.S.; Sapre, M.S.; Jatti, A.V.; Khedkar, N.K.; Jatti, V.S. Mechanical Properties of 3D-Printed Components Using Fused Deposition Modeling: Optimization Using the Desirability Approach and Machine Learning Regressor. Appl. Syst. Innov.
**2022**, 5, 112. [Google Scholar] [CrossRef] - Ding, S.; Zou, B.; Wang, P.; Ding, H. Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym. Test.
**2019**, 78, 105948. [Google Scholar] [CrossRef] - Khosravani, M.R.; Reinicke, T. Effects of raster layup and printing speed on strength of 3D-printed structural components. In Proceedings of the 1st European-Structural-Integrity-Society (ESIS) Virtual European Conference on Fracture (ECF), Virtual, 29 June–1 July 2020; pp. 720–725. [Google Scholar]
- Zhang, J.W.; Peng, A.H. Process-parameter optimization for fused deposition modeling based on Taguchi method. Adv. Mater. Res.
**2012**, 538, 444–447. [Google Scholar] [CrossRef] - Alhazmi, M.W.; Backar, A.; Backar, A.H. Influence of infill density and orientation on the mechanical response of PLA+ specimens produced using FDM 3D printing. Int. J. Adv. Sci. Technol.
**2020**, 29, 3362–3371. [Google Scholar] - Omiyale, P.K.; Omiyale, B.O. Mechanical behaviour of polylactic acid parts fabricated via material extrusion process: A taguchi-grey relational analysis approach. Int. J. Eng. Res. Afr.
**2020**, 46, 32–44. [Google Scholar] - Tran, N.H.; Nguyen, V.N.; Ngo, A.V.; Nguyen, V.C. Study on the effect of fused deposition modeling (FDM) process parameters on the printed part quality. Int. J. Eng. Res. Appl.
**2017**, 7, 71–77. [Google Scholar] - Peng, A.; Xiao, X.; Yue, R. Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int. J. Adv. Manuf. Technol.
**2014**, 73, 87–100. [Google Scholar] [CrossRef] - Chacon, J.M.; Caminero, M.A.; Garcia-Plaza, E.; Nunez, P.J. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des.
**2017**, 124, 143–157. [Google Scholar] [CrossRef] - Ayatollahi, M.R.; Nabavi-Kivi, A.; Bahrami, B.; Yahya, M.Y.; Khosravani, M.R. The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens. Eng. Fract. Mech.
**2020**, 237, 106905. [Google Scholar] [CrossRef] - ISO527-2; Plastics-Determination of Tensile Properties-Part 2: Test Conditions for Moulding and Extrusion Plastics. International Organization for Standardization: Geneva, Switzerland, 2012.
- Anycubic Mega, X. Anycubic, China. Available online: https://de.anycubic.com/products/mega-x (accessed on 15 April 2023).
- Instron 3360 Series Mechanical Testing Systems. Available online: https://www.instron.com/~/media/literature-library/products/2011/06/3300-series-table-model.pdf (accessed on 27 December 2021).
- Python Programming Language. Available online: https://www.python.org/ (accessed on 27 December 2021).
- PyCharm Integrated Development Environment. Available online: https://www.jetbrains.com/pycharm/ (accessed on 27 December 2021).
- TensorFlow Machine Learning Platform. Available online: https://www.tensorflow.org/ (accessed on 27 December 2021).
- Keras Frontend for TensorFlow. Available online: https://keras.io/ (accessed on 27 December 2021).
- TensorBoard Visualisation Kit for TensorFlow. Available online: https://www.tensorflow.org/tensorboard (accessed on 27 December 2021).
- An Overview of Gradient Descent Optimization Algorithms. Available online: https://ruder.io/optimizing-gradient-descent/ (accessed on 29 December 2021).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar] [CrossRef]
- Fávero, L.P.; Belfiore, P.; de Freitas Souza, R. Chapter 22—Artificial neural networks. In Data Science, Analytics and Machine Learning with R; Academic Press: Cambridge, MA, USA, 2023; pp. 441–467. [Google Scholar] [CrossRef]
- Dassault Systems Solidworks. Available online: https://www.solidworks.com/ (accessed on 15 April 2023).

**Figure 5.**Artificial neural network architecture: single-output configuration (

**a**), and two-output configuration (

**b**).

**Figure 10.**Performance analysis plot for the artificial neural network used to predict tensile strength values.

**Figure 11.**Finite element analysis results for orthotropic material with predicted mechanical characteristics. Tensile stress results (

**a**); displacement results (

**b**).

**Figure 12.**(

**a**) Test part failure mode under tensile testing. (

**b**) Stress–strain plot generated during tensile testing of the part, indicating maximum tensile stress (upward triangle).

Speed (mm/s) | 30 | 60 | 90 | 120 | 150 | 180 |

Nozzle temperature (°C) | 190 | 190 | 190 | 190 | 190 | 190 |

200 | 200 | 200 | 200 | 200 | 200 | |

210 | 210 | 210 | 210 | 210 | 210 | |

220 | 220 | 220 | 220 | 220 | 220 |

Property | Value |
---|---|

Heat Deflection Temperature (HDT) | 126 °F (52 °C) |

Density | 1.24 g/cm^{3} |

Tensile Strength | 50 MPa |

Flexural Strength | 80 MPa |

Impact Strength (Unnotched) IZOD (J/m) | 96.1 |

Shrink Rate | 0.37–0.41% (0.0037–0.0041 in/in) |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Grozav, S.D.; Sterca, A.D.; Kočiško, M.; Pollák, M.; Ceclan, V.
Artificial Neural Network-Based Predictive Model for Finite Element Analysis of Additive-Manufactured Components. *Machines* **2023**, *11*, 547.
https://doi.org/10.3390/machines11050547

**AMA Style**

Grozav SD, Sterca AD, Kočiško M, Pollák M, Ceclan V.
Artificial Neural Network-Based Predictive Model for Finite Element Analysis of Additive-Manufactured Components. *Machines*. 2023; 11(5):547.
https://doi.org/10.3390/machines11050547

**Chicago/Turabian Style**

Grozav, Sorin D., Alexandru D. Sterca, Marek Kočiško, Martin Pollák, and Vasile Ceclan.
2023. "Artificial Neural Network-Based Predictive Model for Finite Element Analysis of Additive-Manufactured Components" *Machines* 11, no. 5: 547.
https://doi.org/10.3390/machines11050547