From Hemispheric Asymmetry through Sensorimotor Experiences to Cognitive Outcomes in Children with Cerebral Palsy
Abstract
:1. Introduction
2. Hemispheric Asymmetry and Information Processing
3. Hemispheric Asymmetry in Children with CP
4. Interhemispheric Connectivity in Children with CP
5. Sensorimotor and Motor Outcomes in Children with CP
5.1. Motor Neglect in Manual Skills
5.2. Visuoperceptual and Spatial Neglect
5.3. Body Representation and Mental Imagery
6. Cognitive Outcomes in Children with CP
6.1. Linguistic Skills
6.2. Subitizing, Counting, and Arithmetic Skills
6.3. Executive Function Skills
7. The Role of Experience in the Development of Hemispheric Asymmetry
8. Possible Interventions for Children with CP
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hugdahl, K.; Westerhausen, R. The Two Halves of the Brain; The MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Qin, Y.; Sun, B.; Zhang, H.; Li, Y.; Zhang, T.; Luo, C.; Sun, C.; Yao, D. Aberrant interhemispheric functional organization in children with dyskinetic cerebral palsy. BioMed Res. Int. 2019, 2019, 4362539. [Google Scholar] [CrossRef] [Green Version]
- Toga, A.W.; Thompson, P. Mapping brain asymmetry. Nat. Rev. Neurosci. 2003, 4, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Eyre, J.A. Corticospinal tract development and its plasticity after perinatal injury. Neurosci. Biobehav. Rev. 2007, 31, 1136–1149. [Google Scholar] [CrossRef]
- Kułak, W.; Sobaniec, W.; Kubas, B.; Walecki, J. Corpus callosum size in children with spastic cerebral palsy: Relationship to clinical outcome. J. Child Neurol. 2007, 22, 371–374. [Google Scholar] [CrossRef]
- Li, J.Y.; Espay, A.J.; Gunraj, C.A.; Pal, P.K.; Cunic, D.I.; Lang, A.E.; Chen, R. Interhemispheric and ipsilateral connections in Parkinson’s disease: Relation to mirror movements. Mov. Disord. 2007, 22, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Sabaté, M.; González, B.; Rodríguez, M. Brain lateralization of motor imagery: Motor planning asymmetry as a cause of movement lateralization. Neuropsychologia 2004, 42, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Oouchida, Y.; Izumi, S.-I. Motor control and neural plasticity through interhemispheric interactions. Neural Plast. 2012, 2012, 823285. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.; Green, D.; Geva, R.; Schertz, M.; Fattal-Valevski, A.; Artzi, M.; Myers, V.; Shiran, S.; Gordon, A.; Gross-Tsur, V.; et al. Interhemispheric and intrahemispheric connectivity and manual skills in children with unilateral cerebral palsy. Brain Struct. Funct. 2013, 219, 1025–1040. [Google Scholar] [CrossRef] [PubMed]
- Bax, M.; Goldstein, M.; Rosenbaum, P.; Leviton, A.; Paneth, N.; Dan, B.; Jacobsson, B.; Damiano, D. Proposed definition and classification of cerebral palsy, April 2005. Dev. Med. Child Neurol. 2005, 47, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Morris, C. Definition and classification of cerebral palsy: A historical perspective. DMCN 2007, 49, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Jacobsson, B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. 2007, 109, 8–14. [Google Scholar]
- Barsalou, L.W. Grounded cognition. Annu. Rev. Psychol. 2008, 59, 617–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemero, A. Radical Embodied Cognitive Science; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Pezzulo, G. Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind Lang. 2011, 26, 78–114. [Google Scholar] [CrossRef]
- Thelen, E.; Smith, L.B. A Dynamic Systems Approach to the Development of Cognition and Action; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Varela, F.J.; Thompson, E.; Rosch, E. The Embodied Mind, Cognitive Science and Human Experience; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Wilson, M.S. Six views of embodied cognition. Psychon. Bull. Rev. 2002, 9, 625–636. [Google Scholar] [CrossRef]
- Arp, S.; Fagard, J. What impairs subitizing in cerebral palsied children? Dev. Psychobiol. 2005, 47, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Bottcher, L.; Flachs, E.M.; Uldall, P. Attentional and executive impairments in children with spastic cerebral palsy. Dev. Med. Child Neurol. 2009, 52, e42–e47. [Google Scholar] [CrossRef]
- Chilosi, A.M.; Pecini, C.; Cipriani, P.; Brovedani, P.; Brizzolara, D.; Ferretti, G.; Cioni, G. Atypical language lateralization and early linguistic development in children with focal brain lesions. DMCN 2005, 47, 725–730. [Google Scholar]
- Critten, V.; Messer, D.; Sheehy, K. Delays in the reading and spelling of children with cerebral palsy: Associations with phonological and visual processes. Res. Dev. Disabil. 2018, 85, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Desoete, A.; Ceulemans, A.; Roeyers, H.; Huylebroeck, A. Subitizing or counting as possible screening variables for learning disabilities in mathematics education or learning? Educ. Res. Rev. 2009, 4, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Jenks, K.M.; De Moor, J.; van Lieshout, E.; Maathuis, K.G.; Keus, I.; Gorter, J.W. The effect of cerebral palsy on arithmetic accuracy is mediated by working memory, intelligence, early numeracy, and instruction time. Dev. Neuropsychol. 2007, 32, 861–879. [Google Scholar] [CrossRef]
- Jordan, N.C.; Glutting, J.; Ramineni, C. The importance of number sense to mathematics achievement in first and third grades. Learn. Individ. Differ. 2010, 20, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroesbergen, E.H.; van Luit, J.E.H.; van Lieshout, E.C.D.M.; van Loosbroek, E.; van de Rijt, B.A.M. Individual differences in early numeracy: The role of executive functions and subitizing. J. Psychol. Educ. Assess 2009, 27, 226–236. [Google Scholar] [CrossRef]
- Van Rooijen, M.; Verhoeven, L.; Steenbergen, B. Early numeracy in cerebral palsy: Review and future research. Dev. Med. Child Neurol. 2011, 53, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Corballis, M.C. The Lopsided Ape; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Corballis, M.C. The evolution of lateralized brain circuits. Front. Psychol. 2017, 8, 1021. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C.L.; van Rootselaar, N.A.; Gibb, R.L. Sensorimotor lateralization scaffolds cognitive specialization. Prog. Brain Res. 2018, 238, 405–433. [Google Scholar] [CrossRef]
- Güntürkün, O.; Ocklenburg, S. Ontogenesis of Lateralization. Neuron 2017, 94, 249–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, L.J.; Zucca, P.; Vallortigara, G. Advantages of having a lateralized brain. Proc. R. Soc. B Boil. Sci. 2004, 271, S420–S422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, H.; Brownell, H.H.; Wapner, W.; Michelow, D. Missing the point: The role of the right hemisphere in the processing of complex linguistic materials. In Pragmatics—Critical Concepts; Kasher, A., Ed.; Routledge: London, UK, 1998; Volume 6, pp. 170–192. [Google Scholar] [CrossRef]
- Gazzaniga, M.S.; Ivry, R.B.; Mangun, G.R. Cognitive Neuroscience: The Biology of the Mind, 3rd ed.; W.W. Norton & Company, Inc.: New York, NY, USA, 2009. [Google Scholar]
- Kimura, D. The asymmetry of the human brain. Sci. Am. 1973, 228, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Young, G. Developmental Laterality Research: Childhood; Springer: New York, NY, USA, 2019; pp. 57–72. [Google Scholar] [CrossRef]
- Sergent, J. Basic determinants in visual-field effects with special reference to the Hannay et al. (1981) study. Brain Lang. 1982, 16, 158–164. [Google Scholar] [CrossRef]
- Sergent, J. Theoretical and methodological consequences of variations in exposure duration in visual laterality studies. Percept. Psychophys. 1982, 31, 451–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergent, J. Influence of task and input factors on hemispheric involvement in face processing. J. Exp. Psychol. Hum. Percept. Perform. 1985, 11, 846–861. [Google Scholar] [CrossRef] [PubMed]
- Bogen, J.E. The other side of the brain: II. An appositional mind. Bull. Los Angel. Neuro. Soc. 1969, 34, 191–200. [Google Scholar]
- Flevaris, A.V.; Robertson, L.C. Spatial frequency selection and integration of global and local information in visual processing: A selective review and tribute to Shlomo Bentin. Neuropsychologia 2016, 83, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, H.K.; Grimshaw, G.M. Emotional language is all right: Emotional prosody reduces hemispheric asymmetry for linguistic processing. Laterality 2016, 21, 568–584. [Google Scholar] [CrossRef]
- Navon, D. Forest before trees: The precedence of global features in visual perception. Cogn. Psychol. 1977, 9, 353–383. [Google Scholar] [CrossRef]
- Thatcher, R. Neurolinguistics: Theoretical and evolutionary perspectives. Brain Lang. 1980, 11, 235–260. [Google Scholar] [CrossRef]
- Sergent, J. The cerebral balance of power: Confrontation or cooperation. J. Exp. Psychol. Hum. Percept. Perform. 1982, 8, 253–272. [Google Scholar] [CrossRef]
- Powell, J.L.; Kemp, G.; García-Finaña, M. Association between language and spatial laterality and cognitive ability: An fMRI study. NeuroImage 2012, 59, 1818–1829. [Google Scholar] [CrossRef] [PubMed]
- Annett, M. Handedness and Brain Asymmetry: The Right Shift Theory; Psychology Press: Hove, UK, 2002. [Google Scholar]
- Corballis, M.C. From mouth to hand: Gesture, speech and the evolution of right-handedness. Behav. Brain Sci. 2003, 26, 199–260. [Google Scholar] [CrossRef] [PubMed]
- Corballis, M.C. The evolution and genetics of cerebral asymmetry. Philos. Trans. R. Soc. B Biol. Sci. 2008, 364, 867–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flöel, A.; Buyx, A.; Breitenstein, C.; Lohmann, H.; Knecht, S. Hemispheric lateralization of spatial attention in right- and left-hemispheric language dominance. Behav. Brain Res. 2005, 158, 269–275. [Google Scholar] [CrossRef]
- Knecht, S.; Jansen, A.; Frank, A.; van Randenborgh, J.; Sommer, J.; Kanowski, M.; Heinze, H.J. How atypical is atypical language dominance? Neuroimage 2003, 18, 917–927. [Google Scholar] [CrossRef]
- McManus, C. Right Hand, Left Hand: The Origins of Asymmetry in Brains, Bodies, Atoms, and Cultures; Harvard University Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Pujol, J.; Deus, J.; Losilla, J.M.; Capdevila, A. Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology 1999, 52, 1038. [Google Scholar] [CrossRef] [PubMed]
- Vingerhoets, G. Phenotypes in hemispheric functional segregation? Perspectives and challenges. Phys. Life Rev. 2019, 30, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bruner, J.S. Going beyond the Information Given; Routledge: Abingdon-on-Thames, UK, 2006; pp. 17–33. [Google Scholar] [CrossRef]
- Kotwica, K.A.; Ferre, C.L.; Michel, G.F. Relation of stable hand-use preferences to the development of skill for managing multiple objects from 7 to 13 months of age. Dev. Psychobiol. 2008, 50, 519–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcinowski, E.C.; Campbell, J.M. Building on what you have learned. Int. J. Behav. Dev. 2017, 41, 341–349. [Google Scholar] [CrossRef]
- Marcinowski, E.C.; Campbell, J.M.; Faldowski, R.A.; Michel, G.F. Do hand preferences predict stacking skill during infancy? Dev. Psychobiol. 2016, 58, 958–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, S.L.; Campbell, J.M.; Marcinowski, E.C.; Michel, G.F.; Coxe, S.; Nelson, E.L. Preschool language ability is predicted by toddler hand preference trajectories. Dev. Psychol. 2020, 56, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.L.; Campbell, J.M.; Michel, G.F. Early handedness in infancy predicts language ability in toddlers. Dev. Psychol. 2014, 50, 809–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, E.L.; Gonzalez, S.L.; Coxe, S.; Campbell, J.M.; Marcinowski, E.C.; Michel, G.F. Toddler hand preference trajectories predict 3-year language outcome. Dev. Psychobiol. 2017, 59, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.; Kroll, R. Stuttering: An update for physicians. Can. Med. Assoc. J. 2000, 162, 1849–1855. [Google Scholar]
- Elliott, D.; Weeks, D.J. Cerebral specialization for speech perception and movement organization in adults with Down’s syndrome. Cortex 1993, 29, 103–113. [Google Scholar] [CrossRef]
- Grouios, G.; Sakadami, N.; Poderi, A.; Alevriadou, A. Excess of non-right handedness among individuals with intellectual disability: Experimental evidence and possible explanations. J. Intellect. Disabil. Res. 1999, 43, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Hartley, X.Y. Lateralization of speech stimuli in young Down’s syndrome children. Cereb. Cortex 1981, 17, 241–248. [Google Scholar] [CrossRef]
- Hugdahl, K.; Heiervang, E.; Nordby, H.; Smievoll, A.I.; Steinmetz, H.; Stevenson, A.; Lund, A. Central auditory processing, MRI morphometry and brain laterality: Applications to dyslexia. Scand. Audiol. 1998, 27, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Illingworth, S.; Bishop, D.V. Atypical cerebral lateralisation in adults with compensated developmental dyslexia demonstrated using functional transcranial Doppler ultrasound. Brain Lang. 2009, 111, 61–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinhans, N.M.; Müller, R.-A.; Cohen, D.N.; Courchesne, E. Atypical functional lateralization of language in autism spectrum disorders. Brain Res. 2008, 1221, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Laval, S.; Dann, J.; Butler, R.; Loftus, J.; Rue, J.; Leask, S.; Bass, N.; Comazzi, M.; Vita, A.; Nanko, S.; et al. Evidence for linkage to psychosis and cerebral asymmetry (relative hand skill) on the X chromosome. Am. J. Med. Genet. 1998, 81, 420–427. [Google Scholar] [CrossRef]
- Ribolsi, M.; Koch, G.; Magni, V.; Di Lorenzo, G.; Rubino, I.; Siracusano, A.; Centonze, D. Abnormal brain lateralization and connectivity in schizophrenia. Rev. Neurosci. 2009, 20, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, A.J.; Bishop, D. Hemispheric division of function is the result of independent probabilistic biases. Neuropsychologia 2009, 47, 1938–1943. [Google Scholar] [CrossRef] [Green Version]
- Wood, F.; Stump, D.; McKeehan, A.; Sheldon, S.; Proctor, J. Patterns of regional cerebral blood flow during attempted reading aloud by stuttering both on and off haloperidol medication: Evidence for inadequate left frontal activation during stuttering. Brain Lang. 1980, 9, 141–144. [Google Scholar] [CrossRef]
- Bax, M.; Tydeman, C.; Flodmark, O. Clinical and MRI correlates of cerebral palsy: The European cerebral palsy study. JAMA 2006, 296, 1602–1608. [Google Scholar] [CrossRef] [Green Version]
- Krägeloh-Mann, I.; Horber, V. The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2007, 49, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Pagnozzi, A.M.; Dowson, N.; Doecke, J.; Fiori, S.; Bradley, A.; Boyd, R.N.; Rose, S. Automated, quantitative measures of grey and white matter lesion burden correlates with motor and cognitive function in children with unilateral cerebral palsy. NeuroImage Clin. 2016, 11, 751–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, S.; Dagia, C.D.; Ditchfield, M.R.; Carlin, J.B.; Reddihough, D.S. Population-based studies of brain imaging patterns in cerebral palsy. Dev. Med. Child Neurol. 2014, 56, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Towsley, K.; Shevell, M.I.; Dagenais, L. Population-based study of neuroimaging findings in children with cerebral palsy. Eur. J. Paediatr. Neurol. 2011, 15, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Barachant, A.; Gordon, A.; Ferre, C.; Kuo, H.-C.; Carmel, J.B.; Friel, K.M. Effect of sensory and motor connectivity on hand function in pediatric hemiplegia. Ann. Neurol. 2017, 82, 766–780. [Google Scholar] [CrossRef] [PubMed]
- Guzzetta, A.; Bonanni, P.; Biagi, L.; Tosetti, M.; Montanaro, D.; Guerrini, R.; Cioni, G. Reorganisation of the somatosensory system after early brain damage. Clin. Neurophysiol. 2007, 118, 1110–1121. [Google Scholar] [CrossRef] [PubMed]
- Kostović, I.; Jovanov-Milošević, N. The development of cerebral connections during the first 20–45 weeks’ gestation, seminars in fetal and neonatal medicine. WB Saunders 2006, 11, 415–422. [Google Scholar]
- Staudt, M. Brain plasticity following early life brain injury: Insights from neuroimaging. Semin. Perinatol. 2010, 34, 87–92. [Google Scholar] [CrossRef]
- Wilke, M.; Staudt, M.; Juenger, H.; Grodd, W.; Braun, C.; Krägeloh-Mann, I. Somatosensory system in two types of motor reorganization in congenital hemiparesis: Topography and function. Hum. Brain Mapp. 2009, 30, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Dutton, G.N.; Bax, M. Visual Impairment in Children Due to Damage to the Brain, 1st ed.; MacKeith Press: London, UK, 2010. [Google Scholar]
- Fazzi, E.; Signorini, S.G.; LA Piana, R.; Bertone, C.; Misefari, W.; Galli, J.; Balottin, U.; Bianchi, P.E. Neuro-ophthalmological disorders in cerebral palsy: Ophthalmological, oculomotor, and visual aspects. Dev. Med. Child Neurol. 2012, 54, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Good, W.V.; Jan, J.E.; Burden, S.K.; Skoczenski, A.; Candy, T.R. Recent advances in cortical visual impairment. Dev. Med. Child Neurol. 2001, 43, 56–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, L.; Dutton, G.N. Periventricular leukomalacia: An important cause of visual and ocular motility dysfunction in children. Surv. Ophthalmol. 2000, 45, 1–13. [Google Scholar] [CrossRef]
- Kurz, M.J.; Heinrichs-Graham, E.; Becker, K.M.; Wilson, T.W. The magnitude of the somatosensory cortical activity is related to the mobility and strength impairments seen in children with cerebral palsy. J. Neurophysiol. 2015, 113, 3143–3150. [Google Scholar] [CrossRef] [Green Version]
- Lanzi, G.; Fazzi, E.; Uggetti, C.; Cavallini, A.; Danova, S.; Egitto, M.G.; Ginevra, F.; Salati, R.; Bianchi, P.E. Cerebral visual impairment in periventricular leukomalacia. Neuropediatrics 1998, 29, 145–150. [Google Scholar] [CrossRef]
- Maitre, N.L.; Barnett, Z.P.; Key, A.P.F. Novel assessment of cortical response to somatosensory stimuli in children with hemiparetic cerebral palsy. J. Child Neurol. 2012, 27, 1276–1283. [Google Scholar] [CrossRef] [Green Version]
- Philip, S.S.; Guzzetta, A.; Chorna, O.; Gole, G.; Boyd, R.N. Relationship between brain structure and cerebral visual impairment in children with cerebral palsy: A systematic review. Res. Dev. Disabil. 2020, 99, 103580. [Google Scholar] [CrossRef]
- Wingert, J.R.; Sinclair, R.J.; Dixit, S.; Damiano, D.L.; Burton, H. Somatosensory-evoked cortical activity in spastic diplegic cerebral palsy. Hum. Brain Mapp. 2010, 31, 1772–1785. [Google Scholar] [CrossRef] [Green Version]
- Matta, A.P.D.C.; Nunes, G.; Rossi, L.; Lawisch, V.; Dellatolas, G.; Braga, L. Outpatient evaluation of vision and ocular motricity in 123 children with cerebral palsy. Dev. Neurorehabilit. 2008, 11, 159–165. [Google Scholar] [CrossRef]
- Ghate, D.; Vedanarayanan, V.; Kamour, A.; Corbett, J.J.; Kedar, S. Optic nerve morphology as marker for disease severity in cerebral palsy of perinatal origin. J. Neurol. Sci. 2016, 368, 25–31. [Google Scholar] [CrossRef]
- Kozeis, N.; Panos, G.D.; Zafeiriou, D.I.; de Gottrau, P.; Gatzioufas, Z. Comparative study of refractive errors, strabismus, microsaccades, and visual perception between preterm and full-term children with infantile cerebral palsy. J. Child Neurol. 2015, 30, 972–975. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Yoo, Y.J.; Chung, C.Y.; Hwang, J.-M. Ocular findings in patients with spastic type cerebral palsy. BMC Ophthalmol. 2016, 16, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auld, M.L.; Boyd, R.N.; Moseley, L.; Ware, R.; Johnston, L.M. Tactile function in children with unilateral cerebral palsy compared to typically developing children. Disabil. Rehabil. 2012, 34, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Clayton, K.; Fleming, J.M.; Copley, J. Behavioral responses to tactile stimuli in children with cerebral palsy. Phys. Occup. Ther. Pediatr. 2003, 23, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Ferre, C.L.; Babik, I.; Michel, G.F. A perspective on the development of hemispheric specialization, infant handedness, and cerebral palsy. Cortex 2020, 127, 208–220. [Google Scholar] [CrossRef]
- Ferre, C.L.; Carmel, J.B.; Flamand, V.H.; Gordon, A.M.; Friel, K.M. Anatomical and functional characterization in children with unilateral cerebral palsy: An atlas-based analysis. Neurorehabilit. Neural Repair 2020, 34, 148–158. [Google Scholar] [CrossRef]
- Eyre, J.A.; Taylor, J.P.; Villagra, F.; Smith, M.; Miller, S. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology 2001, 57, 1543–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, A.; Bleyenheuft, Y.; Steenbergen, B. Pathophysiology of impaired hand function in children with unilateral cerebral palsy. Dev. Med. Child Neurol. 2013, 55, 32–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, L.; Rose, S.E.; Boyd, R.N. Rehabilitation and neuroplasticity in children with unilateral cerebral palsy. Nat. Rev. Neurol. 2015, 11, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Guzzetta, A.; Pannek, K.; Boyd, R. MRI structural connectivity, disruption of primary sensorimotor pathways, and hand function in cerebral palsy. Brain Connect. 2011, 1, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Farmer, S.F.; Harrison, L.M.; Ingram, D.A.; Stephens, J.A. Plasticity of central motor pathways in children with hemiplegic cerebral palsy. Neurology 1991, 41, 1505. [Google Scholar] [CrossRef] [PubMed]
- Staudt, M.; Grodd, W.; Gerloff, C.; Erb, M.; Stitz, J.; Krägeloh-Mann, I. Two types of ipsilateral reorganization in congenital hemiparesis: A TMS and fMRI study. Brain 2002, 125, 2222–2237. [Google Scholar] [CrossRef] [Green Version]
- Staudt, M.; Lidzba, K.; Grodd, W.; Wildgruber, D.; Erb, M.; Krageloh-Mann, I. Right-hemispheric organization of language following early left-sided brain lesions: Functional MRI topography. Neuroimage 2002, 16, 954–967. [Google Scholar] [CrossRef] [PubMed]
- Staudt, M.; Gerloff, C.; Grodd, W.; Holthausen, H.; Niemann, G.; Krägeloh-Mann, I. Reorganization in congenital hemiparesis acquired at different gestational ages. Ann. Neurol. 2004, 56, 854–863. [Google Scholar] [CrossRef] [PubMed]
- You, S.H.; Jang, S.H.; Kim, Y.-H.; Kwon, Y.-H.; Barrow, I.; Hallett, M. Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. DMCN 2005, 47, 628–635. [Google Scholar]
- Forssberg, H.; Eliasson, A.C.; Redon-Zouitenn, C.; Mercuri, E.; Dubowitz, L. Impaired grip-lift synergy in children with unilateral brain lesions. Brain 1999, 122, 1157–1168. [Google Scholar] [CrossRef]
- Gordon, A.M.; Duff, S.V. Relation between clinical measures and fine manipulative control in children with hemiplegic cerebral palsy. DMCN 1999, 41, 586–591. [Google Scholar]
- Hung, Y.-C.; Charles, J.; Gordon, A.M. Bimanual coordination during a goal-directed task in children with hemiplegic cerebral palsy. Dev. Med. Child Neurol. 2004, 46, 746–753. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, H.; Cowie, D.; Karmiloff-Smith, A.; Bremner, A.J. Specialization of the motor system in infancy: From broad tuning to selectively specialized purposeful actions. Dev. Sci. 2017, 20, e12409. [Google Scholar] [CrossRef] [Green Version]
- Soska, K.C.; Galeon, M.A.; Adolph, K.E. On the other hand: Overflow movements of infants’ hands and legs during unimanual object exploration. Dev. Psychobiol. 2012, 54, 372–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muetzel, R.L.; Collins, P.F.; Mueller, B.A.; Schissel, A.M.; Lim, K.O.; Luciana, M. The development of corpus callosum microstructure and associations with bimanual task performance in healthy adolescents. NeuroImage 2008, 39, 1918–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidokoro, H.; Kubota, T.; Ohe, H.; Hattori, T.; Kato, Y.; Miyajima, Y.; Ogawa, A.; Okumura, A.; Watanabe, K.; Kojima, S. Diffusion-weighted magnetic resonance imaging in infants with periventricular leukomalacia. Neuropediatrics 2008, 39, 233–238. [Google Scholar] [CrossRef]
- Lee, J.D.; Park, H.J.; Park, E.S.; Oh, M.K.; Park, B.; Rha, D.W.; Cho, S.R.; Kim, E.Y.; Park, J.Y.; Kim, C.H.; et al. Motor path-way injury in patients with periventricular leucomalacia and spastic diplegia. Brain 2011, 134, 1199–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staudt, M.; Pavlova, M.; Böhm, S.; Grodd, W.; Krägeloh-Mann, I. Pyramidal tract damage correlates with motor dysfunction in bilateral Periventricular Leukomalacia (PVL). Neuropediatrics 2003, 34, 182–188. [Google Scholar] [CrossRef]
- Charles, J.; Gordon, A.M. A critical review of constraint-induced movement therapy and forced use in children with hemiplegia. Neural Plast. 2005, 12, 245–261. [Google Scholar] [CrossRef]
- Houwink, A.; Aarts, P.B.; Geurts, A.C.; Steenbergen, B. A neurocognitive perspective on developmental disregard in children with hemiplegic cerebral palsy. Res. Dev. Disabil. 2011, 32, 2157–2163. [Google Scholar] [CrossRef] [PubMed]
- Green, D.; Schertz, M.; Gordon, A.; Moore, A.; Margalit, T.S.; Farquharson, Y.; Ben Bashat, D.; Weinstein, M.; Lin, J.-P.; Fattal-Valevski, A. A multi-site study of functional outcomes following a themed approach to hand-arm bimanual intensive therapy for children with hemiplegia. Dev. Med. Child Neurol. 2013, 55, 527–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, R.N.; Goodwin, E.J.; Miller, M.D.; Haan, E.A.; Connell, T.M.; Crotty, M. Self- esteem, self-concept, and quality of life in children with hemiplegic cerebral palsy. J. Pediatr. 2008, 153, 473–477.e2. [Google Scholar] [CrossRef]
- Steenbergen, B.; Gordon, A.M. Activity limitation in hemiplegic cerebral palsy: Evidence for disorders in motor planning. DMCN 2006, 48, 780–783. [Google Scholar]
- Pandya, D.; Karol, E.; Heilbronn, D. The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res. 1971, 32, 31–43. [Google Scholar] [CrossRef]
- Sperry, R.W. Cerebral organization and behavior. Science 1961, 133, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.-U.; Röricht, S.; Von Einsiedel, H.G.; Kruggel, F.; Weindl, A. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 1995, 118, 429–440. [Google Scholar] [CrossRef]
- Schnitzler, A.; Kessler, K.; Benecke, R. Transcallosally mediated inhibition of interneurons within human primary motor cortex. Exp. Brain Res. 1996, 112, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Karolis, V.R.; Corbetta, M.; de Schotten, M.T. The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nat. Commun. 2019, 10, 1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markov, N.T.; Ercsey-Ravasz, M.; Van Essen, D.C.; Knoblauch, K.; Toroczkai, Z.; Kennedy, H. Cortical high-density counterstream architectures. Science 2013, 342, 1238406. [Google Scholar] [CrossRef] [Green Version]
- Addamo, P.K.; Farrow, M.; Hoy, K.; Bradshaw, J.L.; Georgiou-Karistianis, N. The effects of age and attention on motor overflow production—A review. Brain Res. Rev. 2007, 54, 189–204. [Google Scholar] [CrossRef]
- Knyazeva, M.G.; Farber, D.A. Formation of interhemispheric interaction in ontogeny: Electrophysiological analysis. Hum. Physiol. 1991, 17, 1–11. [Google Scholar]
- Salamy, A. Commissural transmission: Maturational changes in humans. Science 1978, 200, 1409–1411. [Google Scholar] [CrossRef]
- Gazzaniga, M.S. Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain 2000, 123, 1293–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellige, J.B. Hemispheric Asymmetry: What’s Right and What’s Left; Harvard University Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Michel, G.F. A neuropsychological perspective on infant sensorimotor development. In Advances in Infancy Research; Rovee-Collier, C., Lipsitt, L.P., Eds.; Ablex: Norwood, NJ, USA, 1988; pp. 1–38. [Google Scholar]
- Horowitz, A.; Barazany, D.; Tavor, I.; Bernstein, M.; Yovel, G.; Assaf, Y. In vivo correlation between axon diameter and conduction velocity in the human brain. Brain Struct. Funct. 2015, 220, 1777–1788. [Google Scholar] [CrossRef] [PubMed]
- Davatzikos, C.; Barzi, A.; Lawrie, T.; Hoon, A.H.; Melhem, E.R. Correlation of corpus callosal morphometry with cognitive and motor function in periventricular leukomalacia. Neuropediatrics 2003, 34, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Moses, P.; Courchesne, E.; Stiles, J.; Trauner, D.; Egaas, B.; Edwards, E. Regional size reduction in the human corpus callosum following pre- and perinatal brain injury. Cereb. Cortex 2000, 10, 1200–1210. [Google Scholar] [CrossRef] [Green Version]
- Fagard, J.; Corroyer, D. Using a continuous index of laterality to determine how laterality is related to interhemispheric transfer and bimanual coordination in children. Dev. Psychobiol. 2003, 43, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.-C.; Robert, M.T.; Friel, K.M.; Gordon, A.M. Relationship between integrity of the corpus callosum and bimanual coordination in children with unilateral spastic cerebral palsy. Front. Hum. Neurosci. 2019, 13, 334. [Google Scholar] [CrossRef] [PubMed]
- Preilowski, B.F. Bilateral motor interaction: Perceptual-motor performance of partial and complete ‘split-brain’ patients. In Cerebral Localization; Zulch, K.J., Creutzfeld, O., Galbraith, G.C., Eds.; Springer: Berlin, Germany, 1975; pp. 115–132. [Google Scholar]
- Sacco, S.; Moutard, M.-L.; Fagard, J. Agenesis of the corpus callosum and the establishment of handedness. Dev. Psychobiol. 2006, 48, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Jeeves, M.A.; Silver, P.H.; Milne, A.B. Role of the corpus callosum in the development of a bimanual motor skill. Dev. Neuropsychol. 1988, 4, 305–323. [Google Scholar] [CrossRef]
- Seltzer, B.; Pandya, D.N. Posterior parietal projections to the intraparietal sulcus of the rhesus monkey. Exp. Brain Res. 1986, 62, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Preilowski, B.F. Possible contribution of the anterior forebrain commissures to bilateral motor coordination. Neuropsychologia 1972, 10, 267–277. [Google Scholar] [CrossRef]
- Andres, F.G.; Gerloff, C. Coherence of sequential movements and motor learning. J. Clin. Neurophysiol. 1999, 16, 520–527. [Google Scholar] [CrossRef]
- Serrien, D.J.; Brown, P. The integration of cortical and behavioural dynamics during initial learning of a motor task. Eur. J. Neurosci. 2003, 17, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Sperry, R.W. Hemisphere deconnection and unity in conscious awareness. Am. Psychol. 1968, 23, 723–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, F.T.; Miller, L.M.; Rao, A.A.; D’Esposito, M. Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cereb. Cortex 2006, 17, 1227–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiarello, C. A house divided? Cognitive functioning with callosal agenesis. Brain Lang. 1980, 11, 128–158. [Google Scholar] [CrossRef]
- Jeeves, M.A. Callosal agenesis: Neuronal and developmental adaptations. In Two Hemispheres, One Brain: Functions of the Corpus Callosum; Lepore, F., Ptito, M., Jasper, H.H., Eds.; Alan, R. Liss: New York, NY, USA, 1986; pp. 403–422. [Google Scholar]
- Meissner, T.W.; Friedrich, P.; Ocklenburg, S.; Genç, E.; Weigelt, S. Tracking the functional development of the corpus callosum in children using behavioral and evoked potential interhemispheric transfer times. Dev. Neuropsychol. 2017, 42, 172–186. [Google Scholar] [CrossRef]
- Sauerwein, H.C.; Lassonde, M.C.; Cardu, B.; Geoffroy, G. Interhemispheric integration of sensory and motor functions in agenesis of the corpus callosum. Neuropsychologia 1981, 19, 445–454. [Google Scholar] [CrossRef]
- Fontes, P.L.B.; Cruz, T.K.F.; Souto, D.O.; Moura, R.; Haase, V.G. Body representation in children with hemiplegic cerebral palsy. Child Neuropsychol. 2017, 23, 838–863. [Google Scholar] [CrossRef]
- Punt, T.D.; Riddoch, M.J. Motor neglect: Implications for movement and rehabilitation following stroke. Disabil. Rehabil. 2006, 28, 857–864. [Google Scholar] [CrossRef]
- Ajuriaguerra, J.; Stucki, J.D. Developmental disorders of the body schema. In Disorders of Speech, Perception and Symbolic Behaviour; Vinken, P.J., Bruyn, G.W., Eds.; North Holland: New York, NY, USA, 1969; pp. 392–407. [Google Scholar]
- Katz, N.; Cermak, S.; Shamir, Y. Unilateral neglect in children with hemiplegic cerebral palsy. Percept. Mot. Ski. 1998, 86, 539–550. [Google Scholar] [CrossRef]
- Trauner, D.A. Hemispatial neglect in young children with early unilateral brain damage. Dev. Med. Child Neurol. 2007, 45, 160–166. [Google Scholar] [CrossRef]
- Di Vita, A.; Cinelli, M.C.; Raimo, S.; Boccia, M.; Buratin, S.; Gentili, P.; Inzitari, M.T.; Iona, T.; Iosa, M.; Morelli, D.; et al. Body representations in children with cerebral palsy. Brain Sci. 2020, 10, 490. [Google Scholar] [CrossRef] [PubMed]
- Mutsaarts, M.; Steenbergen, B.; Bekkering, H. Impaired motor imagery in right hemiparetic cerebral palsy. Neuropsychologia 2007, 45, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Groen, S.E.; de Blécourt, A.C.E.; Postema, K.; Hadders-Algra, M. Quality of general movements predicts neuromotor development at the age of 9-12 years. DMCN 2005, 47, 731–738. [Google Scholar]
- Hadders-Algra, M.; Nieuwendijk, A.W.K.; Maitijn, A.; Eykern, L.A. Assessment of general movements: Towards a better understanding of a sensitive method to evaluate brain function in young infants. Dev. Med. Child Neurol. 1997, 39, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Hadders-Algra, M.; Mavinkurve-Groothuis, A.M.C.; Groen, S.E.; Stremmelaar, E.F.; Martijn, A.; Butcher, P.R. Quality of general movements and the development of minor neurological dysfunction at toddler and school age. Clin. Rehabil. 2004, 18, 287–299. [Google Scholar] [CrossRef]
- Lüchinger, A.B.; Hadders-Algra, M.; van Kan, C.M.; Vries, J.I.P.D. Fetal onset of general movements. Pediatr. Res. 2008, 63, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Prechtl, H. Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum. Dev. 1990, 23, 151–158. [Google Scholar] [CrossRef]
- Prechtl, H.F.; Einspieler, C.; Cioni, G.; Bos, A.F.; Ferrari, F.; Sontheimer, D. An early marker for neurological deficits after perinatal brain lesions. Lancet 1997, 349, 1361–1363. [Google Scholar] [CrossRef]
- Babik, I.; Galloway, J.C.; Lobo, M.A. Infants born preterm demonstrate impaired exploration of their bodies and surfaces throughout the first 2 years of life. Phys. Ther. 2017, 97, 915–925. [Google Scholar] [CrossRef] [Green Version]
- Einspieler, C.; Prechtl, H.F. Prechtl’s assessment of general movements: A diagnostic tool for the functional assessment of the young nervous system. Dev. Disabil. Res. Rev. 2005, 11, 61–67. [Google Scholar] [CrossRef]
- Piek, J.P. The role of variability in early motor development. Infant Behav. Dev. 2002, 25, 452–465. [Google Scholar] [CrossRef]
- van der Meer, A.L.H.; van der Weel, F.R.; Lee, D.N. The functional significance of arm movements in neonates. Science 1995, 267, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Bower, T.G.R. Development in Infancy; Freeman: San Francisco, CA, USA, 1982. [Google Scholar]
- von Hofsten, C. Foundations for perceptual development. Adv. Infancy Res. 1982, 2, 241–265. [Google Scholar]
- Lee, M.-H.; Liu, Y.-T.; Newell, K.M. Longitudinal expressions of infant’s prehension as a function of object properties. Infant Behav. Dev. 2006, 29, 481–493. [Google Scholar] [CrossRef]
- Michel, G.F.; Harkins, D.A. Postural and lateral asymmetries in the ontogeny of handedness during infancy. Dev. Psychobiol. 1986, 19, 247–258. [Google Scholar] [CrossRef]
- Thelen, E.; Corbetta, D.; Kamm, K.; Spencer, J.P.; Schneider, K.; Zernicke, R.F. The transition to reaching: Mapping intention and intrinsic dynamics. Child Dev. 1993, 64, 1058–1098. [Google Scholar] [CrossRef]
- Thomas, B.L.; Karl, J.M.; Whishaw, I.Q. Independent development of the Reach and the Grasp in spontaneous self-touching by human infants in the first 6 months. Front. Psychol. 2015, 5, 1526. [Google Scholar] [CrossRef]
- von Hofsten, C. Structuring of early reaching movements: A longitudinal study. J. Mot. Behav. 1991, 23, 280–292. [Google Scholar] [CrossRef]
- Wallace, P.S.; Whishaw, I.Q. Independent digit movements and precision grip patterns in 1–5-month-old human infants: Hand-babbling, including vacuous then self-directed hand and digit movements, precedes targeted reaching. Neuropsychologia 2003, 41, 1912–1918. [Google Scholar] [CrossRef]
- Fagard, J.; Jacquet, A.Y. Changes in reaching and grasping objects of different sizes between 7 and 13 months of age. Br. J. Dev. Psychol. 1996, 14, 65–78. [Google Scholar] [CrossRef]
- Babik, I.; Michel, G.F. Development of role-differentiated bimanual manipulation in infancy: Hand preferences for object acquisition and RDBM—continuity or discontinuity? Dev. Psychobiol. 2016, 58, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Babik, I.; Michel, G.F. Development of role-differentiated bimanual manipulation in infancy: Part 3. Its relation to the development of bimanual object acquisition and bimanual non-differentiated manipulation. Dev. Psychobiol. 2016, 58, 268–277. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, S.C. The neuronal basis of bimanual coordination: Recent neurophysiological evidence and functional models. Acta Psychol. 2002, 110, 139–159. [Google Scholar] [CrossRef]
- Gibson, E.J.; Pick, A.D. An Ecological Approach to Perceptual Learning and Development; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Kimmerle, M.; Mick, L.A.; Michel, G.F. Bimanual role-differentiated toy play during infancy. Infant Behav. Dev. 1995, 18, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Kimmerle, M.; Ferre, C.L.; Kotwica, K.A.; Michel, G.F. Development of role-differentiated bimanual manipulation during the infant’s first year. Dev. Psychobiol. 2010, 52, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Liuzzi, G.; Hoerniß, V.; Zimerman, M.; Gerloff, C.; Hummel, F.C. Coordination of uncoupled bi-manual movements by strictly timed interhemispheric connectivity. J. Neurosci. 2011, 31, 9111–9117. [Google Scholar] [CrossRef] [Green Version]
- Babik, I.; Michel, G.F. Development of role-differentiated bimanual manipulation in infancy: Part 1. The emergence of the skill. Dev. Psychobiol. 2016, 58, 243–256. [Google Scholar] [CrossRef]
- Martin, J.H. The Corticospinal system: From development to motor control. Neuroscientist 2005, 11, 161–173. [Google Scholar] [CrossRef]
- Ritterband-Rosenbaum, A.; Herskind, A.; Li, X.; Willerslev-Olsen, M.; Olsen, M.D.; Farmer, S.F.; Nielsen, J.B. A critical period of corticomuscular and EMG-EMG coherence detection in healthy infants aged 9–25 weeks. J. Physiol. 2017, 595, 2699–2713. [Google Scholar] [CrossRef] [Green Version]
- Bos, A.F.; Martijn, A.; Okken, A.; Prechtl, H.F.R. Quality of general movements in preterm infants with transient periventricular echodensities. Acta Paediatr. 1998, 87, 328–335. [Google Scholar] [CrossRef]
- Ferrari, F.; Cioni, G.; Einspieler, C.; Roversi, M.F.; Bos, A.F.; Paolicelli, P.B.; Ranzi, A.; Prechtl, H.F.R. Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Arch. Pediatr. Adolesc. Med. 2002, 156, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Hadders-Algra, M. Putative neural substrate of normal and abnormal general movements. Neurosci. Biobehav. Rev. 2007, 31, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Haggard, P. Sense of agency in the human brain. Nat. Rev. Neurosci. 2017, 18, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Kawato, M.; Wolpert, D. Internal models for motor control. Sens. Guid. Mov. 1998, 218, 291–307. [Google Scholar] [CrossRef]
- Ritterband-Rosenbaum, A.; Justiniano, M.D.; Nielsen, J.B.; Christensen, M.S. Are sensorimotor experiences the key for successful early intervention in infants with congenital brain lesion? Infant Behav. Dev. 2019, 54, 133–139. [Google Scholar] [CrossRef]
- Cahill-Rowley, K.; Rose, J. Etiology of impaired selective motor control: Emerging evidence and its implications for research and treatment in cerebral palsy. Dev. Med. Child Neurol. 2014, 56, 522–528. [Google Scholar] [CrossRef]
- Kuhtz-Buschbeck, J.P.; Sundholm, L.K.; Eliasson, A.C.; Forssberg, H. Quantitative assessment of mirror movements in children and adolescents with hemiplegic cerebral palsy. DMCN 2000, 42, 728–736. [Google Scholar]
- Sukal-Moulton, T.; Gaebler-Spira, D.; Krosschell, K.J. Clinical characteristics associated with reduced selective voluntary motor control in the upper extremity of individuals with spastic cerebral palsy. Dev. Neurorehabilit. 2021, 24, 215–221. [Google Scholar] [CrossRef]
- Honeycutt, C.F.; Kharouta, M.; Perreault, E. Evidence for reticulospinal contributions to coordinated finger movements in humans. J. Neurophysiol. 2013, 110, 1476–1483. [Google Scholar] [CrossRef] [Green Version]
- Cernacek, J. Contralateral motor irradiation cerebral dominance: It’s changes in hemiplegia. Arch. Neurol. 1961, 4, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Green, J.B. An electromyographic study of mirror movements. Neurology 1967, 17, 91. [Google Scholar] [CrossRef] [PubMed]
- Nass, R. Mirror movement asymmetries in congenital hemiplegia: The inhibition hypothesis revisited. Neurology 1985, 35, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Connolly, K.; Stratton, P. Developmental changes in associated movements. Dev. Med. Child Neurol. 1968, 10, 49–56. [Google Scholar] [CrossRef]
- Wolff, P.H.; Gunnoe, C.E.; Cohen, C. Associated movements as a measure of developmental age. Dev. Med. Child Neurol. 1983, 25, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Ego, A.; Lidzba, K.; Brovedani, P.; Belmonti, V.; Gonzalez-Monge, S.; Boudia, B.; Ritz, A.; Cans, C. Visual-perceptual impairment in children with cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2015, 57, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Stiles, J.; Nass, R. Spatial grouping activity in young children with congenital right or left hemisphere brain injury. Brain Cogn. 1991, 15, 201–222. [Google Scholar] [CrossRef]
- Stiles, J.; Thal, D. Linguistic and spatial cognitive development following early focal brain injury: Patterns of deficit and recovery. In Brain Development and Cognition: A Reader; Johnson, M.H., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 1993. [Google Scholar]
- Stiles, J.; Trauner, D.; Engel, M.; Nass, R. The development of drawing in children with congenital focal brain injury: Evidence for limited functional recovery. Neuropsychologia 1997, 35, 299–312. [Google Scholar] [CrossRef]
- Stiles-Davis, J.; Sugarman, S.; Nass, R. The development of spatial and class relations in four young children with right-cerebral-hemisphere damage: Evidence for an early spatial constructive deficit. Brain Cogn. 1985, 4, 388–412. [Google Scholar] [CrossRef]
- Stiles-Davis, J.; Janowsky, J.; Engel, M.; Nass, R. Drawing ability in four young children with congenital unilateral brain lesions. Neuropsychologia 1988, 26, 359–371. [Google Scholar] [CrossRef]
- Bolognini, N.; Vallar, G. Hemianopia, Spatial Neglect, and Their Multisensory Rehabilitation; Academic Press: Cambridge, MA, USA, 2019; pp. 423–447. [Google Scholar] [CrossRef]
- Hart, E.; Grattan, E.; Woodbury, M.; Herbert, T.L.; Coker-Bolt, P.; Bonilha, H. Pediatric unilateral spatial neglect: A systematic review. J. Pediatr. Rehabil. Med. 2021, 14, 345–359. [Google Scholar] [CrossRef]
- Nuara, A.; Papangelo, P.; Avanzini, P.; Fabbri-Destro, M. Body representation in children with unilateral cerebral palsy. Front. Psychol. 2019, 10, 354. [Google Scholar] [CrossRef] [Green Version]
- Blake, R.; Shiffrar, M. Perception of human motion. Annu. Rev. Psychol. 2007, 58, 47–73. [Google Scholar] [CrossRef] [Green Version]
- Dutton, G.N. Cognitive vision, its disorders and differential diagnosis in adults and children: Knowing where and what things are. Eye 2003, 17, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Goodale, M.A.; Milner, A.D. Separate visual pathways for perception and action. Trends Neurosci. 1992, 15, 20–25. [Google Scholar] [CrossRef]
- Pavlova, M.A.; Krägeloh-Mann, I. Limitations on the developing preterm brain: Impact of periventricular white matter lesions on brain connectivity and cognition. Brain 2013, 136, 998–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazzi, E.; Bova, S.M.; Uggetti, C.; Signorini, S.G.; Bianchi, P.E.; Maraucci, I.; Zoppello, M.; Lanzi, G. Visual–perceptual impairment in children with periventricular leukomalacia. Brain Dev. 2004, 26, 506–512. [Google Scholar] [CrossRef]
- Koeda, T.; Takeshita, K. Visuo-perceptual impairment and cerebral lesions in spastic diplegia with preterm birth. Brain Dev. 1992, 14, 239–244. [Google Scholar] [CrossRef]
- Skranes, J.S.; Vik, T.; Nilsen, C.; Smevik, O.; Andersson, H.W.; Brubakk, A.M. Cerebral magnetic resonance imaging and mental and motor function of very low birth weight children at six years of age. Neuropediatrics 1997, 28, 149–154. [Google Scholar] [CrossRef]
- Hout, B.M.V.D.; De Vries, L.S.; Meiners, L.C.; Stiers, P.; Van Der Schouw, Y.T.; Jennekens-Schinkel, A.; Wittebol-Post, D.; Van Der Linde, D.; Vandenbussche, E.; Van Nieuwenhuizen, O. Visual perceptual impairment in children at 5 years of age with perinatal haemorrhagic or ischaemic brain damage in relation to cerebral magnetic resonance imaging. Brain Dev. 2004, 26, 251–261. [Google Scholar] [CrossRef]
- Schatz, A.M.; Ballantyne, A.O.; Trauner, D.A. A Hierarchical analysis of block design errors in children with early focal brain damage. Dev. Neuropsychol. 2000, 17, 75–83. [Google Scholar] [CrossRef]
- Vicari, S.; Stiles, J.; Stern, C.; Resca, A. Spatial grouping activity in children with early cortical and subcortical lesions. Dev. Med. Child Neurol. 1998, 40, 90–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abercrombie, M.L.J.; Tyson, M.C. Body image and draw-a-man test in cerebral palsy. Dev. Med. Child Neurol. 1966, 8, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Bumin, G.; Kavak, S.T. An investigation of the factors affecting handwriting performance in children with hemiplegic cerebral palsy. Disabil. Rehabil. 2008, 30, 1374–1385. [Google Scholar] [CrossRef] [PubMed]
- Cameron, C.E.; Brock, L.L.; Murrah, W.M.; Bell, L.H.; Worzalla, S.L.; Grissmer, D.; Morrison, F.J. Fine motor skills and executive function both contribute to kindergarten achievement. Child Dev. 2012, 83, 1229–1244. [Google Scholar] [CrossRef] [Green Version]
- Grissmer, D.; Grimm, K.J.; Aiyer, S.; Murrah, W.M.; Steele, J.S. Fine motor skills and early comprehension of the world: Two new school readiness indicators. Dev. Psychol. 2010, 46, 1008–1017. [Google Scholar] [CrossRef]
- DeLoache, J.S. Symbolic functioning in very young children: Understanding of pictures and models. Child Dev. 1991, 62, 736–752. [Google Scholar] [CrossRef]
- DeLoache, J.S. Early development of the understanding and use of symbolic artifacts. In Wiley Blackwell Handbooks of Developmental Psychology; Goswami, U., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 312–336. [Google Scholar] [CrossRef]
- Troseth, G.L.; Casey, A.M.; Lawver, K.A.; Walker, J.M.T.; Cole, D.A. Naturalistic experience and the early use of symbolic artifacts. J. Cogn. Dev. 2007, 8, 309–331. [Google Scholar] [CrossRef]
- Beeghly, M.; Weiss-Perry, B.; Cicchetti, D. Beyond Sensorimotor Functioning: Early Communicative and Play Development of Children with Down Syndrome; Cambridge University Press: Cambridge, UK, 1990; pp. 329–368. [Google Scholar] [CrossRef]
- Iverson, J.M. Developing language in a developing body: The relationship between motor development and language development. J. Child Lang. 2010, 37, 229–261. [Google Scholar] [CrossRef]
- Kennedy, M.D.; Sheridan, M.K.; Radlinski, S.H.; Beeghly, M. Play–language relationships in young children with developmental delays: Implications for assessment. J. Speech Lang. Hear. Res. 1991, 34, 112–122. [Google Scholar] [CrossRef]
- LeFevre, J.A.; Fast, L.; Skwarchuk, S.L.; Smith-Chant, B.L.; Bisanz, J.; Kamawar, D.; Penner-Wilger, M. Pathways to mathematics: Longitudinal predictors of performance. Child Dev. 2010, 81, 1753–1767. [Google Scholar] [CrossRef]
- Lewis, J.B.V.; Boucher, J.; Lupton, L.; Watson, S. Relationships between symbolic play, functional play, verbal and non-verbal ability in young children. Int. J. Lang. Commun. Disord. 2000, 35, 117–127. [Google Scholar] [CrossRef] [PubMed]
- McCune, L. A normative study of representational play at the transition to language. Dev. Psychol. 1995, 31, 198–206. [Google Scholar] [CrossRef]
- Miller, E.; Almon, J. Crisis in the Kindergarten: Why Children Need to Play in School; Alliance for Childhood: College Park, MD, USA, 2009. [Google Scholar]
- Werner, H.; Kaplan, B. Symbol Formation; Wiley: New York, NY, USA, 1963. [Google Scholar]
- Di Vita, A.; Boccia, M.; Palermo, L.; Guariglia, C. To move or not to move, that is the question! Body schema and non-action oriented body representations: An fMRI meta-analytic study. Neurosci. Biobehav. Rev. 2016, 68, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Murata, A.; Ishida, H. Representation of Bodily Self in the Multimodal Parieto-Premotor Network; Springer: New York, NY, USA, 2007; pp. 151–176. [Google Scholar] [CrossRef]
- Palermo, L.; Di Vita, A.; Piccardi, L.; Traballesi, M.; Guariglia, C. Bottom-up and top-down processes in body representation: A study of brain-damaged and amputee patients. Neuropsychology 2014, 28, 772–781. [Google Scholar] [CrossRef]
- Coslett, H.B. Body representations: Updating a classic concept. In The Roots of Cognitive Neuroscience: Behavioral Neurology and Neuropsychology; Chatterjee, A., Coslett, H.B., Eds.; Oxford University Press: New York, NY, USA, 2014; pp. 221–236. [Google Scholar]
- Schwoebel, J.; Coslett, H.B. Evidence for multiple, distinct representations of the human body. J. Cogn. Neurosci. 2005, 17, 543–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirigu, A.; Grafman, J.; Bressler, K.; Sunderland, T. Multiple representations contribute to body knowledge processing. Brain 1991, 114, 629–642. [Google Scholar] [CrossRef] [PubMed]
- Berlucchi, G.; Aglioti, S.M. The body in the brain revisited. Exp. Brain Res. 2010, 200, 25–35. [Google Scholar] [CrossRef]
- Buxbaum, L.J.; Coslett, H. Specialized structural descriptions for human body parts: Evidence from autotopagnosia. Cogn. Neuropsychol. 2001, 18, 289–306. [Google Scholar] [CrossRef]
- Crajé, C.; van Elk, M.; Beeren, M.; van Schie, H.T.; Bekkering, H.; Steenbergen, B. Compromised motor planning and motor imagery in right hemiparetic cerebral palsy. Res. Dev. Disabil. 2010, 31, 1313–1322. [Google Scholar] [CrossRef]
- Raimo, S.; Boccia, M.; Di Vita, A.; Iona, T.; Cropano, M.; Ammendolia, A.; Colao, R.; Angelillo, V.; Maiorino, A.; Guariglia, C.; et al. Body representation alterations in patients with unilateral brain damage. J. Int. Neuropsychol. Soc. 2021, 28, 130–142. [Google Scholar] [CrossRef]
- Steenbergen, B.; van Nimwegen, M.; Crajé, C. Solving a mental rotation task in congenital hemiparesis: Motor imagery versus visual imagery. Neuropsychologia 2007, 45, 3324–3328. [Google Scholar] [CrossRef] [PubMed]
- Fontes, P.L.B.; Moura, R.; Haase, V.G. Evaluation of body representation in children with hemiplegic cerebral palsy: Toward the development of a neuropsychological test battery. Psychol. Neurosci. 2014, 7, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Raimo, S.; Iona, T.; Di Vita, A.; Boccia, M.; Buratin, S.; Ruggeri, F.; Iosa, M.; Guariglia, C.; Grossi, D.; Palermo, L. The development of body representations in school-aged children. Appl. Neuropsychol. Child 2019, 10, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Parsons, L.M. Imagined spatial transformations of one’s hands and feet. Cogn. Psychol. 1987, 19, 178–241. [Google Scholar] [CrossRef]
- Brownell, C.A.; Nichols, S.R.; Svetlova, M.; Zerwas, S.; Ramani, G. The head bone’s connected to the neck bone: When do toddlers represent their own body topography? Child Dev. 2010, 81, 797–810. [Google Scholar] [CrossRef]
- Camões-Costa, V.; Erjavec, M.; Horne, P.J. Comprehension and production of body part labels in 2- to 3-year-old children. Br. J. Dev. Psychol. 2011, 29, 552–571. [Google Scholar] [CrossRef]
- Müller, U.; Sokol, B.; Overton, W. Reframing a constructivist model of the development of mental representation: The role of higher-order operations. Dev. Rev. 1998, 18, 155–201. [Google Scholar] [CrossRef] [Green Version]
- Simons, J.; Dedroog, I. Body awareness in children with mental retardation. Res. Dev. Disabil. 2009, 30, 1343–1353. [Google Scholar] [CrossRef]
- Slaughter, V.; Heron, M.; Jenkins, L.; Tilse, E.I. Levels of human body knowledge in development. Monogr. Soc. Res. Child Dev. 2004, 69, 1–23. [Google Scholar] [CrossRef]
- Auclair, L.; Jambaqué, I. Lexical-semantic body knowledge in 5- to 11-year-old children: How spatial body representation influences body semantics. Child Neuropsychol. 2014, 21, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Parsons, L.M. Temporal and kinematic properties of motor behavior reflected in mentally simulated action. J. Exp. Psychol. Hum. Percept. Perform. 1994, 20, 709–730. [Google Scholar] [CrossRef] [PubMed]
- van Elk, M.; Crajé, C.; Beeren, M.E.G.V.; Steenbergen, B.; van Schie, H.T.; Bekkering, H. Neural evidence for compromised motor imagery in right hemiparetic cerebral palsy. Front. Neurol. 2010, 1, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, S. How the Body Shapes the Mind; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Rizzolatti, G.; Sinigaglia, C. The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nat. Rev. Neurosci. 2010, 11, 264–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serino, A.; De Filippo, L.; Casavecchia, C.; Coccia, M.; Shiffrar, M.; Làdavas, E. Lesions to the motor system affect action perception. J. Cogn. Neurosci. 2010, 22, 413–426. [Google Scholar] [CrossRef]
- Pavlova, M.; Krägeloh-Mann, I.; Sokolov, A.; Birbaumer, N. Recognition of point-light biological motion displays by young children. Perception 2001, 30, 925–933. [Google Scholar] [CrossRef]
- Gobbini, M.I.; Koralek, A.C.; Bryan, R.E.; Montgomery, K.J.; Haxby, J.V. Two takes on the social brain: A comparison of theory of mind tasks. J. Cogn. Neurosci. 2007, 19, 1803–1814. [Google Scholar] [CrossRef]
- Grossman, E.D.; Blake, R. Brain areas active during visual perception of biological motion. Neuron 2002, 35, 1167–1175. [Google Scholar] [CrossRef] [Green Version]
- Grossman, E.; Donnelly, M.; Price, R.; Pickens, D.; Morgan, V.; Neighbor, G.; Blake, R. Brain areas involved in perception of biological motion. J. Cogn. Neurosci. 2000, 12, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Grossman, E.D.; Blake, R.; Kim, C.-Y. Learning to see biological motion: Brain activity parallels behavior. J. Cogn. Neurosci. 2004, 16, 1669–1679. [Google Scholar] [CrossRef]
- Herrington, J.D.; Nymberg, C.; Schultz, R.T. Biological motion task performance predicts superior temporal sulcus activity. Brain Cogn. 2011, 77, 372–381. [Google Scholar] [CrossRef]
- Kaiser, M.D.; Shiffrar, M.; Pelphrey, K.A. Socially tuned: Brain responses differentiating human and animal motion. Soc. Neurosci. 2012, 7, 301–310. [Google Scholar] [CrossRef]
- Krakowski, A.I.; Ross, L.A.; Snyder, A.C.; Sehatpour, P.; Kelly, S.; Foxe, J.J. The neurophysiology of human biological motion processing: A high-density electrical mapping study. NeuroImage 2011, 56, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Pelphrey, K.A.; Morris, J.P.; Michelich, C.R.; Allison, T.; McCarthy, G. Functional anatomy of biological motion perception in posterior temporal cortex: An fMRI study of eye, mouth and hand movements. Cereb. Cortex 2005, 15, 1866–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puce, A.; Perrett, D. Electrophysiology and brain imaging of biological motion. Philos. Trans. R. Soc. B Biol. Sci. 2003, 358, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Saygin, A.P. Superior temporal and premotor brain areas necessary for biological motion perception. Brain 2007, 130, 2452–2461. [Google Scholar] [CrossRef] [Green Version]
- Saygin, A.P.; Wilson, S.M.; Hagler, D.J., Jr.; Bates, E.; Sereno, M.I.; Hagler, N.J. Point- light biological motion perception activates human premotor cortex. J. Neurosci. 2004, 24, 6181–6188. [Google Scholar] [CrossRef] [Green Version]
- Vaina, L.M.; Solomon, J.; Chowdhury, S.; Sinha, P.; Belliveau, J.W. Functional neuroanatomy of biological motion perception in humans. Proc. Natl. Acad. Sci. USA 2001, 98, 11656–11661. [Google Scholar] [CrossRef] [Green Version]
- van Kemenade, B.M.; Muggleton, N.; Walsh, V.; Saygin, A.P. Effects of TMS over premotor and superior temporal cortices on biological motion perception. J. Cogn. Neurosci. 2012, 24, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, M.A. Biological motion processing as a hallmark of social cognition. Cereb. Cortex 2012, 22, 981–995. [Google Scholar] [CrossRef] [Green Version]
- Pelphrey, K.A.; Morris, J.P.; McCarthy, G. Grasping the intentions of others: The perceived intentionality of an action influences activity in the superior temporal sulcus during social perception. J. Cogn. Neurosci. 2004, 16, 1706–1716. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Destro, M.F. The mirror system and its role in social cognition. Curr. Opin. Neurobiol. 2008, 18, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Guzzetta, A.; Tinelli, F.; Del Viva, M.M.; Bancale, A.; Arrighi, R.; Pascale, R.R.; Cioni, G. Motion perception in preterm children: Role of prematurity and brain damage. NeuroReport 2009, 20, 1339–1343. [Google Scholar] [CrossRef] [PubMed]
- Jakobson, L.; Frisk, V.; Downie, A. Motion-defined form processing in extremely premature children. Neuropsychologia 2006, 44, 1777–1786. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, G. Defective imitation of gestures in patients with damage in the left or right hemispheres. J. Neurol. Neurosurg. Psychiatry 1996, 61, 176–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blake, J. Routes to Child Language: Evolutionary and Developmental Precursors; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Goldin-Meadow, S. Gesture with speech and without it. In Gesture and the Dynamic Dimension of Language: Essays in Honor of David McNeill; Duncan, S.D., Cassell, J., Levy, E.T., Eds.; Benjamins: Amsterdam, The Netherlands, 2007; pp. 31–49. [Google Scholar]
- Werker, J.F.; Cohen, L.B.; Lloyd, V.L.; Casasola, M.; Stager, C.L. Acquisition of word-object associations by 14-month-old infants. Dev. Psychol. 1998, 34, 1289–1309. [Google Scholar] [CrossRef] [PubMed]
- Bates, E.; O’Connell, B.; Shore, C. Language and communication in infancy. In Handbook of Infant Development; Osofsky, J., Ed.; Willey: Oxford, UK, 1987; pp. 149–203. [Google Scholar]
- Iverson, J.M.; Goldin-Meadow, S. Gesture paves the way for language development. Psychol. Sci. 2005, 16, 367–371. [Google Scholar] [CrossRef]
- Iverson, J.M.; Thelen, E. Hand, mouth and brain: The dynamic emergence of speech and gesture. J. Conscious Stud. 1999, 6, 19–40. [Google Scholar]
- Kuhn, L.J.; Willoughby, M.T.; Wilbourn, M.P.; Vernon-Feagans, L.; Blair, C.B. Family Life Project Key Investigators. Early communicative gestures prospectively predict language development and executive function in early childhood. Child Dev. 2014, 85, 1898–1914. [Google Scholar]
- Longobardi, E.; Spataro, P.; Rossi-Arnaud, C. The relationship between motor development, gestures and language production in the second year of life: A mediational analysis. Infant Behav. Dev. 2014, 37, 1–4. [Google Scholar] [CrossRef]
- Shepard, R.N. The mental image. Am. Psychol. 1978, 33, 125–137. [Google Scholar] [CrossRef]
- Shepard, R.N.; Metzler, J. Mental rotation of three-dimensional objects. Science 1971, 171, 701–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarzer, G.; Freitag, C.; Schum, N. How crawling and manual object exploration are related to the mental rotation abilities of 9-month-old infants. Front. Psychol. 2013, 4, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slone, L.K.; Moore, D.S.; Johnson, S.P. Object exploration facilitates 4-month-olds’ mental rotation performance. PLoS ONE 2018, 13, e0200468. [Google Scholar] [CrossRef]
- Soska, K.C.; Adolph, K.E.; Johnson, S.P. Systems in development: Motor skill acquisition facilitates three-dimensional object completion. Dev. Psychol. 2010, 46, 129–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahrick, L.E.; Lickliter, R. Learning to attend selectively: The dual role of intersensory redundancy. Curr. Dir. Psychol. Sci. 2014, 23, 414–420. [Google Scholar] [CrossRef]
- Rusiak, P.; Lachmann, T.; Jaskowski, P.; Van Leeuwen, C. Mental rotation of letters and shapes in developmental dyslexia. Perception 2007, 36, 617–631. [Google Scholar] [CrossRef]
- Rüsseler, J.; Scholz, J.; Jordan, K.; Quaiser-Pohl, C. Mental rotation of letters, pictures, and three-dimensional objects in German dyslexic children. Child Neuropsychol. 2005, 11, 497–512. [Google Scholar] [CrossRef]
- Cheng, Y.-L.; Mix, K.S. Spatial training improves children’s mathematics ability. J. Cogn. Dev. 2014, 15, 2–11. [Google Scholar] [CrossRef]
- Cheung, C.-N.; Sung, J.Y.; Lourenco, S.F. Does training mental rotation transfer to gains in mathematical competence? Assessment of an at-home visuospatial intervention. Psychol. Res. 2019, 84, 2000–2017. [Google Scholar] [CrossRef]
- Frick, A. Spatial transformation abilities and their relation to later mathematics performance. Psychol. Res. 2018, 83, 1465–1484. [Google Scholar] [CrossRef] [Green Version]
- Lauer, J.E.; Lourenco, S.F. Spatial processing in infancy predicts both spatial and mathematical aptitude in childhood. Psychol. Sci. 2016, 27, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Verdine, B.N.; Golinkoff, R.M.; Hirsh-Pasek, K.; Newcombe, N.S. Links between spatial and mathematical skills across the preschool years. Mono. Soc. Res. Child Dev. 2017, 82, 1–126. [Google Scholar]
- Newcombe, N.S.; Booth, J.L.; Gunderson, E. Spatial skills, reasoning, and mathematics. In Cambridge Handbook of Cognition and Education; Dunlosky, J., Rawson, K.A., Eds.; Cambridge University Press: Cambridge, MA, USA, 2019; pp. 100–123. [Google Scholar]
- Dutton, G.N. ‘Dorsal stream dysfunction’ and ‘dorsal stream dysfunction plus’: A potential classification for perceptual visual impairment in the context of cerebral visual impairment? DMCN 2009, 51, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Dutton, G.N.; McKillop, E.C.; Saidkasimova, S. Visual problems as a result of brain damage in children. Brit. J. Ophthalmol. 2006, 90, 932–933. [Google Scholar] [CrossRef] [Green Version]
- Isaacs, E.B.; Vargha-Khadem, F.; Watkins, K.; Lucas, A.; Mishkin, M.; Gadian, D.G. Developmental amnesia and its relationship to degree of hippocampal atrophy. Proc. Natl. Acad. Sci. USA 2003, 100, 13060–13063. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, L.; Ek, U.; Fernell, E.; Flodmark, O.; Broberger, U. Visual impairment in preterm children with periventricular leukomalacia—Visual, cognitive and neuropaediatric characteristics related to cerebral imaging. Dev. Med. Child Neurol. 1996, 38, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L.; Lundin, S.; Flodmark, O.; Ellström, K.-G. Periventricular leukomalacia causes visual impairment in preterm children. Acta Ophthalmol. Scand. 1998, 76, 593–598. [Google Scholar] [CrossRef]
- Grön, G.; Wunderlich, A.P.; Spitzer, M.; Tomczak, R.; Riepe, M.W. Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nat. Neurosci. 2000, 3, 404–408. [Google Scholar] [CrossRef]
- Maguire, E.A.; Burgess, N.; Donnett, J.G.; Frackowiak, R.S.J.; Frith, C.D.; O’Keefe, J. Knowing where and getting there: A human navigation network. Science 1998, 280, 921–924. [Google Scholar] [CrossRef] [Green Version]
- Wolbers, T.; Hegarty, M. What determines our navigational abilities? Trends Cogn. Sci. 2010, 14, 138–146. [Google Scholar] [CrossRef]
- Pavlova, M.; Sokolov, A.; Krägeloh-Mann, I. Visual navigation in adolescents with early periventricular lesions: Knowing where, but not getting there. Cereb. Cortex 2007, 17, 363–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenbergen, B.; Meulenbroek, R.; Rosenbaum, D.A. Constraints on grip selection in hemiparetic cerebral palsy: Effects of lesional side, end-point accuracy, and context. Cogn. Brain Res. 2004, 19, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, D.A.; Jorgensen, M.J. Planning macroscopic aspects of manual control. Hum. Mov. Sci. 1992, 11, 61–69. [Google Scholar] [CrossRef]
- Rosenbaum, D.A.; van Heugten, C.M.; Caldwell, G.E. From cognition to biomechanics and back: The end-state comfort effect and the middle-is-faster effect. Acta Psychol. 1996, 94, 59–85. [Google Scholar] [CrossRef] [Green Version]
- Crajé, C.; van der Kamp, J.; Steenbergen, B. Visual information for action planning in left and right congenital hemiparesis. Brain Res. 2009, 1261, 54–64. [Google Scholar] [CrossRef]
- Mutsaarts, M.; Steenbergen, B.; Meulenbroek, R.G.J. Assessing the rigidity of the grasping movements of three adolescents with spastic hemiparesis due to a cerebral palsy. Exp. Brain Res. 2004, 156, 293–304. [Google Scholar]
- Mutsaarts, M.; Steenbergen, B.; Bekkering, H. Anticipatory planning of movement sequences in hemiparetic cerebral palsy. Mot. Control. 2005, 9, 439–458. [Google Scholar] [CrossRef]
- Mutsaarts, M.; Steenbergen, B.; Bekkering, H. Anticipatory planning deficits and task context effects in hemiparetic cerebral palsy. Exp. Brain Res. 2006, 172, 151–162. [Google Scholar] [CrossRef]
- Steenbergen, B.; Hulstijn, W.; Dortmans, S. Constraints on grip selection in cerebral palsy: Minimizing discomfort. Exp. Brain Res. 2000, 134, 385–397. [Google Scholar]
- Haaland, K.Y.; Harrington, D.L. Hemispheric asymmetry of movement. Curr. Opin. Neurobiol. 1996, 6, 796–800. [Google Scholar]
- Vingerhoets, G. Knowing about tools: Neural correlates of tool familiarity and experience. NeuroImage 2008, 40, 1380–1391. [Google Scholar] [CrossRef]
- Jeannerod, M.; Frak, V. Mental imaging of motor activity in humans. Curr. Opin. Neurobiol. 1999, 9, 735–739. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.H. Imagining the impossible: Intact motor representations in hemiplegics. Neuroreport 2000, 11, 729–732. [Google Scholar]
- Johnson, S.H. Thinking ahead: The case for motor imagery in prospective judgments of prehension. Cognition 2000, 74, 33–70. [Google Scholar]
- Babik, I.; Cunha, A.B.; Ross, S.M.; Logan, S.W.; Galloway, J.C.; Lobo, M.A. Means-end problem solving in infancy: Development, emergence of intentionality, and transfer of knowledge. Dev. Psychobiol. 2019, 61, 191–202. [Google Scholar]
- Comalli, D.M.; Keen, R.; Abraham, E.S.; Foo, V.J.; Lee, M.-H.; Adolph, K.E. The development of tool use: Planning for end-state comfort. Dev. Psychol. 2016, 52, 1878–1892. [Google Scholar] [CrossRef] [Green Version]
- Herbort, O.; Büschelberger, J.; Janczyk, M. Preschool children adapt grasping movements to upcoming object manipulations: Evidence from a dial rotation task. J. Exp. Child Psychol. 2018, 167, 62–77. [Google Scholar] [CrossRef]
- Krajenbrink, H.; Lust, J.; Wilson, P.; Steenbergen, B. Development of motor planning in children: Disentangling elements of the planning process. J. Exp. Child Psychol. 2020, 199, 104945. [Google Scholar] [CrossRef]
- Mccarty, M.E.; Clifton, R.K.; Collard, R.R. The beginnings of tool use by infants and toddlers. Infancy 2001, 2, 233–256. [Google Scholar] [CrossRef]
- Sommerville, J.A.; Woodward, A.L. Infants’ sensitivity to the causal features of means-end support sequences in action and perception. Infancy 2005, 8, 119–145. [Google Scholar] [CrossRef]
- Willatts, P. Development of means-end behavior in young infants: Pulling a support to retrieve a distant object. Dev. Psychol. 1999, 35, 651–667. [Google Scholar]
- de Lange, F.P.; Helmich, R.C.; Toni, I. Posture influences motor imagery: An fMRI study. NeuroImage 2006, 33, 609–617. [Google Scholar] [CrossRef]
- Heilman, K.M.; Rothi, L.J.G. Apraxia: The Neuropsychology of Action; Energy Psychology Press: Fulton, CA, USA, 1997. [Google Scholar]
- Helmich, R.C.; Aarts, E.; de Lange, F.; Bloem, B.R.; Toni, I. Increased dependence of action selection on recent motor history in Parkinson’s disease. J. Neurosci. 2009, 29, 6105–6113. [Google Scholar] [CrossRef]
- Brizzolara, D.; Pecini, C.; Brovedani, P.; Ferretti, G.; Cipriani, P.; Cioni, G. Timing and type of congenital brain lesion determine different patterns of language lateralization in hemiplegic children. Neuropsychologia 2002, 40, 620–632. [Google Scholar] [CrossRef]
- Bates, E.; Thal, N.; Trauner, D.; Fenson, J.; Aram, D.; Eisele, J.; Nass, R. From first words to grammar in children with focal brain injury. Dev. Neuropsychol. 1997, 13, 275–343. [Google Scholar] [CrossRef]
- Chilosi, A.M.; Cipriani, P.; Bertuccelli, B.; Pfanner, L.; Cioni, G. Early cognitive and communication development in children with focal brain lesions. J. Child Neurol. 2001, 16, 309–316. [Google Scholar]
- Thal, D.J.; Marchman, V.; Stiles, J.; Aram, D.; Trauner, D.; Nass, R.; Bates, E. Early lexical development in children with focal brain injury. Brain Lang. 1991, 40, 491–527. [Google Scholar] [CrossRef]
- Vicari, S.; Albertoni, A.; Chilosi, A.; Cipriani, P.; Cioni, G.; Bates, E. Plasticity and reorganization during language development in children with early brain injury. Cortex 2000, 36, 31–46. [Google Scholar] [CrossRef]
- Bishop, D.V.M. Plasticity and specificity of language localization in the developing brain. Dev. Med. Child Neurol. 1981, 23, 251–255. [Google Scholar] [CrossRef]
- Danguecan, A.N.; Smith, M.L. Re-examining the crowding hypothesis in pediatric epilepsy. Epilepsy Behav. 2019, 94, 281–287. [Google Scholar] [CrossRef]
- Lidzba, K.; Staudt, M.; Wilke, M.; Krägeloh-Mann, I. Visuospatial deficits in patients with early left-hemispheric lesions and functional reorganization of language: Consequence of lesion or reorganization? Neuropsychologia 2006, 44, 1088–1094. [Google Scholar]
- Strauss, E.; Satz, P.; Wada, J. An examination of the crowding hypothesis in epileptic patients who have undergone the carotid amytal test. Neuropsychologia 1990, 28, 1221–1227. [Google Scholar] [CrossRef]
- Mei, C.; Reilly, S.; Reddihough, D.; Mensah, F.; Pennington, L.; Morgan, A. Language outcomes of children with cerebral palsy aged 5 years and 6 years: A population-based study. Dev. Med. Child Neurol. 2016, 58, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Kiessling, L.S.; Denckla, M.B.; Carlton, M. Evidence for differential hemispheric function in children with hemiplegic cerebral palsy. Dev. Med. Child Neurol. 1983, 25, 727–734. [Google Scholar] [CrossRef]
- Downie, A.L.S.; Frisk, V.; Jakobson, L.S. The Impact of periventricular brain injury on reading and spelling abilities in the late elementary and adolescent years. Child Neuropsychol. 2005, 11, 479–495. [Google Scholar] [CrossRef]
- Kurahashi, N.; Futamura, Y.; Nonobe, N.; Ogaya, S.; Maki, Y.; Yoshimura, I.; Suzuki, T.; Hosokawa, Y.; Yamada, K.; Aso, K.; et al. Is hiragana decoding impaired in children with periventricular leukomalacia? Brain Dev. 2018, 40, 850–856. [Google Scholar]
- Vohr, B.R.; Allan, W.C.; Westerveld, M.; Schneider, K.C.; Katz, K.H.; Makuch, R.W.; Ment, L.R. School-age outcomes of very low birth weight infants in the indomethacin intraventricular hemorrhage prevention trial. Pediatrics 2003, 111, e340–e346. [Google Scholar] [CrossRef] [Green Version]
- Peeters, M.; Verhoeven, L.; de Moor, J.; van Balkom, H. Importance of speech production for phonological awareness and word decoding: The case of children with cerebral palsy. Res. Dev. Disabil. 2009, 30, 712–726. [Google Scholar] [CrossRef]
- Kail, R.; Hall, L.K. Processing speed, naming speed, and reading. Dev. Psychol. 1994, 30, 949–954. [Google Scholar]
- Lachmann, T.; van Leeuwen, C. Negative congruence effects in letter and pseudo-letter recognition: The role of similarity and response conflict. Cogn. Process 2004, 5, 239–248. [Google Scholar]
- Lachmann, T.; Khera, G.; Srinivasan, N.; van Leeuwen, C. Learning to read aligns visual analytical skills with grapheme-phoneme mapping: Evidence from illiterates. Front. Evol. Neurosci. 2012, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A.; Lachmann, T.; van Leeuwen, C. Lost in the forest? Global to local interference depends on children’s reading skills. Acta Psychol. 2019, 193, 11–17. [Google Scholar]
- Arp, S.; Taranne, P.; Fagard, J. Global perception of small numerosities (subitizing) in cerebral-palsied children. J. Clin. Exp. Neuropsychol. 2006, 28, 405–419. [Google Scholar] [CrossRef]
- Kaufman, E.L.; Lord, M.W.; Reese, T.W.; Volkmann, J. The discrimination of visual number. Am. J. Psychol. 1949, 62, 498. [Google Scholar] [CrossRef]
- Ashkenazi, S.; Mark-Zigdon, N.; Henik, A. Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Dev. Sci. 2013, 16, 35–46. [Google Scholar]
- Mandler, G.; Shebo, B.J. Subitizing: An analysis of its component processes. J. Exp. Psychol. 1982, 111, 1–22. [Google Scholar]
- Wender, K.F.; Rothkegel, R. Subitizing and its subprocesses. Psychol. Res. 2000, 64, 81–92. [Google Scholar] [CrossRef]
- Wolters, G.; Van Kempen, H.; Wijlhuizen, G.-J. Quantification of small numbers of dots: Subitizing or pattern recognition? Am. J. Psychol. 1987, 100, 225. [Google Scholar] [CrossRef]
- Dalrymple, K.A.; Barton, J.J.S.; Kingstone, A. A world unglued: Simultanagnosia as a spatial restriction of attention. Front. Hum. Neurosci. 2013, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Shakespeare, T.J.; Yong, K.X.X.; Frost, C.; Kim, L.G.; Warrington, E.K.; Crutch, S.J. Scene perception in posterior cortical atrophy: Categorization, description and fixation patterns. Front. Hum. Neurosci. 2013, 7, 621. [Google Scholar] [CrossRef] [Green Version]
- Bloechle, J.; Huber, S.; Klein, E.; Bahnmueller, J.; Moeller, K.; Rennig, J. Neuro-cognitive mechanisms of global Gestalt perception in visual quantification. NeuroImage 2018, 181, 359–369. [Google Scholar] [CrossRef]
- Demeyere, N.; Rotshtein, P.; Humphreys, G.W. The neuroanatomy of visual enumeration: Differentiating necessary neural correlates for subitizing versus counting in a neuropsychological voxel-based morphometry study. J. Cogn. Neurosci. 2012, 24, 948–964. [Google Scholar] [CrossRef]
- Demeyere, N.; Rotshtein, P.; Humphreys, G.W. Common and dissociated mechanisms for estimating large and small dot arrays: Value-specific fMRI adaptation. Hum. Brain Mapp. 2014, 35, 3988–4001. [Google Scholar] [CrossRef]
- He, L.; Zuo, Z.; Chen, L.; Humphreys, G. Effects of number magnitude and notation at 7t: Separating the neural response to small and large, symbolic and nonsymbolic number. Cereb. Cortex 2014, 24, 2199–2209. [Google Scholar] [CrossRef] [Green Version]
- Vuokko, E.; Niemivirta, M.; Helenius, P. Cortical activation patterns during subitizing and counting. Brain Res. 2013, 1497, 40–52. [Google Scholar] [CrossRef]
- Himmelbach, M.; Erb, M.; Klockgether, T.; Moskau, S.; Karnath, H.-O. fMRI of global visual perception in simultanagnosia. Neuropsychologia 2009, 47, 1173–1177. [Google Scholar] [CrossRef]
- Huberle, E.; Karnath, H.-O. The role of temporo-parietal junction (TPJ) in global Gestalt perception. Brain Struct. Funct. 2012, 217, 735–746. [Google Scholar] [CrossRef]
- Rennig, J.; Bilalić, M.; Huberle, E.; Karnath, H.-O.; Himmelbach, M. The temporo-parietal junction contributes to global gestalt perception—evidence from studies in chess experts. Front. Hum. Neurosci. 2013, 7, 513. [Google Scholar] [CrossRef] [Green Version]
- Rennig, J.; Himmelbach, M.; Huberle, E.; Karnath, H.-O. Involvement of the TPJ area in processing of novel global forms. J. Cogn. Neurosci. 2015, 27, 1587–1600. [Google Scholar] [CrossRef]
- Weissman, D.; Woldorff, M. Hemispheric asymmetries for different components of global/local attention occur in distinct temporo-parietal loci. Cereb. Cortex 2005, 15, 870–876. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Yamagata, S.; Kobayashi, S. Cerebral asymmetry of the “top-down” allocation of attention to global and local features. J. Neurosci. 2000, 20, RC72. [Google Scholar]
- Zaretskaya, N.; Anstis, S.; Bartels, A. Parietal cortex mediates conscious perception of illusory Gestalt. J. Neurosci. 2013, 33, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Uvebrant, P. Hemiplegic cerebral palsy aetiology and outcome. Acta Paediatr. 1988, 77, 1–100. [Google Scholar] [CrossRef]
- Noël, M.P. Finger gnosia: A predictor of numerical abilities in children? Child Neuropsychol. 2005, 11, 413–430. [Google Scholar]
- Camos, V.; Fayol, M.; Lacert, P.; Bardi, A.; Laquiere, C. Le dénombrement chez des enfants dysphasiques et des enfants dyspraxiques. ANAE–Approche Neuropsychologique des Apprentissages de l’Enfant 1998, 48, 86–92. [Google Scholar]
- Alibali, M.W.; DiRusso, A.A. The function of gesture in learning to count: More than keeping track. Cogn. Dev. 1999, 14, 37–56. [Google Scholar] [CrossRef]
- Brissiaud, R.; Greenbaum, C.A. A tool for number construction: Finger symbol sets. In Pathways to Number: Children’s Developing Numerical Abilities; Bideud, J., Meljac, C., Fischer, J.-P., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1992; pp. 41–65. [Google Scholar]
- Graham, T.A. The role of gesture in children’s learning to count. J. Exp. Child Psychol. 1999, 74, 333–355. [Google Scholar] [CrossRef]
- Jordan, N.C.; Kaplan, D.; Ramineni, C.; Locuniak, M.N. Development of number combination skill in the early school years: When do fingers help? Dev. Sci. 2008, 11, 662–668. [Google Scholar]
- Kaufmann, L. Dyscalculia: Neuroscience and education. Educ. Res. 2008, 50, 163–175. [Google Scholar] [CrossRef] [Green Version]
- VanDevender, E.M. Fingers are good for early learning. J. Instruc. Psychol. 1986, 13, 182–187. [Google Scholar]
- Simon, O.; Mangin, J.-F.; Cohen, L.; Le Bihan, D.; Dehaene, S. Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 2002, 33, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Moretto, G.; di Pellegrino, G. Grasping numbers. Exp. Brain Res. 2008, 188, 505–515. [Google Scholar]
- Wiese, H. Iconic and non-iconic stages in number development: The role of language. Trends Cogn. Sci. 2003, 7, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Dehaene, S.; Piazza, M.; Pinel, P.; Cohen, L. Three parietal circuits for number processing. Cogn. Neuropsychol. 2003, 20, 487–506. [Google Scholar] [CrossRef] [Green Version]
- Kleemans, T.; Segers, E.; Verhoeven, L. Cognitive and linguistic precursors to numeracy in kindergarten: Evidence from first and second language learners. Learn. Individ. Differ. 2011, 21, 555–561. [Google Scholar] [CrossRef]
- Jackson, N.; Coney, J. Right hemisphere superiority for subitising. Laterality 2004, 9, 53–66. [Google Scholar] [CrossRef]
- Kimura, D. Dual functional asymmetry of the brain in visual perception. Neuropsychologia 1966, 4, 275–285. [Google Scholar] [CrossRef]
- Pasini, M.; Tessari, A. Hemispheric specialization in quantification processes. Psychol. Res. 2001, 65, 57–63. [Google Scholar] [CrossRef]
- Warrington, E.K.; James, M. Tachistoscopic number estimation in patients with unilateral cerebral lesions. J. Neurol. Neurosurg. Psychiatry 1967, 30, 468–474. [Google Scholar] [CrossRef] [Green Version]
- Dellatolas, G.; Filho, G.N.; Souza, L.G.; Nunes, L.G.; Braga, L.W. Manual skill, hand skill asymmetry, and neuropsychological test performance in schoolchildren with spastic cerebral palsy. Asymm. Body Brain Cognit. 2005, 10, 161–182. [Google Scholar]
- Jenks, K.M.; de Moor, J.; van Lieshout, E.C. Arithmetic difficulties in children with cerebral palsy are related to executive function and working memory. J. Child Psychol. Psychiatry 2009, 50, 824–833. [Google Scholar] [CrossRef]
- Jenks, K.M.; van Lieshout, E.C.; de Moor, J. The relationship between medical impairments and arithmetic development in children with cerebral palsy. J. Child Neurol. 2009, 24, 528–535. [Google Scholar]
- Best, J.R.; Miller, P.H. A Developmental perspective on executive function. Child. Dev. 2010, 81, 1641–1660. [Google Scholar] [CrossRef] [Green Version]
- Olson, E.A.; Luciana, M. The development of prefrontal cortex functions in adolescence: Theoretical models and a possible dissociation of dorsal versus ventral subregions. In Handbook of Developmental Cognitive Neuroscience; Nelson, C.A., Luciana, M., Eds.; MIT Press: Cambridge, MA, USA, 2008; pp. 575–590. [Google Scholar]
- Schatz, J.; Craft, S.; White, D.; Park, T.; Figiel, G.S. Inhibition of return in children with perinatal brain injury. J. Int. Neuropsychol. Soc. 2001, 7, 275–284. [Google Scholar] [CrossRef]
- Shimamura, A.P. The role of the prefrontal cortex in dynamic filtering. Psychobiology 2000, 28, 207–218. [Google Scholar]
- Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proc. Natl. Acad. Sci. USA 1998, 95, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Li, Y.; Sun, B.; He, H.; Peng, R.; Zhang, T.; Li, J.; Luo, C.; Sun, C.; Yao, D. Functional connectivity alterations in children with spastic and dyskinetic cerebral palsy. Neural Plast. 2018, 2018, 7058953. [Google Scholar] [CrossRef]
- White, D.A.; Christ, S.E. Executive control of learning and memory in children with bilateral spastic cerebral palsy. J. Int. Neuropsychol. Soc. 2005, 11, 920–924. [Google Scholar] [CrossRef]
- Anderson, P.J.; Wood, S.J.; Francis, D.E.; Coleman, L.; Anderson, V.; Boneh, A. Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Dev. Neuropsychol. 2007, 32, 645–668. [Google Scholar]
- Kolk, A.; Talvik, T. Cognitive outcome of children with early-onset hemiparesis. J. Child Neurol. 2000, 15, 581–587. [Google Scholar] [CrossRef]
- Bodimeade, H.L.; Whittingham, K.; Lloyd, O.; Boyd, R.N. Executive function in children and adolescents with unilateral cerebral palsy. Dev. Med. Child Neurol. 2013, 55, 926–933. [Google Scholar] [CrossRef]
- Carlsson, G. Memory for words and drawings in children with hemiplegic cerebral palsy. Scand. J. Psychol. 1997, 38, 265–273. [Google Scholar] [CrossRef]
- Christ, S.E.; White, D.A.; Brunstrom, J.E.; Abrams, R.A. Inhibitory control following perinatal brain injury. Neuropsychology 2003, 17, 171–178. [Google Scholar]
- Pirila, S.; Van Der Meere, J.; Korhonen, P.; Ruusu-Niemi, P.; Kyntaja, M.; Nieminen, P.; Korpela, R. A Retrospective neurocognitive study in children with spastic diplegia. Dev. Neuropsychol. 2004, 26, 679–690. [Google Scholar] [CrossRef]
- Nadeau, L.; Tessier, R. Social adjustment of children with cerebral palsy in mainstream classes: Peer perception. Dev. Med. Child Neurol. 2006, 48, 331–336. [Google Scholar] [CrossRef]
- Schonfeld, A.M.; Paley, B.; Frankel, F.; O’Connor, M.J. Executive functioning predicts social skills following prenatal alcohol exposure. Child Neuropsychol. 2006, 12, 439–452. [Google Scholar]
- De Smedt, B.; Janssen, R.; Bouwens, K.; Verschaffel, L.; Boets, B.; Ghesquière, P. Working memory and individual differences in mathematics achievement: A longitudinal study from first grade to second grade. J. Exp. Child Psychol. 2009, 103, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Geary, D.C. Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychol. Bull. 1993, 114, 345–362. [Google Scholar] [CrossRef]
- Geary, D.C.; Hamson, C.O.; Hoard, M.K. Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. J. Exp. Child Psychol. 2000, 77, 236–263. [Google Scholar] [CrossRef] [Green Version]
- Raghubar, K.; Barnes, M.A.; Hecht, S.A. Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learn. Individ. Differ. 2010, 20, 110–122. [Google Scholar] [CrossRef]
- Trick, L.M. Subitizing and counting: Preattentive and attentive processing in visual enumeration. Diss. Abstr. Int. 1992, 52, 6117. [Google Scholar]
- Van Rooijen, M.; Verhoeven, L.; Smits, D.; Dallmeijer, A.; Becher, J.; Steenbergen, B. Cognitive precursors of arithmetic development in primary school children with cerebral palsy. Res. Dev. Disabil. 2014, 35, 826–832. [Google Scholar] [CrossRef]
- Van Rooijen, M.; Verhoeven, L.; Steenbergen, B. From numeracy to arithmetic: Precursors of arithmetic performance in children with cerebral palsy from 6 till 8 years of age. Res. Dev. Disabil. 2015, 45–46, 49–57. [Google Scholar] [CrossRef]
- Van Rooijen, M.; Verhoeven, L.; Steenbergen, B. Working memory and fine motor skills predict early numeracy performance of children with cerebral palsy. Child Neuropsychol. 2016, 22, 735–747. [Google Scholar] [CrossRef]
- Baroody, A.J. Children’s Mathematical Thinking: A Developmental Framework for Preschool, Primary, and Special Education Teachers; Teachers College Press: New York, NY, USA, 1987. [Google Scholar]
- Ginsburg, H. Children’s Arithmetic: The Learning Process; Van Nostrand: New York, NY, USA, 1977. [Google Scholar]
- Locuniak, M.N.; Jordan, N.C. Using kindergarten number sense to predict calculation fluency in second grade. J. Learn. Disabil. 2008, 41, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Torbeyns, J.; van den Noortgate, W.; GhesquieÁre, P.; Verschaffel, L.; van de Rijt, B.A.M.; van Luit, J.E.H. Development of early numeracy in 5- to 7-year-old children: A comparison between Flanders and The Netherlands. Edu. Res. Eval. 2002, 8, 249–275. [Google Scholar]
- Waber, D.P.; Mann, M.B.; Merola, J. Motor overflow and attentional processes in normal school-age children. Dev. Med. Child Neurol. 1985, 27, 491–497. [Google Scholar] [CrossRef]
- Colombo, J. The Development of visual attention in infancy. Annu. Rev. Psychol. 2001, 52, 337–367. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.E.; Casey, B.J. Development of sustained visual attention in the human infant. In Attention and Information Processing in Infants and Adults: Perspectives from Human and Animal Research; Campbell, B.A., Hayne, H., Richardson, R., Eds.; Erlbaum: Hillsdale, NJ, USA, 1992; pp. 30–60. [Google Scholar]
- Martzog, P.; Stoeger, H.; Suggate, S. Relations between preschool children’s fine motor skills and general cognitive abilities. J. Cogn. Dev. 2019, 20, 443–465. [Google Scholar] [CrossRef]
- Smith, L.B. Cognition as a dynamic system: Principles from embodiment. Dev. Rev. 2005, 25, 278–298. [Google Scholar] [CrossRef]
- Babik, I.; Galloway, J.C.; Lobo, M.A. Early exploration of one’s own body, exploration of objects, and motor, language, and cognitive development relate dynamically across the first two years of life. Dev. Psychol. 2022, 58, 222–235. [Google Scholar] [CrossRef]
- Cioni, G.; Ferrari, F.; Einspieler, C.; Paolicelli, P.; Barbani, T.; Prechtl, H.F. Comparison between observation of spontaneous movements and neurologic examination in preterm infants. J. Pediatr. 1997, 130, 704–711. [Google Scholar] [CrossRef]
- Barrett, T.M.; Traupman, E.; Needham, A. Infants’ visual anticipation of object structure in grasp planning. Infant Behav. Dev. 2008, 31, 1–9. [Google Scholar] [CrossRef]
- Bertenthal, B.I.; Clifton, R.K. Perception and action. In Handbook of Child Psychology: Cognition, Perception, and Language; Damon, W., Kuhn, D., Siegler, R.S., Eds.; Wiley: New York, NY, USA, 1998; pp. 51–102. [Google Scholar]
- Corbetta, D.; Snapp-Childs, W. Seeing and touching: The role of sensory-motor experience on the development of infant reaching. Infant Behav. Dev. 2009, 32, 44–58. [Google Scholar] [CrossRef]
- Hopkins, B.; Rönnqvist, L. Facilitating postural control: Effects on the reaching behavior of 6-month-old infants. Dev. Psychobiol. 2002, 40, 168–182. [Google Scholar] [CrossRef]
- Lobo, M.A.; Galloway, J.C. The onset of reaching significantly impacts how infants explore both objects and their bodies. Infant Behav. Dev. 2013, 36, 14–24. [Google Scholar] [CrossRef]
- Rochat, P.; Goubet, N. Development of sitting and reaching in 5- to 6-month-old infants. Infant Behav. Dev. 1995, 18, 53–68. [Google Scholar] [CrossRef]
- Thelen, E.; Spencer, J.P. Postural control during reaching in young infants: A dynamic systems approach. Neurosci. Biobehav. Rev. 1998, 22, 507–514. [Google Scholar] [CrossRef]
- von Hofsten, C.; Rosander, K. Development of smooth pursuit tracking in young infants. Vis. Res. 1997, 37, 1799–1810. [Google Scholar]
- Kahrs, B.A.; Lockman, J.J. Building tool use from object manipulation: A perception–action perspective. Ecol. Psychol. 2014, 26, 88–97. [Google Scholar] [CrossRef]
- Keen, S. Debunking Economics: The Naked Emperor Dethroned? Zed Books Ltd.: London, UK, 2011. [Google Scholar]
- Marcinowski, E.C.; Nelson, E.; Campbell, J.M.; Michel, G.F. The development of object construction from infancy through toddlerhood. Infancy 2019, 24, 368–391. [Google Scholar] [CrossRef]
- Needham, A.; Barrett, T.; Peterman, K. A pick-me-up for infants’ exploratory skills: Early simulated experiences reaching for objects using ‘sticky mittens’ enhances young infants’ object exploration skills. Infant Behav. Dev. 2002, 25, 279–295. [Google Scholar]
- Bahrick, L.E.; Lickliter, R.; Flom, R. Intersensory redundancy guides the development of selective attention, perception, and cognition in infancy. Curr. Dir. Psychol. Sci. 2004, 13, 99–102. [Google Scholar] [CrossRef]
- Baumgartner, H.A.; Oakes, L.M. Investigating the relation between infants’ manual activity with objects and their perception of dynamic events. Infancy 2013, 18, 983–1006. [Google Scholar] [CrossRef]
- Bushnell, E.W.; Boudreau, J.P. Motor development and the mind: The potential role of motor abilities as a determinant of aspects of perceptual development. Child Dev. 1993, 64, 1005–1021. [Google Scholar]
- Gibson, E.J. Exploratory behavior in the development of perceiving, acting, and the acquiring of knowledge. Annu. Rev. Psychol. 1988, 39, 1–41. [Google Scholar] [CrossRef]
- Jouen, F.; Molina, M. Exploration of the newborn’s manual activity: A window onto early cognitive processes. Infant Behav. Dev. 2005, 28, 227–239. [Google Scholar] [CrossRef]
- Lobo, M.A.; Galloway, J.C. Postural and object-oriented experiences advance early reaching, object exploration, and means-end behavior. Child Dev. 2008, 79, 1869–1890. [Google Scholar] [CrossRef]
- Piaget, J. The Origin of Intelligence in the Child; Routledge & Kegan Paul: London, UK, 1953. [Google Scholar]
- Ruff, H.A.; McCarton, C.; Kurtzberg, D.; Vaughan, H.G. Preterm infants’ manipulative exploration of objects. Child Dev. 1984, 55, 1166. [Google Scholar] [CrossRef]
- Smith, L.B.; Sheya, A. Is cognition enough to explain cognitive development? TiCS 2010, 2, 725–735. [Google Scholar]
- Thelen, E. Coupling perception and action in the development of skill: A dynamic approach. In Sensory-Motor Organizations and Development in Infancy and Early Childhood; Bloch, H., Bertenthal, B.I., Eds.; Kluwer Academic: Boston, MA, USA, 1990. [Google Scholar]
- Wilcox, T.; Woods, R.; Chapa, C.; McCurry, S. Multisensory exploration and object individuation in infancy. Dev. Psychol. 2007, 43, 479–495. [Google Scholar] [CrossRef] [Green Version]
- Zuccarini, M.; Guarini, A.; Savini, S.; Iverson, J.M.; Aureli, T.; Alessandroni, R.; Faldella, G.; Sansavini, A. Object exploration in extremely preterm infants between 6 and 9 months and relation to cognitive and language development at 24 months. Res. Dev. Disabil. 2017, 68, 140–152. [Google Scholar] [CrossRef]
- Campos, J.J.; Anderson, D.I.; Barbu-Roth, M.A.; Hubbard, E.; Hertenstein, M.J.; Witherington, D.C. Travel broadens the mind. Infancy 2000, 1, 149–219. [Google Scholar] [CrossRef]
- Karasik, L.B.; Tamis-LeMonda, C.; Adolph, K.E. Transition from crawling to walking and infants’ actions with objects and people. Child Dev. 2011, 82, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Karasik, L.B.; Tamis-LeMonda, C.; Adolph, K.E. Crawling and walking infants elicit different verbal responses from mothers. Dev. Sci. 2014, 17, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, J.; Braddick, O. Visual and visuocognitive development in children born very prematurely. Prog. Brain Res. 2007, 164, 123–149. [Google Scholar] [CrossRef]
- Mccarty, M.E.; Ashmead, D.H. Visual control of reaching and grasping in infants. Dev. Psychol. 1999, 35, 620–631. [Google Scholar] [CrossRef]
- van Beck, Y.; Hopkins, B.; Hoeksma, J.; Samson, J.F. Prematurity, posture, and the development of looking behavior during early communication. J. Child Psychol. Psychiatry 1994, 35, 1093–1107. [Google Scholar]
- Fayol, M.; Barrouillet, P.; Marinthe, C. Predicting arithmetical achievement from neuro-psychological performance: A longitudinal study. Cognition 1998, 68, B63–B70. [Google Scholar] [CrossRef]
- Araujo, D.; Davids, K. Ecological approaches to cognition and action in sport and exercise: Ask not only what you do, but where you do it. Int. J. Sport Psychol. 2009, 40, 5–37. [Google Scholar]
- Smith, L.B.; Thelen, E. Development as a dynamic system. TiCS 2003, 7, 343–348. [Google Scholar]
- Thelen, E.; Schöner, G.; Scheier, C.; Smith, L.B. The dynamics of embodiment: A field theory of infant perseverative reaching. Behav. Brain Sci. 2001, 24, 1–34. [Google Scholar] [CrossRef]
- Goldfield, E.C. Dynamic systems in development: Action systems. In Dynamic Approaches to Development: Applications; Thelen, E., Smith, L., Eds.; MIT Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Corbetta, D.; Bojczyk, K.E. Infants return to two-handed reaching when they are learning to walk. J. Mot. Behav. 2002, 34, 83–95. [Google Scholar] [CrossRef]
- Babik, I.; Campbell, J.M.; Michel, G.F. Postural influences on the development of infant lateralized and symmetric hand-use. Child Dev. 2014, 85, 294–307. [Google Scholar]
- Goldfield, E. Transition from rocking to crawling: Postural constraints on infant movement. Dev. Psychol. 1989, 25, 913–919. [Google Scholar]
- Kim, Y.H.; Park, J.W.; Ko, M.-H.; Jang, S.H.; Lee, P.K. Plastic changes of motor network after constraint-induced movement therapy. Yonsei Med. J. 2004, 45, 241–246. [Google Scholar] [CrossRef]
- Schaechter, J.D.; Kraft, E.; Hilliard, T.S.; Dijkhuizen, R.M.; Benner, T.; Finklestein, S.P.; Rosen, B.R.; Cramer, S.C. Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: A preliminary study. Neurorehabilit. Neural Repair 2002, 16, 326–338. [Google Scholar] [CrossRef] [Green Version]
- Wittenberg, G.F.; Schaechter, J.D. The neural basis of constraint-induced movement therapy. Curr. Opin. Neurol. 2009, 22, 582–588. [Google Scholar] [CrossRef]
- Rosenbaum, P.L.; Rosenbloom, L. Cerebral Palsy: From Diagnosis to Adult Life; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Alves-Pinto, A.; Turova, V.; Blumenstein, T.; Lampe, R. The Case for musical instrument training in cerebral palsy for neurorehabilitation. Neural Plast. 2016, 2016, 1072301. [Google Scholar] [CrossRef] [Green Version]
- Buonomano, D.V.; Merzenich, M.M. Cortical plasticity: From synapses to maps. Annu. Rev. Neurosci. 1998, 21, 149–186. [Google Scholar] [CrossRef] [Green Version]
- Cramer, S.C.; Sur, M.; Dobkin, B.H.; O’Brien, C.; Sanger, T.D.; Trojanowski, J.Q.; Rumsey, J.M.; Hicks, R.; Cameron, J.; Chen, D.; et al. Harnessing neuroplasticity for clinical applications. Brain 2011, 134, 1591–1609. [Google Scholar] [CrossRef]
- Johnston, M.V. Plasticity in the developing brain: Implications for rehabilitation. Dev. Disabil. Res. Rev. 2009, 15, 94–101. [Google Scholar] [CrossRef]
- Kleim, J.A.; Jones, T.A. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 2008, 51, 225–239. [Google Scholar]
- Holmefur, M.; Kits, A.; Bergström, J.; Krumlinde-Sundholm, L.; Flodmark, O.; Forssberg, H.; Eliasson, A.C. Neuroradiology can predict the development of hand function in children with unilateral cerebral palsy. Neurorehabil. Neural Repair 2013, 27, 72–78. [Google Scholar]
- Odding, E.; Roebroeck, M.E.; Stam, H.J. The epidemiology of cerebral palsy: Incidence, impairments and risk factors. Disabil. Rehabil. 2006, 28, 183–191. [Google Scholar] [CrossRef]
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D. Definition and classification document. Dev. Med. Child Neurol. 2007, 49, 8–14. [Google Scholar]
- Novak, I.; Hines, M.; Goldsmith, S.; Barclay, R. Clinical prognostic messages from a systematic review on cerebral palsy. Pediatrics 2012, 130, e1285–e1312. [Google Scholar] [CrossRef] [Green Version]
- Rojo, N.; Amengual, J.; Juncadella, M.; Rubio, F.; Camara, E.; Marco-Pallares, J.; Schneider, S.; Veciana, M.; Montero, J.; Mohammadi, B.; et al. Music-supported therapy induces plasticity in the sensorimotor cortex in chronic stroke: A single-case study using multimodal imaging (fMRI TMS). Brain Inj. 2011, 25, 787–793. [Google Scholar]
- Sanger, T.D.; Kukke, S.N. Abnormalities of tactile sensory function in children with dystonic and diplegic cerebral palsy. J. Child Neurol. 2007, 22, 289–293. [Google Scholar]
- O’Brien, G.; Rosenbloom, L. Developmental Disability and Ageing; Mac Keith Press: London, UK, 2009. [Google Scholar]
- Martin, J.H.; Chakrabarty, S.; Friel, K.M. Harnessing activity-dependent plasticity to repair the damaged corticospinal tract in an animal model of cerebral palsy. Dev. Med. Child Neurol. 2011, 53, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Smorenburg, A.R.; Gordon, A.M.; Kuo, H.C.; Ferre, C.L.; Brandao, M.; Bleyenheuft, Y.; Carmel, J.B.; Friel, K.M. Does corticospinal tract connectivity influence the response to intensive bimanual therapy in children with unilateral cerebral palsy? Neurorehabil. Neural Repair 2017, 31, 250–260. [Google Scholar]
- Michel, G.F.; Tyler, A.N. Critical period: A history of the transition from questions of when, to what, to how. Dev. Psychobiol. 2005, 46, 156–162. [Google Scholar] [CrossRef]
- Chamudot, R.; Parush, S.; Rigbi, A.; Horovitz, R.; Gross-Tsur, V. Effectiveness of modified constraint-induced movement therapy compared with bimanual therapy home programs for infants with hemiplegia: A randomized controlled trial. Am. J. Occup. Ther. 2018, 72, 7206205010p1–7206205010p9. [Google Scholar] [CrossRef]
- Eliasson, A.-C.; Nordstrand, L.; Ek, L.; Lennartsson, F.; Sjöstrand, L.; Tedroff, K.; Krumlinde-Sundholm, L. The effectiveness of Baby-CIMT in infants younger than 12 months with clinical signs of unilateral-cerebral palsy; an explorative study with randomized design. Res. Dev. Disabil. 2018, 72, 191–201. [Google Scholar] [CrossRef]
- Friel, K.; Chakrabarty, S.; Kuo, H.C.; Martin, J. Using motor behavior during an early critical period to restore skilled limb movement after damage to the corticospinal system during development. J. Neurosci. 2012, 32, 9265–9276. [Google Scholar]
- Holmström, L.; Eliasson, A.-C.; Almeida, R.; Furmark, C.; Weiland, A.-L.; Tedroff, K.; Löwing, K. Efficacy of the small step program in a randomized controlled trial for infants under 12 months old at risk of cerebral palsy (cp) and other neurological disorders. J. Clin. Med. 2019, 8, 1016. [Google Scholar] [CrossRef] [Green Version]
- Morgan, C.; Novak, I.; Dale, R.C.; Badawi, N. Optimising motor learning in infants at high risk of cerebral palsy: A pilot study. BMC Pediatr. 2015, 15, 30. [Google Scholar] [CrossRef] [Green Version]
- Morgan, C.; Darrah, J.; Gordon, A.; Harbourne, R.; Spittle, A.; Johnson, R.E.; Fetters, L. Effectiveness of motor interventions in infants with cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2016, 58, 900–909. [Google Scholar] [CrossRef] [Green Version]
- Morgan, C.; Novak, I.; Dale, R.C.; Guzzetta, A.; Badawi, N. Single blind randomised controlled trial of GAME (Goals Activity Motor Enrichment) in infants at high risk of cerebral palsy. Res. Dev. Disabil. 2016, 55, 256–267. [Google Scholar] [CrossRef]
- Hubermann, L.; Boychuck, Z.; Shevell, M.I.; Majnemer, A. Age at referral of children for initial diagnosis of cerebral palsy and rehabilitation: Current practices. J. Child Neurol. 2016, 31, 364–369. [Google Scholar] [CrossRef]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.C.; et al. Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar]
- Boyd, R.N.; Jordan, R.; Pareezer, L.; Moodie, A.; Finn, C.; Luther, B.; Arnfield, E.; Pym, A.; Craven, A.; Beall, P.; et al. Australian Cerebral Palsy Child Study: Protocol of a prospective population based study of motor and brain development of preschool aged children with cerebral palsy. BMC Neurol. 2013, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, K.N.; Gibson, L.; Dickinson, H.O.; Colver, A.F. Pain in children with cerebral palsy: A cross-sectional multicentre European study. Acta Paediatr. 2010, 99, 446–451. [Google Scholar] [CrossRef]
- Booth, A.T.C.; Buizer, A.I.; Meyns, P.; Oude Lansink, I.L.B.; Steenbrink, F.; van der Krogt, M.M. The efficacy of functional gait training in children and young adults with cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2018, 60, 866–883. [Google Scholar]
- Brandao, M.B.; Mancini, M.C.; Ferre, C.L.; Figueiredo, P.R.P.; Oliveira, R.H.S.; Goncalves, S.C. Does dosage matter? A pilot study of hand-arm bimanual intensive training (HABIT) dose and dosing schedule in children with unilateral cerebral palsy. Phys. Occup. Ther. Pediatric. 2018, 38, 227–242. [Google Scholar]
- Buccino, G.; Arisi, D.; Gough, P.; Aprile, D.; Ferri, C.; Serotti, L.; Tiberti, A.; Fazzi, E. Improving upper limb motor functions through action observation treatment: A pilot study in children with cerebral palsy. Dev. Med. Child Neurol. 2012, 54, 822–828. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Pope, S.; Tyler, D.; Warren, G. Effectiveness of constraint-induced movement therapy on upper-extremity function in children with cerebral palsy: A systematic review and meta-analysis of randomized controlled trials. Clin. Rehabil. 2014, 28, 939–953. [Google Scholar] [CrossRef]
- Ganesh, G.; Das, S. Evidence-based approach to physical therapy in cerebral palsy. Indian J. Orthop. 2019, 53, 20–34. [Google Scholar] [CrossRef]
- Ferre, C.L.; Brandão, M.; Surana, B.; Dew, A.P.; Moreau, N.G.; Gordon, A. Caregiver-directed home-based intensive bimanual training in young children with unilateral spastic cerebral palsy: A randomized trial. Dev. Med. Child Neurol. 2017, 59, 497–504. [Google Scholar] [CrossRef]
- Friel, K.M.; Kuo, H.-C.; Fuller, J.; Ferre, C.L.; Brandão, M.; Carmel, J.B.; Bleyenheuft, Y.; Gowatsky, J.L.; Stanford, A.D.; Rowny, S.B.; et al. Skilled bimanual training drives motor cortex plasticity in children with unilateral cerebral palsy. Neurorehabilit. Neural Repair 2016, 30, 834–844. [Google Scholar] [CrossRef] [Green Version]
- Hoare, B.; Wallen, M.A.; Thorley, M.N.; Jackman, M.L.; Carey, L.M.; Imms, C. Constraint-induced movement therapy in children with unilateral cerebral palsy. Cochrane Database Syst. Rev. 2019, 4, CD004149. [Google Scholar] [CrossRef]
- Inguaggiato, E.; Sgandurra, G.; Perazza, S.; Guzzetta, A.; Cioni, G. Brain reorganization following intervention in children with congenital hemiplegia: A systematic review. Neural Plast. 2013, 2013, 356275. [Google Scholar] [CrossRef] [Green Version]
- Jamali, A.R.; Amini, M. The effects of constraint induced movement therapy on functions of children with cerebral palsy. Iran. J. Child Neurol. 2018, 12, 16–27. [Google Scholar]
- A Kruijsen-Terpstra, A.J.; Ketelaar, M.; Verschuren, O.; Gorter, J.W.; Vos, R.C.; Verheijden, J.; Jongmans, M.J.; Visser-Meily, A. Efficacy of three therapy approaches in preschool children with cerebral palsy: A randomized controlled trial. Dev. Med. Child Neurol. 2015, 58, 758–766. [Google Scholar] [CrossRef]
- Lefmann, S.; Russo, R.; Hillier, S. The effectiveness of robotic-assisted gait training for paediatric gait disorders: Systematic review. J. Neuroeng. Rehabil. 2017, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Moreau, N.G.; Bodkin, A.W.; Bjornson, K.; Hobbs, A.; Soileau, M.; Lahasky, K. Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy: Systematic review and meta-analysis. Phys. Ther. 2016, 96, 1938–1954. [Google Scholar] [CrossRef] [Green Version]
- Morgan, C.; Novak, I.; Badawi, N. Enriched environments and motor outcomes in cerebral palsy: Systematic review and meta-analysis. Pediatrics 2013, 132, e735–e746. [Google Scholar] [CrossRef] [Green Version]
- Novak, I.; Berry, J. Home program intervention effectiveness evidence. Phys. Occup. Ther. Pediatr. 2014, 34, 384–389. [Google Scholar] [CrossRef]
- Sakzewski, L.; Ziviani, J.; Boyd, R. Efficacy of upper limb therapies for unilateral cerebral palsy: A meta-analysis. Pediatrics 2014, 133, e175–e204. [Google Scholar] [CrossRef] [Green Version]
- Sgandurra, G.; Ferrari, A.; Cossu, G.; Guzzetta, A.; Fogassi, L.; Cioni, G. Randomized trial of observation and execution of upper extremity actions versus action alone in children with unilateral cerebral palsy. Neurorehabilit. Neural Repair 2013, 27, 808–815. [Google Scholar] [CrossRef] [Green Version]
- Toovey, R.; Bernie, C.; Harvey, A.R.; McGinley, J.; Spittle, A.J. Task-specific gross motor skills training for ambulant school-aged children with cerebral palsy: A systematic review. BMJ Paediatr. Open 2017, 1, e000078. [Google Scholar] [CrossRef] [Green Version]
- Hadders-Algra, M. Early diagnosis and early intervention in cerebral palsy. Front. Neurol. 2014, 5, 185. [Google Scholar]
- Novak, I.; Morgan, C.; Fahey, M.; Finch-Edmondson, M.; Galea, C.; Hines, A.; Langdon, K.; Mc Namara, M.; Paton, M.C.; Popat, H.; et al. State of the evidence traffic lights 2019: Systematic review of interventions for preventing and treating children with cerebral palsy. Curr. Neurol. Neurosci. Rep. 2020, 20, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Sakzewski, L.; Ziviani, J.; Boyd, R.N. Delivering evidence-based upper limb rehabilitation for children with cerebral palsy: Barriers and enablers identified by three pediatric teams. Phys. Occup. Ther. Pediatr. 2014, 34, 368–383. [Google Scholar] [CrossRef]
- Lewek, M.D.; Cruz, T.H.; Moore, J.L.; Roth, H.R.; Dhaher, Y.Y.; Hornby, T.G. Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: A subgroup analysis from a randomized clinical trial. Phys. Ther. 2009, 89, 829–839. [Google Scholar] [CrossRef]
- Prosser, L.A.; Pierce, S.R.; Dillingham, T.R.; Bernbaum, J.C.; Jawad, A.F. iMOVE: Intensive Mobility training with Variability and Error compared to conventional rehabilitation for young children with cerebral palsy: The protocol for a single blind randomized controlled trial. BMC Pediatr. 2018, 18, 329. [Google Scholar] [CrossRef] [Green Version]
- Christensen, M.; Grunbaum, T. Sense of moving: Moving closer to the movement. In Sensation of Movement; Routledge: Abingdon, UK, 2017; pp. 64–84. [Google Scholar]
- Christensen, M.S.; Grünbaum, T. Sense of agency for movements. Conscious. Cogn. 2018, 65, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Kimberley, T.J.; Novak, I.; Boyd, L.; Fowler, E.; Larsen, D. Stepping up to rethink the future of rehabilitation: IV STEP considerations and inspirations. J. Neurol. Phys. Ther. 2017, 41, S63–S72. [Google Scholar] [CrossRef]
- Ritterband-Rosenbaum, A.; Christensen, M.; Nielsen, J. Twenty weeks of computer-training improves sense of agency in children with spastic cerebral palsy. Res. Dev. Disabil. 2012, 33, 1227–1234. [Google Scholar] [CrossRef]
- Hadders-Algra, M.; Boxum, A.G.; Hielkema, T.; Hamer, E.G. Effect of early intervention in infants at very high risk of cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2017, 59, 246–258. [Google Scholar]
- Crocker, M.D.; MacKay-Lyons, M.; McDonnell, E. Forced use of the upper extremity in cerebral palsy: A single-case design. Am. J. Occup. Ther. 1997, 51, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Ostendorf, C.G.; Wolf, S.L. Effect of forced use of the upper extremity of a hemiplegic patient on changes in function. Phys. Ther. 1981, 61, 1022–1028. [Google Scholar]
- Aarts, P.B.; Jongerius, P.H.; Geerdink, Y.A.; Van Limbeek, J.; Geurts, A.C. Effectiveness of modified constraint-induced movement therapy in children with unilateral spastic cerebral palsy: A randomized controlled trial. Neurorehabilit. Neural Repair 2010, 24, 509–518. [Google Scholar] [CrossRef]
- DeLuca, S.C.; Case-Smith, J.; Stevenson, R.; Ramey, S.L. Constraint-induced movement therapy (CIMT) for young children with cerebral palsy: Effects of therapeutic dosage. J. Pediatr. Rehabil. Med. 2012, 5, 133–142. [Google Scholar] [CrossRef]
- Gordon, A.M.; Charles, J.; Wolf, S.L. Methods of constraint-induced movement therapy for children with hemiplegic cerebral palsy: Development of a child-friendly intervention for improving upper-extremity function. Arch. Phys. Med. Rehabil. 2005, 86, 837–844. [Google Scholar] [CrossRef]
- Gordon, A.M.; Hung, Y.C.; Brandao, M.; Ferre, C.L.; Kuo, H.C.; Friel, K.; Charles, J.R. Bimanual training and constraint-induced movement therapy in children with hemiplegic cerebral palsy: A randomized trial. NNR 2011, 25, 692–702. [Google Scholar]
- Wu, C.Y.; Chuang, L.L.; Lin, K.C.; Chen, H.C.; Tsay, P.K. Randomized trial of distributed constraint-induced therapy versus bilateral arm training for the rehabilitation of upper extremity motor control and function after stroke. NNR 2011, 25, 130–139. [Google Scholar]
- Charles, J.; Gordon, A.M. Development of hand-arm bimanual intensive training (HABIT) for improving bimanual coordination in children with hemiplegic cerebral palsy. Dev. Med. Child Neurol. 2006, 48, 931–936. [Google Scholar]
- Gordon, A.M.; Schneider, J.A.; Chinnan, A.; Charles, J.R. Efficacy of a hand–arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy: A randomized control trial. DMCN 2007, 49, 830–838. [Google Scholar]
- Gordon, A.M.; Charles, J.; Wolf, S.L. Efficacy of constraint-induced movement therapy on involved upper-extremity use in children with hemiplegic cerebral palsy is not age-dependent. Pediatrics 2006, 117, e363–e373. [Google Scholar] [CrossRef] [Green Version]
- Khare, D.; Soni, R. Effects of constraint-induced movement therapy on hemiplegic cerebral palsy patients. Int. J. Biomed. Res. 2016, 7, 799–802. [Google Scholar]
- Sakzewski, L.; Ziviani, J.; Abbott, D.; MacDonell, R.A.L.; Jackson, G.D.; Boyd, R.N. Randomized trial of constraint-induced movement therapy and bimanual training on activity outcomes for children with congenital hemiplegia. Dev. Med. Child Neurol. 2011, 53, 313–320. [Google Scholar] [CrossRef]
- Cunha, A.B.; Soares, D.A.; Ferro, A.M.; Tudella, E. Effect of training at different body positions on proximal and distal reaching adjustments at the onset of goal-directed reaching: A controlled clinical trial. Mot. Control. 2013, 17, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.B.; Woollacott, M.; Tudella, E. Influence of specific training on spatiotemporal parameters at the onset of goal-directed reaching in infants: A controlled trial. Braz. J. Phys. Ther. 2013, 17, 409–417. [Google Scholar]
- Cunha, A.B.; Lobo, M.A.; Kokkoni, E.; Galloway, J.C.; Tudella, E. Effect of short-term training on reaching behavior in infants: A randomized controlled clinical trial. J. Mot. Behav. 2016, 48, 132–142. [Google Scholar] [CrossRef]
- Heathcock, J.C.; Lobo, M.; Galloway, J.C. Movement training advances the emergence of reaching in infants born at less than 33 weeks of gestational age: A randomized clinical trial. Phys. Ther. 2008, 88, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-M.; Galloway, J.C. Early intensive postural and movement training advances head control in very young infants. Phys. Ther. 2012, 92, 935–947. [Google Scholar] [CrossRef]
- Lobo, M.A.; Galloway, J.C. Enhanced handling and positioning in early infancy advances development throughout the first year. Child Dev. 2012, 83, 1290–1302. [Google Scholar] [CrossRef]
- Lobo, M.A.; Galloway, J.C.; Savelsbergh, G.J.P. General and task-related experiences affect early object interaction. Child Dev. 2004, 75, 1268–1281. [Google Scholar] [CrossRef]
- Lobo, M.; Galloway, J.; Heathcock, J. Characterization and intervention for upper extremity exploration & reaching behaviors in infancy. J. Hand Ther. 2015, 28, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Nakano, H.; Kihara, H.; Nakano, J.; Konishi, Y. The influence of positioning on spontaneous movements of preterm infants. J. Phys. Ther. Sci. 2010, 22, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Soares, D.D.A.; van der Kamp, J.; Savelsbergh, G.J.; Tudella, E. The effect of a short bout of practice on reaching behavior in late preterm infants at the onset of reaching: A randomized controlled trial. Res. Dev. Disabil. 2013, 34, 4546–4558. [Google Scholar] [CrossRef]
- Soares, D.D.A.; Cunha, A.B.; Tudella, E. Differences between late preterm and full-term infants: Comparing effects of a short bout of practice on early reaching behavior. Res. Dev. Disabil. 2014, 35, 3096–3107. [Google Scholar] [CrossRef]
- Dusing, S.C.; Tripathi, T.; Marcinowski, E.C.; Thacker, L.R.; Brown, L.F.; Hendricks-Muñoz, K.D. Supporting play exploration and early developmental intervention versus usual care to enhance development outcomes during the transition from the neonatal intensive care unit to home: A pilot randomized controlled trial. BMC Pediatr. 2018, 18, 46. [Google Scholar] [CrossRef]
- Harbourne, R.T.; Dusing, S.C.; Lobo, M.A.; Westcott-McCoy, S.; Bovaird, J.; Sheridan, S.; Galloway, J.C.; Chang, H.-J.; Hsu, L.-Y.; Koziol, N.; et al. Sitting Together and Reaching to Play (START-Play): Protocol for a multisite randomized controlled efficacy trial on intervention for infants with neuromotor disorders. Phys. Ther. 2018, 98, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Harbourne, R.T.; Dusing, S.C.; Lobo, M.A.; McCoy, S.W.; Koziol, N.A.; Hsu, L.Y.; Willett, S.; Marcinowski, E.C.; Babik, I.; Cunha, A.B.; et al. START-Play physical therapy intervention impacts motor and cognitive outcomes in young children with neuromotor disorders: A multi-site randomized clinical trial. Phys. Ther. 2021, 101, pzaa232. [Google Scholar]
- Libertus, K.; Joh, A.S.; Needham, A.W. Motor training at 3 months affects object exploration 12 months later. Dev. Sci. 2016, 19, 1058–1066. [Google Scholar] [CrossRef] [Green Version]
- Babik, I.; Cunha, A.B.; Lobo, M.A. Assistive and rehabilitative effects of the Playskin LiftTM exoskeletal garment on reaching and object exploration in children with arthrogryposis. Am. J. Occup. Ther. 2021, 75, 7501205110p1–7501205110p10. [Google Scholar] [CrossRef]
- Gaudet, G.; Raison, M.; Achiche, S. Current trends and challenges in pediatric access to sensorless and sensor-based upper limb exoskeletons. Sensors 2021, 21, 3561. [Google Scholar] [CrossRef]
- Lobo, M.A.; Hall, M.L.; Greenspan, B.; Rohloff, P.; Prosser, L.A.; Smith, B.A. Wearables for pediatric rehabilitation: How to optimally design and use products to meet the needs of users. Phys. Ther. 2019, 99, 647–657. [Google Scholar] [CrossRef]
- Libertus, K.; Needham, A. Teach to reach: The effects of active vs. passive reaching experiences on action and perception. Vis. Res. 2010, 50, 2750–2757. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, A.L.; Toledo, A.M.; Merey, L.F.; Tudella, E.; Soares-Marangoni, D.D.A. Brief reaching training with “sticky mittens” in preterm infants: Randomized controlled trial. Hum. Mov. Sci. 2019, 63, 138–147. [Google Scholar] [CrossRef]
- Needham, A.W.; Wiesen, S.E.; Hejazi, J.N.; Libertus, K.; Christopher, C. Characteristics of brief sticky mittens training that lead to increases in object exploration. J. Exp. Child Psychol. 2017, 164, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Wiesen, S.E.; Watkins, R.M.; Needham, A.W. Active motor training has long-term effects on infants’ object exploration. Front. Psychol. 2016, 7, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herholz, S.C.; Zatorre, R.J. Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron 2012, 76, 486–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangert, M.; Schlaug, G. Specialization of the specialized in features of external human brain morphology. Eur. J. Neurosci. 2006, 24, 1832–1834. [Google Scholar] [CrossRef]
- Bengtsson, S.; Nagy, Z.; Skare, S.; Forsman, L.; Forssberg, H.; Ullén, F. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 2005, 8, 1148–1150. [Google Scholar] [CrossRef]
- Bermudez, P.; Lerch, J.P.; Evans, A.C.; Zatorre, R.J. Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb. Cortex 2009, 19, 1583–1596. [Google Scholar] [CrossRef] [Green Version]
- Gaser, C.; Schlaug, G. Brain structures differ between musicians and non-musicians. J. Neurosci. 2003, 23, 9240–9245. [Google Scholar] [CrossRef] [Green Version]
- Herve, P.Y.; Mazoyer, B.; Crivello, F.; Perchey, G.; Tzourio-Mazoyer, N. Finger tapping, handedness and grey matter amount in the Rolando’s genu area. Neuroimage 2005, 25, 1133–1145. [Google Scholar] [CrossRef]
- Hutchinson, S.; Lee, L.H.-L.; Gaab, N.; Schlaug, G. Cerebellar volume of musicians. Cereb. Cortex 2003, 13, 943–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlaug, G.; Jäncke, L.; Huang, Y.; Staiger, J.F.; Steinmetz, H. Increased corpus callosum size in musicians. Neuropsychologia 1995, 33, 1047–1055. [Google Scholar] [CrossRef] [Green Version]
- Volkmann, J.; Schnitzler, A.; Witte, O.W.; Freund, H.-J. Handedness and asymmetry of hand representation in human motor cortex. J. Neurophysiol. 1998, 79, 2149–2154. [Google Scholar] [CrossRef] [Green Version]
- Alves-Pinto, A.; Turova, V.; Blumenstein, T.; Thienel, A.; Wohlschläger, A.; Lampe, R. fMRI assessment of neuroplasticity in youths with neurodevelopmental-associated motor disorders after piano training. Eur. J. Paediatr. Neurol. 2015, 19, 15–28. [Google Scholar] [CrossRef]
- Chong, H.J.; Cho, S.-R.; Jeong, E.; Kim, S.J. Finger exercise with keyboard playing in adults with cerebral palsy: A preliminary study. J. Exerc. Rehabil. 2013, 9, 420–425. [Google Scholar] [CrossRef]
- Lahav, A.; Boulanger, A.; Schlaug, G.; Saltzman, E. The power of listening: Auditory-motor interactions in musical training. Ann. N. Y. Acad. Sci. 2005, 1060, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Glover, S. Visual illusions affect planning but not control. Trends Cogn. Sci. 2002, 6, 288–292. [Google Scholar] [CrossRef]
- Johnson-Frey, S.H. Stimulation through simulation? Motor imagery and functional reorganization in hemiplegic stroke patients. Brain Cogn. 2004, 55, 328–331. [Google Scholar] [CrossRef]
- Mulder, T. Motor imagery and action observation: Cognitive tools for rehabilitation. J. Neural Transm. 2007, 114, 1265–1278. [Google Scholar] [CrossRef] [Green Version]
- Steenbergen, B.; Crajé, C.; Nilsen, D.M.; Gordon, A. Motor imagery training in hemiplegic cerebral palsy: A potentially useful therapeutic tool for rehabilitation. Dev. Med. Child Neurol. 2009, 51, 690–696. [Google Scholar] [CrossRef]
- Steenbergen, B.; Jongbloed-Pereboom, M.; Spruijt, S.; Gordon, A. Impaired motor planning and motor imagery in children with unilateral spastic cerebral palsy: Challenges for the future of pediatric rehabilitation. Dev. Med. Child Neurol. 2013, 55, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Zacks, J.M. Neuroimaging studies of mental rotation: A meta-analysis and review. J. Cogn. Neurosci. 2008, 20, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Roland, P.E.; Friberg, L. Localization of cortical areas activated by thinking. J. Neurophysiol. 1985, 53, 1219–1243. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.H.; Thomas, P.R.; Maruff, P. Motor Imagery Training Ameliorates Motor Clumsiness in Children. J. Child Neurol. 2002, 17, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.M.; Beurskens, A.J.; Borm, P.J.; Schack, T.; Wade, D.T. The effects of mental practice in stroke rehabilitation: A systematic review. Arch. Phys. Med. Rehabil. 2006, 87, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Pomeroy, V.M.; Baron, J.C. Motor imagery: A backdoor to the motor system after stroke? Stroke 2006, 37, 1941–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabral-Sequeira, A.S.; Coelho, D.B.; Teixeira, L.A. Motor imagery training promotes motor learning in adolescents with cerebral palsy: Comparison between left and right hemiparesis. Exp. Brain Res. 2016, 234, 1515–1524. [Google Scholar] [CrossRef]
- Whittingham, K.; Wee, D.; Boyd, R. Systematic review of the efficacy of parenting interventions for children with cerebral palsy. Child Care Health Dev. 2011, 37, 475–483. [Google Scholar] [CrossRef]
- Hielkema, T.; Blauw-Hospers, C.; Dirks, T.; Drijver-Messelink, M.; Bos, A.; Hadders-Algra, M. Does physiotherapeutic intervention affect motor outcome in high-risk infants? An approach combining a randomized controlled trial and process evaluation. Dev. Med. Child Neurol. 2011, 53, E8–E15. [Google Scholar] [CrossRef]
- Lowes, L.P.; Mayhan, M.; Orr, T.; Batterson, N.; Tonneman, J.A.; Meyer, A.; Alfano, L.; Wang, W.; Whalen, C.N.; Nelin, M.A.; et al. Pilot study of the efficacy of constraint-induced movement therapy for infants and toddlers with cerebral palsy. Phys. Occup. Ther. Pediatr. 2014, 34, 4–21. [Google Scholar] [CrossRef]
- Morgan, C.; Novak, I.; Dale, R.C.; Guzzetta, A.; Badawi, N. GAME (Goals-Activity-Motor Enrichment): Protocol of a single blind randomised controlled trial of motor training, parent education and environmental enrichment for infants at high risk of cerebral palsy. BMC Neurol. 2014, 14, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libertus, K.; Landa, R.J. Scaffolded reaching experiences encourage grasping activity in infants at high risk for autism. Front. Psychol. 2014, 5, 1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babik, I. From Hemispheric Asymmetry through Sensorimotor Experiences to Cognitive Outcomes in Children with Cerebral Palsy. Symmetry 2022, 14, 345. https://doi.org/10.3390/sym14020345
Babik I. From Hemispheric Asymmetry through Sensorimotor Experiences to Cognitive Outcomes in Children with Cerebral Palsy. Symmetry. 2022; 14(2):345. https://doi.org/10.3390/sym14020345
Chicago/Turabian StyleBabik, Iryna. 2022. "From Hemispheric Asymmetry through Sensorimotor Experiences to Cognitive Outcomes in Children with Cerebral Palsy" Symmetry 14, no. 2: 345. https://doi.org/10.3390/sym14020345
APA StyleBabik, I. (2022). From Hemispheric Asymmetry through Sensorimotor Experiences to Cognitive Outcomes in Children with Cerebral Palsy. Symmetry, 14(2), 345. https://doi.org/10.3390/sym14020345