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Abstract: Recent neuroimaging studies allowed us to explore abnormal brain structures and in-
terhemispheric connectivity in children with cerebral palsy (CP). Behavioral researchers have long
reported that children with CP exhibit suboptimal performance in different cognitive domains (e.g., re-
ceptive and expressive language skills, reading, mental imagery, spatial processing, subitizing, math,
and executive functions). However, there has been very limited cross-domain research involving
these two areas of scientific inquiry. To stimulate such research, this perspective paper proposes some
possible neurological mechanisms involved in the cognitive delays and impairments in children
with CP. Additionally, the paper examines the ways motor and sensorimotor experience during the
development of these neural substrates could enable more optimal development for children with
CP. Understanding these developmental mechanisms could guide more effective interventions to
promote the development of both sensorimotor and cognitive skills in children with CP.

Keywords: development; hemispheric asymmetry; corpus callosum; sensorimotor experiences;
cognition; cerebral palsy; interventions

1. Introduction

Hemispheric asymmetry reflects a fundamental principle of neuronal organization
and plays a critical role in children’s motor, sensorimotor, and cognitive development [1–3].
Early brain injury usually leads to atypical structural and functional brain asymmetries and
interhemispheric connectivity, which may negatively affect children’s motor control and
use of upper extremities, resulting in suboptimal manual sensorimotor experiences [4–9].
Cerebral palsy (CP) defines a group of non-progressive neurodevelopmental disorders
attributed to prenatal or perinatal brain injuries that negatively affect children’s postural
control and movement [10–12]. Because cognitive development is embodied in motor and
sensorimotor experiences [13–18], children with CP may exhibit delays and impairments
not only in motor and sensorimotor skills, but also in cognitive abilities [2,5,19–27].

The purpose of this perspective paper is to outline the neural mechanisms involved
in the ways atypical hemispheric asymmetry, as a result of early brain insult, might affect
the development of motor, sensorimotor, and cognitive skills. Understanding the role of
these neural mechanisms in atypical developmental pathways should provide important
insights into the nature of cognitive impairments in children with CP and enable the
design and implementation of effective interventions (targeting early sensorimotor skills)
that will promote children’s cognitive development. This paper discusses the concept of
typical hemispheric asymmetry, patterns of abnormal brain structure, and interhemispheric
connectivity in children with CP, sensorimotor and cognitive impairments related to CP, the
role of embodiment in the development of sensorimotor and cognitive skills, and possible
interventions to improve developmental outcomes in children with CP.
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2. Hemispheric Asymmetry and Information Processing

Functional hemispheric asymmetries reflect the fact that, although structurally quite
similar, the two hemispheres have distinct representation in processing different types of in-
formation. The specialization of the two hemispheres increases the information processing
efficiency by allowing parallel processing, decreasing duplication, and eliminating potential
interhemispheric conflict [28–32]. In auditory information processing, the left hemisphere
is responsible for distinguishing phonological differences of language-related sounds and
producing those phonological distinctions during speech, whereas the right hemisphere
specializes in processing melodies, rhythms, environmental noises, and the emotional
prosody of speech [33–35]. In visual information processing, the left hemisphere is domi-
nant for facial recognition and the generation of voluntary facial movements, whereas the
right hemisphere is better at differentiating faces from non-faces [34]. Recent research also
proposed that the left hemisphere is specialized for activation–inhibition coordination, thus
justifying its dominance in both manual and verbal skills [36].

Importantly, previous research suggested that hemispheric specialization does not
depend on the modality of processed information (e.g., haptic, auditory, or visual) but
rather on the relative characteristics of the stimuli. One such account of the processing spe-
cialization that gained empirical support from previous research and is most applicable to
the discussion of hemispheric lateralization in CP is the frequency-dependent hemispheric
processing hypothesis [37,38]. According to this hypothesis, there are two neuronal systems
associated with processing any complex, hierarchically organized stimuli: (1) extracting
higher-frequency transitions in spatial and temporal patterns of local stimuli, thus spe-
cializing in phonological distinctions, facial recognition, and decoding letters/words, and
(2) processing lower-frequency transitions, or global stimuli, which typically have a contex-
tual character (e.g., rhythm, emotional tone, complex scenes, and relative position in space).
Previous research reported that the left hemisphere is specialized in the analytic processing
of high-frequency, local transitions, whereas the right hemisphere specializes in the holistic
processing of low-frequency, global stimuli [36,39–44]. Note that the distinction between
the two hemispheres in the “preferred” frequency of processed information is quite relative:
each hemisphere is capable of processing the “non-preferred” range of frequencies but
would not be as effective as the other one [37,45].

Given that hemispheric specialization increases the efficiency of information process-
ing [28–32,46], stronger hemispheric asymmetry should be associated with better motor,
sensorimotor, language, and cognitive performance. This hypothesis has been tested by
relating children’s handedness to their developmental outcomes. Handedness may serve
as a convenient marker of the hemispheric specialization of function [47–54], with strong
hand-use preference representing stronger underlying hemispheric lateralization. Thus,
strong and consistent hand-use preference has been predicted to be associated with better
developmental outcomes. Indeed, previous research found the benefits of early-developing,
strong, and consistent handedness for object management skills associated with symbolic
development [55,56], block stacking skills associated with the comprehension of spatial
words and language acquisition [57,58], and language skills [59–61]. To further empha-
size the role of hemispheric specialization in optimal development, atypical hemispheric
specialization has been widely associated with neurobehavioral dysfunctions and intel-
lectual disabilities, such as developmental stuttering, dyslexia, autism, Down syndrome,
schizophrenia, and psychosis [62–72].

3. Hemispheric Asymmetry in Children with CP

Cerebral palsy is usually attributed to prenatal or perinatal brain insult [10–12]. The
most common brain insults associated with CP are white matter lesions in periventricular
areas, basal ganglia and thalamus lesions, gray matter lesions in cortical and subcortical
regions, cerebral malformations, enlarged ventricles, focal infarcts, and diffused grey mat-
ter lesions [73–77]. Sensory tracts may be less affected by periventricular white matter
lesions that typically occur after the refinement of thalamocortical tracts, whereas lesions to
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basal ganglia, thalamus, and cortical gray matter, occurring after thalamocortical projec-
tions reach cortex, may lead to severe disruptions in somatosensory function [73,76,78–82].
As a result, children with CP often exhibit abnormal patterns of tactile and visual infor-
mation processing [83–91]. For example, in visual processing, children with CP often
exhibit reduced contrast sensitivity and visual acuity, difficulty with fixation, abnormal
saccadic movements, strabismus (an abnormal alignment of the eyes resulting in uncoordi-
nated eye movements, double vision, difficulties in depth perception, etc.) and refractive
errors [84,92–95]; in tactile processing, CP diagnosis is often associated with tactile registra-
tion and perception deficits [96,97]. Importantly, due to abnormal sensorimotor processing
and interaction between sensory modalities, early spontaneous movements that allow for
the refinement of sensorimotor connections in typically developing infants might not have
this effect in children with brain lesions [98,99].

The motor system seems to be relatively more robust to early brain insults than the
sensorimotor one; perhaps, its later developmental timeline permits considerable reor-
ganization in the corticospinal tract, which is responsible for voluntary motor function.
For example, in typically developing infants, during the first 6 (and up to 18) months
after birth, competition between the hemispheres for information processing results in the
gradual reorganization of neural pathways, with the reduction in the number of ipsilateral
connections and strengthening of the contralateral ones. The latter exhibit lower thresholds,
shorter latencies, and larger amplitudes compared to ipsilateral connections in response to
transcranial magnetic stimulation [4,100]. Early brain damage in children with unilateral
CP may disrupt contralateral corticospinal connections, resulting in atypical patterns of cor-
ticospinal tract connectivity [4,100–103]. Indeed, for about 30% of children with hemiplegic
CP, control of the affected hand resides in the ipsilateral hemisphere [79,104–107]. More-
over, the movement of the affected hand typically corresponds to an increased activation in
bilateral primary sensorimotor cortices [9,108].

On a behavioral level, this abnormal brain asymmetry leads to reduced control of the
contralesional limb, spasticity, and mirror movements [104,106,109–111]. (Mirror move-
ments are simultaneous, involuntary, and non-goal-directed movements of a limb that
accompany goal-directed activity in the contralateral limb, typically prevalent in infants’
motor repertoire during the 4.5–7.5-month age period [112,113]). Because ipsilateral con-
nections are less effective than contralateral ones, the ipsilateral control of the affected
hand in children with hemiplegic CP is typically associated with poor motor control and
impaired performance [102]. The compromised transmission of sensory feedback from the
affected hand to the motor cortex through inefficient ipsilateral connections, coupled with
the manifestation of mirror movements and visual hemianopias (brain function conditions
in which a person is only able to see one side of the visual field) likely forms the founda-
tion for suboptimal motor control and bimanual coordination in children with unilateral
CP [79,102,114]. Additionally, the interaction between the contralateral somatosensory
pathways and ipsilateral corticospinal motor pathways may result in interhemispheric
dissociation between sensorimotor inputs and outputs [2].

Unilateral brain injury leads to motor impairments in the contralateral side of the
body, resulting in hemiplegic CP. The severity of motor impairment is highly associated
with the extent of brain damage in the contralateral hemisphere [115–117]. Although
both upper and lower extremities may be affected in hemiplegic CP, the current paper
focuses on the function of the upper extremities. Children with hemiplegic CP tend to
“disregard” the affected limb; the resulting lack of motor practice (i.e., “developmental
disuse”) reduces the likelihood of spontaneous reaching and grasping movements in the
affected limb, thus impairing “practice” with its motor control and performance [118,119].
The tendency to only use one hand further impedes bimanual coordination, sophisticated
object exploration, and self-care abilities, thus negatively affecting a child’s independence
and quality of life [118,120–122].
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4. Interhemispheric Connectivity in Children with CP

The corpus callosum (CC) is the major commissural tract connecting and coordinating
the two cerebral hemispheres to allow the integration of sensorimotor information and
the optimization of information processing [123,124]. According to some accounts, the
CC enables hemispheric specialization by inhibiting one hemisphere during the activation
of the contralateral hemisphere in cases when simultaneous activity would compromise
information processing [125,126]. More recent research, however, suggests that efficient
lateralized processing is achieved by weaker callosal connections between functionally
lateralized homologous cortical areas and stronger callosal connections between the non-
lateralized areas [127,128].

In typically developing children, the formation of the CC starts around the 12th
week of gestation, with all fibers being in place by the 20th week of gestation. However,
the process of myelination, which starts around the 4th prenatal month, continues well
into adulthood [53,129–131]. Importantly, in the first years of life, the underdeveloped
CC may not allow appropriate information sharing between the two hemispheres, thus
restricting asymmetric sensorimotor processing to a specific hemisphere and facilitating
the development of hemispheric specialization of function [132–135].

Previous research showed that children with CP have a smaller CC and reduced white
matter integrity in the CC compared to their typically developing peers, with the extent
of structural changes in the CC being directly related to the size of the lesion [5,9,136,137].
These structural differences in the CC may negatively affect motor and sensorimotor
function in children with CP [5]. For example, the reduced white matter integrity in the
CC is associated not only with motor impairment in the affected hand but also with motor
deficits in the non-affected hand and poor bimanual skills [9,138–141]. Furthermore, a
lack of transcallosal inhibition allows for the bilateral activation of primary sensorimotor
cortices, which results in mirror movements [2].

Importantly, the CC is responsible for the integration of the motor and somatosensory
information, as well as bilateral coordination in motor and visuomotor tasks, especially
those requiring simultaneous/parallel processing and the timely adjustment of movements
performed by two hands [123,140,142–144]. Note that the acquisition of new motor skills
typically requires one to learn finely timed, ordered sequences of actions and the bimanual
coordination of parallel movements, both requiring effective interhemispheric transfer via
the CC [141,142,144–148]. Thus, an underdeveloped CC in children with CP might interfere
with their execution of finely timed sequences of actions, bimanual performance, and motor
learning in general [139,141,149–152].

5. Sensorimotor and Motor Outcomes in Children with CP

“Developmental disuse” of the affected limb in children with hemiplegic CP may man-
ifest as: (1) motor neglect [119,153,154], (2) visuoperceptual and spatial neglect [155–157],
or (3) deficits in body representation [153,158,159]. Each type is discussed below.

5.1. Motor Neglect in Manual Skills

In typical development, starting from weeks 7–8 prenatally, human fetuses exhibit
spontaneous movements (also called general movements) of the extremities, which are
highly predictive of future neurodevelopmental outcomes [160–165]. An abundance of
variable and complex spontaneous movements allows appropriate motor and sensorimo-
tor feedback that facilitates the refinement of motor and sensorimotor pathways, thus
improving motor control and coordination [166–169].

Newborn infants typically demonstrate spontaneous, swiping arm movements [170,171].
With time, these diffuse movements become more coordinated and goal-directed, resulting
in infants’ reaching for and grasping of objects at the age of 3–4 months [112,172–177]. By
this age, infants are capable of both unimanual and symmetrical bimanual reaches [178].
Increasing specialization in brain activity and improved interhemispheric connectivity
result in the gradual transformation of earlier synchronized and symmetrical bimanual



Symmetry 2022, 14, 345 5 of 38

movements into de-coupled, asymmetrical role-differentiated bimanual manipulations by
the age of 7–13 months [112,138,179–185]. (In role-differentiated bimanual manipulation,
the two hands perform complementary actions while manipulating an object: one hand
plays a passive, supportive role while the other one actively manipulates movable parts
of a toy [186]). Furthermore, diverse motor and sensorimotor experiences continue to
increase the specificity of the developing motor system: pruning of ipsilateral corticospinal
pathways and increasing callosal functioning both lead to a decrease in mirror movements
during the 9–12-month age period [100,112,187,188].

Infants with CP exhibit a lack of spontaneous movements or abnormal spontaneous
movements (e.g., cramped-synchronized movements – sudden, synchronous movements of
the trunk and limbs; [162,166,189–191], which result in missed opportunities to establish an
adequate “forward” internal model, thus negatively affecting the child’s ability to predict
the sensorimotor consequences of their own movements and execute anticipatory motor
planning [192–194]. Moreover, children with CP demonstrate not only atypical spontaneous
activity and decreased active range of motion but also impaired selective motor control
that is manifested in muscle group synergies and mirror movements [195–197]. Muscle
synergies interfere with the execution of voluntary, goal-directed movements; for example,
a simple act of bringing a cup to the mouth would require simultaneous wrist extension
and elbow flexion; atypical flexor synergy, in this case, would prevent wrist extension
and, thus, impede the functional movement [195]. It is important also to recognize the
crucially collaborative role of pyramidal (corticospinal) and extrapyramidal tracts in the
development of motor control; for example, reticulospinal and vestibulospinal tracts were
found to be associated with the coordination of finger movements that typically rely upon
corticospinal tracts [198].

Furthermore, mirror movements of fingers, hands, and arms in children with CP
may impede effective independent control of the hands [196]. Whereas mirror movements
disappear with increasing age in typically developing children, those with CP show no
such trend: strong mirror movements (15 times stronger than those observed in typically
developing controls) were recorded in children with CP at the ages of 6–18 years [196]. Some
research suggested that mirror movements are more prevalent in the affected hand [199,200],
whereas more recent research found stronger mirror movements in the unaffected hand as a
result of the voluntary activity of the affected hand [196,201]. On a behavioral level, damage
to one or both hemispheres in children with CP disrupts movement in the contralateral side
of the body; the resulting “developmental disuse” of an affected limb negatively affects
bimanual coordination during tasks that require the participation of both hands [120].
Mirror movements further disrupt bimanual coordination and performance in children
with CP, given that bimanual activities typically require independent control of the two
hands, achieved by the inhibition of involuntary movements [196,202,203]. Thus, children
with CP often exhibit significant delays and impairments in motor control, the execution of
goal-directed movements, and bimanual coordination, which may impede their motor and
sensorimotor awareness and anticipatory motor planning.

5.2. Visuoperceptual and Spatial Neglect

Importantly, “developmental disuse” of the affected limb in children with hemiplegic CP
may stem not only from motor dysfunction but also visuoperceptual deficits [153,155–157,204].
Indeed, previous research showed that early brain injuries produce specific spatial cognitive
deficits [205–209]. Unilateral brain damage in children with hemiplegic CP may disrupt
the processing of visual information, resulting in unilateral spatial neglect manifested
as an inability to attend, process, and report on sensory events occurring in one side of
extrapersonal space [155–157,210,211]. For example, children with hemiplegic CP tend to
draw asymmetrical pictures of the human body, often distorting the side of the picture
corresponding to their own affected limb [153,212]. Although spatial neglect in children
with hemiplegic CP is often identified with paper-and-pencil tests, the latter might be less
effective than functional assessments [211]. In general, the scarcity of quality research on
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spatial neglect in pediatric populations has resulted in the lack of valid assessment and
treatment methods [211].

Note that there are two generally hypothesized functionally distinct visual pathways
in the cerebral cortex: (1) the ventral (occipito-temporal) pathway, responsible for the
discrimination of shapes, objects, words, and faces, and (2) the dorsal (occipito-parietal)
pathway, mapping complex visual scenes and executing visually guided movements, such
as reaching and grasping [213–215]. Previous research showed a strong association between
periventricular leukomalacia (PVL—a form of brain injury affecting white matter near the
ventricles; PVL is closely associated with premature birth) and cerebral visual impairment,
which could manifest as deficits in both ventral and dorsal pathways [83–86,88,90]. In
addition, disruptions in structural and functional hemispheric connectivity as a result of
periventricular leukomalacia reportedly affect visual pathways involved in the processing
of body motion [216]. As a result, children with CP may exhibit deficits in visual attention,
the recognition of object and faces, handling of complex scenes, and navigation. Neu-
roimaging research supported behavioral observations: visuoperceptual deficits have been
associated with white matter reduction and ventricular enlargement in the occipital and
parietal regions of the brain, as well as structural abnormalities of the corpus callosum’s
splenium [217–220].

In agreement with the frequency-dependent hemispheric processing hypothesis (Ser-
gent [37–39]), suggesting the right-hemisphere dominance in global processing and the
left-hemisphere specialization in local processing, children with right-hemisphere le-
sions reportedly showed difficulties in spatial integration, whereas children with left-
hemisphere lesions struggled with processing pattern detail in both two-dimensional and
three-dimensional arrangements [205,207]. For example, in their drawings of people and
houses, children with right-hemisphere damage would depict appropriate parts but fail
to arrange them into spatially coherent, meaningful forms [209]. Spatial cognitive deficits
were found to be more persistent in children with right-hemisphere lesions [205]; these
findings correspond well with previous research showing limitations in brain plasticity for
non-verbal functioning as a result of early right-hemisphere insult [157,207,209,221,222].

Importantly, deficits in both manual and visuospatial skills in children with CP of-
ten result in their impaired visuomanual coordination. For example, children with CP,
especially those with right-hemisphere lesions, exhibited difficulty with drawing, copying
designs/complex figures, and handwriting skills [207,209,223,224]. Note that in typically
developing children, the visuomotor coordination skill of design copying, measured at the
age of 3–4 years, was found to be predictive of reading, math, and science performance
from kindergarten through to the age of 13–14 years [225,226].

I propose that the relation between early visuomanual skills and future linguistic
and mathematical performance may be mediated by the influence of visuomanual skills
on a child’s symbolic development. Given that pictures and designs are symbols repre-
senting reality, the ability to perceive, analyze, and coordinate the movements required to
reproduce a picture should promote a child’s symbolic development [227–229]. This sym-
bolic development, in turn, is relevant for the development of linguistic and mathematical
processing [230–237].

5.3. Body Representation and Mental Imagery

Mental representation of one’s own body involves the processing and monitoring of
afferent visual, somatosensory, and motor inputs, as well as interoceptive and proprio-
ceptive feedback as a result of motor execution [238–240]. Triadic taxonomy is the most
common way to describe different aspects of body representation. The triad is: (1) the
Body Schema, relying on sensory–motor information to define the body’s position in space,
(2) the Body Structural Representation, consisting of a mental topographic map of the
body, and (3) the Body Semantics (also called Body Image), reflecting the linguistic and
conceptual representation of the body used in communication and self-identity [241–243].
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Previous research identified cortical areas responsible for the processing of these
three body representation types: the Body Schema was reportedly associated with the
posterior parietal cortex, the Body Structural Representation was linked to the ventral lateral
occipitotemporal transition, whereas the Body Semantics was related to the insula [244].
Although the hemispheric laterality of body representations and body motion is still
unclear [244], previous research suggested that adolescents and adults with left-hemisphere
damage (right hemiparetic CP) showed significant deficits in their processing of the Body
Schema and Body Structural Representation [159,245–248].

During typical development, the Body Semantics (measured with the Object–Body
Part Association Task [249]) seems to reach a more complete pattern of performance first—by
the age of 4–5 years, followed by the Body Structural Representation (measured with the
Frontal Body Evocation Task of the Body Representation test [250]), which seems to reach
an adult-like pattern of performance by the age of 9–10 years. The Body Schema (measured
with the Hand Laterality Task [251]) seems to take the longest to reflect adult-like perfor-
mance [250,252–256]. The concept of the Body Semantics has been found to be positively
related to that of the Body Structural Representation [253,257]. The Body Schema is usually
evaluated using so-called “motor imagery” tasks that require mental simulation of physical
movement to make laterality judgments based on pictures of body parts (e.g., hands and
feet) presented in different orientations. Typically developing individuals tend to show a lin-
ear increase in reaction time in response to increasing rotation angle [158,159,242,249,258].

Among children with CP, 63.64% of 5–12-year-olds showed poor performance in body
representation processing in at least one of the three types: 56.3% in the Body Structural Rep-
resentation, and 21.2% in both the Body Schema and the Body Semantics [158]. The perfor-
mance of children with CP on the three body representation types seems to follow the same
developmental sequence observed in typically developing children: among 5–7-year-old
children, there was no difference found in mental imagery performance between those with
CP and their typically developing peers, whereas 8–12-year-old children with CP showed
deficits in the Body Schema and the Body Structural Representation, but not in the Body
Semantics [158]. Additionally, adolescents with hemiplegic CP were slower in their hand
laterality judgments compared to a neurologically healthy control group, especially while
judging pictures representing the affected hand, suggesting that deficits in motor control
negatively affect motor imagery [259].

Moving beyond the triadic taxonomy, processing self-body representation has been
shown to be as affected in children with CP as processing generic body representations
discussed above. Using self-portraits to study self-body representation, significantly more
asymmetry between the length of the affected vs. non-affected upper limbs was found
in the drawings of 5–10-year-old children with CP compared to typically developing
controls [212]. Interestingly, children with CP exaggerated the asymmetry of their own
body not only in comparison to their typically developing peers, but also in comparison to
other children with hemiparesis; these asymmetries in body representations of children
with CP may reflect their perception of their own functional deficits experienced in the
hemiparetic limb [212,260].

Impairments in the production of body motion in individuals with CP are closely
associated with deficits in body motion perception [216,261,262]. The latter is typically
studied using series of static point-light body motion displays in which bright white
dots on a black background represent the main joints and the head of a “walking” or
“gesture-producing” human body [262,263]. Previous research associated the processing of
body motion with portions of the parietal and frontal cortices, the right posterior superior
temporal sulcus, the right parieto-temporal junction and fusiform gyrus, as well as the
amygdala [264–276]. The involvement of the amygdala should not be surprising, because
the correct interpretation of others’ body movements, or body language, provides valuable
social cues to other people’s emotions, dispositions, and intentions [277–279], which would
guide approach vs. avoidance reactions.
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Typically developing children gradually improve their perception of body motion
in point-light displays until ceiling levels are reached at the age of 5 years [263]. By con-
trast, children and adolescents with CP show significant difficulties in the processing
of body motion and gestures [262,263,280,281]. For example, individuals with hemiple-
gia show deficits in both the recognition of gestures that appeared to be performed by
their affected arm [262] and the imitation of meaningful gestures pointing to different
parts of the body [245,282]. Note that gestures advance children’s symbolic development:
children’s pointing to an object often triggers their caregivers’ naming the object, thus
forming the connection between the label (symbol) and the object it stands for in the child’s
mind [283–285]. Gestures also mediate the positive relation between motor and language
development [231,284,286–290]. Thus, difficulties with gesture processing in children with
CP might have negative consequences for their language and cognitive development.

Importantly, deficits in body representations in children with CP might stem from
difficulties in other domains, such as linguistic, semantic, visual, attentional, or mental
imagery [158]. In this case, similar deficits would be observed in both body-related and
non-body-related stimuli. Indeed, in the control, non-body stimuli condition, 41.9% of
children with CP showed difficulties in visuospatial tasks and 48.5% struggled with mental
rotation [158]. Mental rotation, representing mental imagery, is a spatial skill that requires
the mental transformation of a stimulus (e.g., object) to accurately predict the stimulus’
appearance from a different angle or to judge whether two stimuli viewed from different
perspectives are the same [291,292]. Research in typically developing children showed that
active object exploration and self-locomotor experience (e.g., crawling) advance mental ro-
tation skills [293–295], suggesting that visuomanual coordination, multimodal exploration
(e.g., visual, auditory, oral, or tactile), and proprioceptive experiences during object explo-
ration might inform children’s high-level cognitive abilities [296]. Furthermore, mental
rotation abilities are positively related to reading English, which requires discrimination
between mirror-image letters such as “b” and “d”, or “p” and “q” [297,298]. Mental rotation
was also positively related to children’s performance in math [299–303] and geometry [304].

Mental rotation is a very useful skill that we use in everyday life to navigate our
environment: we might make left–right–left turns on our way to a grocery store, but then
we have to make right–left–right turns to come back home; we also need mental rotation
skills to read maps and decide which way to turn according to the map. Not surprisingly,
CP individuals with periventricular leukomalacia, as well as those with hippocampal
volume reduction, often exhibit difficulties navigating their environment and finding their
way [305–309]. Visual navigation has been associated with the right prefrontal lobe and
hippocampus [310–312]. Note that the volumetric extent of the right frontal lesions in
individuals with periventricular leukomalacia was negatively related to visual navigation
ability, as tested by the paper-and-pencil labyrinth test of the Wechsler Intelligence Scale for
Children III [313]. It has been proposed that periventricular lesions, especially those to more
anterior areas, may disrupt connectivity between the hippocampus and frontal cortices,
thus negatively affecting visual navigation [216]. Importantly, pictures, schemes, and maps
depicting a scaled version of our environment are symbols representing that environment;
thus, an ability to interpret a map represents a child’s symbolic development [227–229],
a sophisticated cognitive skill later used for language development in that words are
symbolic representations of objects and ideas [230,232,234–237].

Furthermore, body awareness (i.e., perception of own body) and motor imagery perfor-
mance are fundamental for anticipatory motor planning [159,314] and motor control [239],
which, in turn, affect the execution of daily-life activities (e.g., personal hygiene, dressing,
eating, using tools, and ambulating) and one’s overall quality of life [118,122]. Motor
planning is typically tested using end-state comfort tasks in which a subject is required
to sacrifice the postural comfort of the initial grasp in order to place an object (e.g., a cup)
into a particular orientation with the comfortable final-state grasp [315,316]. In this case,
the end-state comfort is more important than the initial-grasp comfort, because the latter
would result in the participant’s inability to complete the task due to biomechanically
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impossible end-postures [159]. Individuals with hemiplegic CP, especially those with
congenital damage to the left hemisphere, showed inadequate anticipatory planning in
end-state comfort tasks [159,246,314,317–321].

These findings are in line with the previously reported involvement of the left hemi-
sphere in action planning [322,323]. The reduced capacity for motor imagery may prevent
individuals with CP from performing the required mental simulation of the perceptual–
motor consequences of the initial grasp in order to achieve a biomechanically comfortable
end-posture [159,324–326]. Motor planning also is critically important in sequential tasks
that involve role-differentiated bimanual manipulation (e.g., acquiring an object with the
non-preferred hand to actively manipulate movable parts of the object with the preferred
hand [179]) or means-end problem solving and tool-use, both requiring one to act on
the “means” object to affect the “end” object [327–333]. In summary, motor imagery is
embodied in motor control and the execution of actions: the performance of movements
results in motor and sensorimotor afferents that stimulate the development of neural motor
programs, which consist of body representations to guide new movements [259,334–336].

6. Cognitive Outcomes in Children with CP

The heterogeneous nature of CP makes any generalizations in the realm of cogni-
tive function difficult. On the other hand, matching abnormal structures and neuronal
activation in specific brain areas to cognitive outcomes provides important insights into
brain substrates of cognitive functioning. Importantly, clinical data on children with CP
provides non-refutable evidence that cognitive development is embodied in early motor
and sensorimotor experiences (discussed in more detail in Section 7 below).

6.1. Linguistic Skills

In children with CP, the results of dichotic listening tests suggested that language
lateralization transferred to the right hemisphere after left hemisphere damage [21,337].
Importantly, damage to either hemisphere reportedly alters the typical lateralization of lan-
guage [21,337]. Additionally, irrespective of the lesion side, the size, location, and timing
of the lesion would determine, to a large extent, the pattern of brain reorganization [21,337].
For example, cortical–subcortical lesions were associated with the interhemispheric re-
organization of language, whereas lesions to periventricular white matter resulted in
intrahemispheric reorganization [337]; lesions at term age were more likely to result in
interhemispheric reorganization than those occurring preterm [337]; and the size of the
lesion was also directly related to the extent of atypical language lateralization [21]. Impor-
tantly, atypical language lateralization after left-hemisphere lesions was associated with
deficits in expressive vocabulary and receptive–expressive grammar [338–341]; a short-
term (15 months post-baseline) follow-up showed more deficits in expressive language
skills in children with left-hemisphere damage compared to those with right-hemisphere
damage [21]. Thus, early neural plasticity (the ability of spared cortical areas to assume
functions typically assigned to the damaged areas [341]), reflected in the reorganization of
the hemispheric lateralization of language after damage to the left hemisphere, may come
at a cost of slow language acquisition [21,338,341].

Interestingly, previous research with typically developing adults showed significantly
better verbal comprehension in cases when language and spatial processing were dissoci-
ated between the two hemispheres as compared to cases when the two types of information
were processed in the same hemisphere [46]. This cognitive advantage of hemispheric spe-
cialization was explained with the “hemispheric crowding” hypothesis [105,106,342–345],
which suggests that the overload of one hemisphere with processing of multiple types
of information (e.g., linguistic and spatial) would result in cognitive deficits due to com-
putational capacity limits of that hemisphere. In this case, individuals with early left-
hemisphere damage and interhemispheric language reorganization, having both linguistic
and spatial processing “crowded” in the right hemisphere, would be expected to show
cognitive deficits.
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Although atypical hemispheric lateralization seems to affect children’s performance
across multiple linguistic subdomains [346], some skills may be affected more than others.
For example, 7-to-14-year-old children with left-hemisphere damage (right hemiplegia)
have been shown to have more difficulties with syntactical awareness and sentence repeti-
tion than with receptive vocabulary [347]. To explain these findings, it was proposed that
neural reorganization as a result of early brain lesions may produce competition of different
functions for synaptic sites; as a result of such competition, early-developing functions (e.g.,
receptive vocabulary) might “crowd-out” later-developing, more sophisticated functions,
such as syntactical awareness [342,347].

Furthermore, children with CP often exhibit slower reading despite adequate letter
recognition [22,348–350]. Most reading difficulties in children with CP could be attributed
to their deficits in phonological processing and/or visuospatial perception [22,351]. The
latter deserves special attention in the context of the current paper. Note that fast reading
is achieved through the holistic, global processing of meaningful high-frequency words,
whereas analytic processing is typically used by beginners or individuals with reading
deficits [352–355]. Whereas for typically developing individuals global processing seems
to precede local processing [43], deficits in global processing in individuals with CP make
them deviate from this typical pattern of information processing [19,356]. Thus, reading
difficulties in children with CP may stem from the lack of global advantage, but future
research should test this hypothesis.

6.2. Subitizing, Counting and Arithmetic Skills

The development of more sophisticated math skills, such as counting and arithmetic,
may depend on earlier-developing subitizing skills [23,25,26,356]. Subitizing is an ability to
rapidly and accurately estimate the number of presented items without counting them [357].
Subitizing involves the seemingly automatic recognition of visual patterns (e.g., a triangle
made of three dots, a rectangle made of four dots) involving up to 4–6 elements [358–361].
Children with CP exhibited a much lower subitizing limit and a sharp decline in accuracy
with an increase in the number of elements in presented patterns than typically developing
controls [19]. In contrast to typically developing children, those with CP also showed equal
difficulty with classic subitizing (providing a number estimation) and pattern recognition
(naming the presented pattern), suggesting that their subitizing difficulties are not number
dependent, but rather stem from impaired visuospatial short-term memory, a deficit in
visuospatial pattern recognition, and/or an inability to perceive spatial patterns as a
Gestalt [19]. A Gestalt represents a holistic form of pattern perception (similar to global
processing, discussed above) that allows the integration of local elements into global
entities [362,363], such as seeing a big letter H despite the fact that it is constructed from
small letters S [43].

On a behavioral level, subitizing is remarkably similar to Gestalt perception in that they
both require the processing of information in the top-down manner, quickly incorporating
low-level elements into high-level configurations and attending to the latter first [364]. On a
neural level, subitizing and global processing seem to share the same substrates: subitizing
reportedly relies on posterior temporo- and occipito-parietal areas [356,365–368], whereas
Gestalt perception involves posterior temporo-parietal brain regions [369–375].

Importantly, previous research suggested that children with CP are delayed not only
in subitizing [19,356], but also counting [27,356] and arithmetic skills [24]. It is likely that
subitizing is a prerequisite for later-developing, more sophisticated math skills. Although
previous research showed a positive relation of subitizing to counting and arithmetic
skills [23,25,26,356], it is hard to establish causality here, in that all of these skills may
rely on the same set of sensorimotor and cognitive skills. Indeed, both subitizing and
counting skills depend on adequate visuomanual coordination [356,376]. For example,
finger agnosia (difficulties with finger recognition and discrimination) was found to be
highly predictive of both subitizing limit [356] and numerical abilities (abilities to group,
compare, and count small numbers of objects) in children with CP [377], whereas dyspraxia
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(a neurological disorder that negatively affects motor coordination) in children with CP
resulted in difficulties with coordination of pointing and counting, which impeded quantity
evaluation [378].

Additionally, visuomanual coordination may assist young children in counting, be-
cause they typically use fingers for pointing at objects before they learn to rely on visual
pointing; manual pointing allows one to keep track of already counted elements and
likely facilitates the acquisition of mental number representations and counting princi-
ples [379–384]. Given that both goal-directed manual actions and number processing
activate the same brain regions (e.g., intraparietal sulcus [385]), there may be a close rela-
tion between these domains [27,386]. Importantly, visuomanual coordination may enable
the perception of global structures within local elements in spatial arrangements, which
should further facilitate subitizing [356].

Finally, language plays an important role in solving arithmetic problems that have
a verbal component [387]. Neuroimaging research showed that linguistic areas (e.g., left
angular gyrus) are activated by math word problems [388]. Even after controlling for gen-
eral intelligence and working memory, numerical abilities were associated with children’s
grammar skills, word decoding, and phonological awareness [27,389]. Thus, difficulties in
language skills in children with CP may contribute to their suboptimal math performance.

In terms of hemispheric specialization, a strong association has been reported between
subitizing and right hemisphere processing. For example, the use of a tachistoscopic tech-
nique in typically developing adults showed right-hemisphere (left visual field) advantage
in subitizing [390–393]. Similarly, in children with CP, right-hemisphere lesions were re-
lated to difficulties with subitizing, especially on canonical (i.e., dice patterns) rather than
random patterns [19,356]. Thus, previous research in both typically and atypically devel-
oping children and adults suggests that damage to the right hemisphere may negatively
affect subitizing through disruptions in Gestalt processing. There is more ambiguity in the
research on neural substrates of counting. Whereas research on typically developing adults
suggested left-hemisphere (right visual field) advantage in counting tasks [392], in children
with hemiplegic CP, poor arithmetic skills were associated with right-hemisphere lesions
(left-hand impairment), suggesting the involvement of the right hemisphere in the process-
ing of complex mental calculations [27,348,394–396]. It could be the case that lateralization
for the complex skill of counting shifts with age, with early counting skills (dependent on
visuomotor processing) residing in the right hemisphere, but with later-developing, more
sophisticated counting skills (dependent on analytical processing) being processed in the
left hemisphere. Alternative explanations are also possible: (1) children with hemiplegic
CP might show atypical lateralization of this process; or (2) in children with CP, this skill
may critically depend on bilateral recruitment.

6.3. Executive Function Skills

Executive functions are high-level neurocognitive skills that include goal-directed
behavior: attention, impulse control, flexible thinking, problem-solving, and planning to
achieve short- and long-term goals [20,397]. Information processing related to executive
functions is predominantly coordinated by the prefrontal cortex [398–400], with deficits
in executive functions (e.g., inhibition and shifting skills) being associated with atypical
lateralization in the frontoparietal network [401,402]. Because executive functions depend
on the integrity of white matter (especially in the periventricular and anterior areas) that
permit extensive connectivity between different brain regions, brain lesions in children with
CP place them at risk for impairments in executive functions [20,403]. Additionally, white
matter disruptions may be associated with the reduced speed of information processing,
which further negatively affects children’s performance of executive functions [20,404,405].
Indeed, children with unilateral or bilateral CP were found to be significantly impaired
in working memory, sustained and divided attention, response inhibition, and shifting
skills [20,405–409].
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Deficits in impulsive inhibition in children with CP [20,405,408] may signal a poten-
tial for behavioral problems and impairments in social skills in this population [410,411],
whereas impaired working memory, attention, and shifting skills may result in learning
difficulties and cognitive delays. For example, previous research showed that subitizing,
counting, and arithmetic skills depend on executive function skills, such as focused at-
tention, shifting, working memory, and updating (the latter facilitates the performance
of mental operations through replacing no longer relevant facts in the working memory
with incoming relevant information) [24,396,397,408,412–419]. Thus, executive function
deficits in children with CP might negatively affect the development of their subitizing,
counting, and numerical abilities, which, in turn, are precursors for later-developing math
skills [420–423]. Additionally, deficits in sustained and divided attention in children with
CP are potentially detrimental for academic success [20,405,409].

Deficits in attention skills in 9–13-year-old children with CP have been attributed to
children’s distractibility [20]. Interestingly, previous research found a positive relation
between the number of extraneous movements and attention skills in typical development.
For example, it has been demonstrated that 4.5-to-7.5-month-old infants who showed better
visual attention during object manipulation exhibited fewer extraneous movements [113].
This finding can be compared to the report that more easily distracted school-aged children
manifested more extraneous movements [424]. Perhaps, in typically developing children,
these two behaviors may have inverse trajectories: whereas mirror movements decrease
by the end of the first year of life [100,112,187,188], visual attention abilities gradually
increase during the first year [425,426]. Thus, it is likely that persistent mirror/extraneous
movements in children with CP disrupt the development of attention skills. In this case,
interventions targeting early sensorimotor experiences and bimanual coordination may
not only improve contralateral hemispheric connectivity and interhemispheric transfer of
information but also facilitate attention skills through a reduction in mirror movements.

7. The Role of Experience in the Development of Hemispheric Asymmetry

There are two important conceptual frameworks that may explain developmental path-
ways during infancy and childhood: the embodied cognition and the dynamic systems theo-
ries. The embodied (or grounded) cognition theory proposes that the development of cogni-
tion stems from early motor and sensorimotor activities and experiences [13–15,18,427,428].
This connection between early sensorimotor experiences and later cognitive outcomes can
be explained on both the neuronal and behavioral levels. On a neuronal level, spontaneous,
self-generated movements provide children with multisensory feedback, thus establishing
and gradually refining topological representations of surrounding objects, as well as the
boundaries and abilities of their own body in their brains, further shaping afferent and
efferent motor and sensory pathways and establishing the foundation for advances in
perception, motor control, and visuomanual coordination [98,99].

As pointed out above, brain lesions in children with CP lead to abnormal brain
structures and interhemispheric connectivity These structural and functional changes result
in the persistence of involuntary muscle synergies and mirror movements that disrupt
movement coordination during voluntary, goal-directed activities and have an especially
debilitating effect on bimanual coordination [2,139,152,195–197].

Furthermore, the abnormal prevalence of ipsilateral corticospinal connections over
contralateral ones in children with CP not only produces less effective information process-
ing but also further disrupts the development of hemispheric specialization [102]. Because
hemispheric specialization is a foundation behind more effective information processing
and optimal developmental outcomes [28–32], children with CP often exhibit delays and
impairments in motor performance and cognition [2,5,19–27,149].

On a behavioral level, delays and impairments in spontaneous movements, postural
control, locomotion, and hand control may diminish motor and sensorimotor feedback
received by a child and decrease a child’s opportunities to gather information and learn,
thus leading to delayed or impaired cognitive functioning. Specifically, spontaneous
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movements facilitate the development of motor control, postural control, and visuomanual
coordination [164,166,169,429,430]. Adequate head and trunk control, in turn, promote
independent sitting, thus freeing the child’s hands for reaching and object exploration,
which further improve motor control and visuomanual coordination [171,431–438].

Gradual de-coupling of the two hands enables the sophisticated, role-differentiated
bimanual manipulation of objects, which allows a child to learn object properties and
affordances, means-end relations between objects, and motor planning skills, later used
for the execution of complex, finely timed action sequences in means-end problem solv-
ing, artifact construction, and tool-use [175,184,186,439–442]. Importantly, multimodal,
goal-directed object exploration reportedly advances children’s language and cognitive
development [231,295,442–454]. Additionally, the development of independent sitting,
crawling, and walking permits a different perspective on the surrounding environment:
these developments enable more opportunities to approach objects and people, explore ob-
jects, communicate with others, and exercise very important skills of planning and decision
making on seemingly trivial “when and where to move” choices; these postural and locomo-
tor opportunities facilitate children’s language, cognitive, and social outcomes [16,455–457].

In children with CP, early deficits in postural control impede the development of non-
object-oriented exploration and reaching (non-object-oriented behaviors are exploratory
behaviors of one’s own body and surrounding objects in the absence of portable objects
and people (e.g., head control against gravity, midline position of the head and hands, open
hand posture, looking at hands, mouthing hands, touching own body or surfaces, etc. [166]),
which, in turn, may result in limited opportunities to manipulate objects and explore the
world [433,438,456], establish hand-eye coordination [433,458–460], and practice visuospa-
tial skills [441]. In children with CP, delayed visuospatial abilities might concatenate into
learning difficulties, impaired non-verbal and verbal intelligence, and difficulties in the ac-
quisition of mathematical and executive function skills [19,22,27,347,377,394,406,461]. Thus,
the embodied cognition theory reveals a critical role of experience in the development of
children with CP.

The dynamic systems theory (DST [16,452,462–464]) also describes the ways in which
disruptions of developmental pathways can lead to suboptimal outcomes in children with
CP. DST suggests that a dynamic interplay among the child’s biological constraints, expe-
riences, environmental affordances, and developmental timelines controls the trajectory
of development. There are two key principles of DST that are relevant for this paper: the
continuity and dynamic nature of development. The continuity principle implies that early
skills concatenate into more sophisticated, later-developing ones, and early experiences,
to a large extent, determine a child’s future abilities and outcomes [16,174,429,463,465].
For example, during the first two years of life, the sensorimotor behaviors infants use to
explore their bodies and surrounding surfaces in the absence of toys (e.g., holding hands
in midline, looking at hands, touching body with hands) are strongly associated with
behaviors manifested by infants during object exploration tested in a separate procedure
(e.g., the bimanual holding of objects, looking at an object in the hand, touching body with
an object in the hand [429]).

It is also important to emphasize the relation of postural control and locomotor experi-
ences to upper-extremity performance. The emergence of sitting, crawling, and walking
imposes new constraints on a child’s body control and requires significant reorganization
in body schemas, which may affect a child’s hand use and performance. For example, the
onset of crawling, characterized by alternating hand movements, has been associated with
the prevalence of unimanual reaches, whereas the onset of independent walking, typically
stimulating a symmetrical, “high-guard” hands’ position to keep balance, corresponded
with the surge in bimanual reaching [466,467]. Importantly, as infants practice crawling,
initiating the first movement with the preferred hand, their hand-use may become more lat-
eralized; at the same time, it is also possible that the shift toward more lateralized reaching
would facilitate the transition from rocking to crawling [468].
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This bidirectional relation between different motor and sensorimotor skills highlights
the dynamic principle of development. There are many examples of the dynamic nature of
development. For instance, not only do reaching and object exploration facilitate cognitive
development through information gathering, learning, and problem solving, but also the
advanced cognition may, in turn, guide more sophisticated object exploration. First, infants
only mouth every toy, extracting shape, texture, and other properties; later, they shake
every toy, revealing audible, mass, and other properties; then, they start adjusting their
actions to the properties of the toys—shaking toys that make noise, pushing the buttons,
spinning the wheels, etc. Furthermore, according to the dynamic principle, biology may
influence experience, but the latter, in turn, would influence the biological substrate. For
example, as children with CP get more opportunities to use the affected hand in unimanual
and bimanual tasks, the received sensorimotor feedback may further reorganize their brain
structures and also enhance interhemispheric connectivity [469–471].

Thus, for both embodied cognition and dynamic systems theories, biological, psy-
chological, and sociocultural contexts determine the motor and sensorimotor capacities
of a child, which, in turn, allow or prohibit particular types of experiences that would
shape specific cognitive outcomes [17]. Importantly, motor and sensorimotor experiences
affect not only more sophisticated cognitive functions, but also the individual’s biology
(e.g., neuronal structures and connectivity). Although early brain insults tend to set an
individual on a specific developmental trajectory, both embodied cognition and dynamic
systems theories propose that it is possible to change this trajectory by changing the motor
and sensorimotor experiences available to the individual.

8. Possible Interventions for Children with CP

Knowledge of the developmental trends and functional deficits in children with CP per-
mits the design and implementation of effective, evidence-based interventions to improve
children’s development. As noted above, CP is considered a group of “non-progressive”
disorders [11,12]; this means that the brain damage associated with CP is permanent and
static [472]. However, that label should not prevent the investigation of potential devel-
opmental changes on neural, physiological, physical, or behavioral levels [473]. Modern
accounts of brain plasticity allow for considerable progress in individuals’ development
even under conditions of brain damage [474–477].

However, there are a few complications in the rehabilitation of patients with CP. The
first problem stems from the heterogeneous nature of CP: “one-size-fits-all” approaches
are not effective due to significant differences in the timing of brain insult, location and
extent of the damage, factors associated with the brain injury, as well as symptomatology
and functionality in patients with CP [475,478–480]. Second, some interventions may have
suboptimal effects in individuals with CP having comorbid disorders, such as deficits in
sensation and perception, learning difficulties, cognitive impairments, communication
disorders, behavioral issues, or epilepsy [481–483]. Third, in contrast to older patients
with acquired brain lesions, children with CP born with brain lesions that negatively
affect their motor and sensorimotor functions, do not have neural “memories” of typical
movement or body control [194,473]. Thus, instead of focusing on the “recovery” of
lost functions, intervention providers should create training paradigms that promote
sensorimotor and motor development on the canvas of compromised brain structures and
connectivity [472,484]. Due to existing brain lesions, it is often not feasible to re-establish
the typical lateralization of functions in patients with CP. However, interventions may
not only strengthen unilateral circuits residing in the atypical hemisphere, but also, and
more importantly, facilitate the formation and activation of more efficient contralateral
corticospinal connections [108,485,486].

Finally, given our current understanding of development [487], the timing of interven-
tion also plays a critical role in its effectiveness, with early interventions (e.g., small steps,
baby-bimanual, baby-constraint-induced movement therapy (baby CIMT), and the Goals,
Activity and Motor Enrichment intervention (GAME) having better potential for improve-
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ments in individuals with CP [488–494]. However, only about 60% of infants are typically
referred for intervention before the age of 12 months [495,496] because the CP diagnosis, in
most cases, gets confirmed only by the late age period of 13–19 months [497,498].

The results of published clinical trials suggest there are benefits to training-based inter-
ventions for individuals with CP. The following interventions have been shown to be effec-
tive: environmental enrichment, home programs, fitness training, constraint-induced move-
ment therapy, bimanual intensive therapy, action observation training, goal-directed train-
ing, task-specific training, and mobility training using treadmills and partial body-weight
support systems, among others [499–516]. Effective interventions focus on participants’
motivation, attention, and sense of agency; the production of self-initiated movements;
meaningful, context-focused, real-life activities; task-specific and goal-directed activities;
and high intensity of training with incremental increases in task difficulty [477,493,517–519].
The largest benefits may come from early interventions that promote variability in children’s
postures and movement patterns and provide opportunities to self-generate movements,
including erroneous movements, to allow learning from experience [98,517,520,521]. Ad-
ditionally, if a training task seems interesting and meaningful to children, they are more
likely to engage in it, see the results of their own actions, and enjoy the practice; such a
positive attitude would likely stimulate spontaneous, self-initiated practice, thus improving
retention, adherence to the training protocols, and stimulating further advancements in
movement and function [477,518].

Active participation in activities instills a sense of agency in children with CP —being
in control of their movements and being able to predict the sensory consequences of their
own actions [522,523]. The latter ability develops as a result of the everyday motor and
sensorimotor experiences of the child, and reduced interactions with the environment
creates delays in the development of the predictive “forward” model in children with
CP [192,193]. Importantly, the establishment of an adequate predictive “forward” model
may be the mechanism behind improvements in motor performance as a result of active ex-
ploration of the environment in early interventions for children with CP [192–194,524,525].
Moreover, while active exploration advances predictive abilities, the latter, in turn, may
further facilitate a child’s motor and cognitive development [194]. By contrast, passive
activities seem to be less effective, or completely ineffective, in children with CP: passive
movements orchestrated by a physical therapist do not activate the child’s motor circuits,
do not engage the child in problem solving, and do not stimulate the development of the
predictive “forward” model [493,518,526].

The most common form of CP is unilateral CP, which impairs one limb and negatively
affects a child’s ability to perform tasks requiring bimanual coordination [120]. Typical
upper-extremity rehabilitation therapies for unilateral CP include: (1) forced-use therapy
(FUT [527,528]), (2) CIMT [118,529–533], and (3) bimanual intensive training (BIM) or hand–
arm bimanual intensive therapy (HABIT [534–536]). FUT works through casting/splinting
of the child’s better functioning limb to encourage movement of the more affected limb; the
unstructured physical training of the affected hand is supposed to take place as a natural
consequence of restricting the other hand. However, unable to use the functional hand,
the frustrated child, being in full control of the therapy, often chooses to neglect diligent
practice, thus defeating the purpose of the therapy [118,527,528]. Obviously, FUT is not a
therapy that fosters the child’s positive attitude, engagement, and compliance. CIMT is a
more comprehensive form of restraint-based intervention, involving a constraint of the bet-
ter functioning limb (similar to FUT) with an added structure provided by the supervising
physical therapist, encouraging the use of the child’s affected hand/arm [118]. Although
logistically and financially taxing, CIMT has been shown to be effective in advancing
fine motor skills of the affected hand in children with hemiplegic CP [118,529,536,537].
However, both FUT and CIMT, with their focus on unilateral behaviors, fail to train biman-
ual coordination [527,535]. By contrast, BIM, using the structural approach of CIMT, but
without any physical constraints, facilitates exercise regimens that emphasize bimanually
coordinated activities, affords greater physical freedom to the patient, and typically results
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in higher levels of the patient’s enthusiasm [535]. However, BIM falls short of CIMT in the
improvement of fine manual movement and the simultaneous, dissociated activity of both
limbs [538]; it also shares CIMT’s practical and financial limitations.

Another feasible therapy option would be a garment such as the PlaySkin DuoTM

designed at the University of Delaware (Dr. Michele Lobo, Move to Learn Innovation Lab,
Department of Physical Therapy; https://emmazuckerman.wixsite.com/design/playskin-
duo; accessed on 15 January 2022). The PlaySkin DuoTM is a soft garment that slightly
constrains the use of the healthy, or better functioning, hand/arm by connecting it to the
torso of the garment using an elastic band, which increases the difficulty of moving this
arm, while still allowing the child to use it. Every time the child reaches for a toy with
the better functioning hand, the slight tug on the arm softly constrains the movement,
encouraging the child to use the affected hand. In a sense, the PlaySkin DuoTM works like
BIM, but without a physical therapist sitting with the child and constantly reminding the
child to use the affected hand. Importantly, the PlaySkin DuoTM keeps the hands of the
child unobstructed, thus allowing not only bimanual coordination, but also fine motor
practice with both hands. Further research is needed to evaluate the effectiveness of the
PlaySkin DuoTM garment on motor function in children with CP.

Early interventions are more effective than those implemented later in a child’s
life [488–490]. Despite the fact that CP is typically only diagnosed during the second
year of a child’s life [497,498], it is still possible to advance the sensorimotor and mo-
tor development of infants at risk for CP (e.g., those born preterm and/or with a brain
injury) by embedding them into an enriched environment. Enriched environments stim-
ulate the nervous system by providing children with more opportunities for exploration,
object manipulation, and learning [194]. Enriched environment interventions can be im-
plemented even before a child’s motor and sensorimotor deficits become apparent. Early
interventions implementing positioning a child in different postures (e.g., supine, prone,
side-lying, supported sitting and standing, with frequent transitions among postures)
to allow exploration of body affordances and body–environment interactions, as well
as toy-oriented activities to promote reaching, visuomotor coordination, and object ex-
ploration, have been shown to be effective in facilitating children’s motivation to play,
self-generated movements, postural control, reaching, bimanual object exploration, crawl-
ing, walking, and problem-solving skills [435,448,539–549]. Similarly, early interventions
such as the GAME intervention [492,494], the Supporting Play Exploration and Early De-
velopment Intervention (SPEEDI [550]), and the Sitting Together and Reaching to Play
intervention (START-Play [551,552]) have been shown to improve children’s sensorimotor
and motor skills.

Furthermore, early interventions involving wearable technologies, such as “sticky mit-
tens” [442,553] or exoskeletons [327,531,554–556] might help children with CP who struggle
with low muscle tone. The “sticky mittens” may allow a higher level of object engagement
and more sophisticated object exploration in the absence of fine-motor movements in the
affected hand; the experience of “grasping” a toy with the assistance of Velcro may reinforce
the action and allow children to observe the consequences of their own actions [442]. In
typically developing infants, brief “sticky mittens” training improved bimanual reaching,
object exploration, visual attention, and spatial skills [442,557–560]. Note that instead of
“sticky mittens” that cover the child’s hand, physical therapists may use a Velcro band [448]
that permits the fingers to engage with objects and create a more typical visual and haptic
sensory feedback.

Furthermore, the Playskin LiftTM (Playskin; https://sites.udel.edu/move2learn/how-
todiy/; accessed on 15 January 2022) exoskeletal garment might offer the anti-gravity
support, extend the child’s reaching space, facilitate visuomanual coupling and bimanual
reaching, as well as improve the multimodality, variability, and intensity of exploratory
play behaviors [327,556]. Whereas “sticky mittens” deliver a more distal support at the
hand, the Playskin provides a more proximal assistance at the shoulder. However, both
“sticky mittens” and Playskin devices might not facilitate independent, unassisted object

https://emmazuckerman.wixsite.com/design/playskin-duo
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play in children with hemiplegia; without explicit, external encouragement, children with
hemiplegia might continue to disregard the affected limb.

Considerable disruptions of sensorimotor pathways in individuals with CP justify
training methods that involve the use of sensory information in the motor task context.
Thus, musical instrument practice may be a good rehabilitation method to stimulate multi-
modal audio-visuomotor coordination, bimanual coordination, and the implementation of
timely action sequences [473,561]. Indeed, both short- and long-term musical training re-
portedly corresponded with significant structural changes in the brain, resulting in a larger
volume and thickness of motor and auditory cortices, a larger corpus callosum and cerebel-
lum, increased white matter integration in pyramidal tracts, and larger gray matter density
in precentral gyrus, involved in functional hand and finger movements [562–569]. Despite
the obvious benefits of music training, this rehabilitation method has rarely been used in
patients with CP, although the few studies on the effects of piano training in individuals
with CP reported positive neural outcomes (better connectivity between primary motor
cortex and the cerebellum [570]) and behavioral outcomes (keystroke timing variability
and playing speed [570,571]). Although it was concluded that musical instrument training
may improve not only motor coordination, but also sensorimotor interactions [473,561,572],
more research is needed in this area.

Although current rehabilitation methods in individuals with CP are typically fo-
cused on motor execution, it is possible to facilitate motor performance through ad-
vances in motor planning by targeting children’s motor imagery skills [573–576]. As
noted above, motor imagery skills are involved in anticipatory motor planning and motor
control [159,239,314]. A lack of motor experience in children with CP negatively affects their
motor imagery [159,246,259,577]. Because both motor performance and motor imagery
seem to share the same neural substrates (e.g., supplementary motor areas, premotor cortex,
primary motor cortex (M1), and parietal lobe [578]), it may be possible to increase activa-
tion and connectivity in those areas by targeting both skills in parallel [576,577,579,580].
Previous research showed improvements in motor performance of the affected upper limb
after motor imagery training in stroke patients [581,582] and those with CP [583]; however,
more research is needed to provide evidence for the use of motor imagery in individuals
with CP [576].

There is a lack of randomized clinical trials that show the efficacy of parental interven-
tions to advance early motor and sensorimotor skills in children with CP [584]. More often,
parental education is offered in conjunction with an ongoing physical therapy [492,585–587].
Importantly, in research with typically developing infants and those born preterm, parent-
provided interventions encouraging infants’ independent head control, frequent transitions
among different postures, general arm movements, reaching to midline, and reaching with
both hands led to significant improvements in children’s postural control, reaching, and
object exploration [435,442,448,542–546,588]. Future research should further investigate the
utility of parent education in the rehabilitation of motor and sensorimotor skills in children
with CP.

9. Conclusions

Modern neurodevelopmental research demonstrates that brain restructuring, as a
result of brain damage, leads to atypical hemispheric specialization, as manifested in
the predominance of ipsilateral corticospinal connections, reduced transcallosal transfer
of information, diminished hemispheric specialization, and the allocation of multiple
functions to the same hemisphere (e.g., language lateralized to the right hemisphere, along
with visuospatial skills). These patterns of atypical hemispheric lateralization reduce the
effectiveness of information processing and produce suboptimal cognitive outcomes in
children with CP. These findings emphasize the need for early interventions that promote
callosal functioning to establish optimal hemispheric asymmetry.

These intervention programs should be based on evidence-based research empha-
sizing the role of self-generated experiences in early development, as proposed by the
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embodied cognition theory. Moreover, according to the dynamic systems theory, all the
functions of a child are bidirectionally interrelated and codeveloping. For example, brain
lesions may limit motor and sensorimotor exploration, but enhanced early motor and
sensorimotor experiences, in turn, are capable of restructuring the brain and improving
hemispheric connectivity. Additionally, early sensorimotor experiences promote motor
control and coordination, thus permitting complex object manipulation, which provides
unique learning opportunities and advances a child’s cognitive development. Importantly,
the resulting cognitive advances inform a child’s object exploration, thus permitting more
sophisticated object manipulations and stimulating learning in a circular feedback manner.

Basic research examining the system of core deficits associated with CP, along with
understanding the developmental pathways from early motor and sensorimotor skills
to cognitive outcomes, must influence the design and implementation of interventions,
shifting their focus toward targeting early sensorimotor skills. Because early, self-generated,
spontaneous movements establish the foundation for motor and postural control, locomo-
tion, reaching, and object exploration (which collectively facilitate cognitive development),
early interventions should focus on promoting and facilitating abundant and variable
spontaneous movements in children with CP. Because the typical timeline of CP diagnosis
(by the age of 13–19 months) may prevent early intervention, there also should be a focus
on early diagnosis to ensure earlier interventions capable of promoting optimal develop-
ment. Importantly, the analysis of early spontaneous movements can open a door to early
diagnosis in children with CP [160,162,164,166].

Finally, despite the heterogeneous nature of CP, it is still possible to link specific
brain lesions and structural abnormalities to corresponding cognitive outcomes with the
implementation of multisite studies testing large numbers of subjects (e.g., thousands)
with standardized assessment methods. In the same way, despite significant differences in
the location, extent, and timing of brain damage in children with CP, it is still possible to
determine factors capable of advancing their development through testing the effectiveness
of different interventions using large, multisite studies. In this case, individual differences
in responsiveness to intervention could be identified and appropriate adjustments could be
made. Thus, the future of intervention research for CP seems to involve more multisite,
large-scale studies.
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