#
Quantum Computation and Measurements from an Exotic Space-Time R^{4}

^{1}

^{2}

^{*}

## Abstract

**:**

^{4}; fundamental group; finite geometry; Cayley–Dickson algebras

## 1. Introduction

## 2. Excerpts on the Theory of 4-Manifolds and Exotic ${R}^{4}$s

#### 2.1. Handlebody of a 4-Manifold

#### 2.2. Akbulut Cork

#### 2.3. Exotic Manifold ${R}^{4}$

**Theorem**

**1.**

**Proof.**

## 3. Finite Geometry of Small Exotic R^{4}s and Quantum Computing

#### 3.1. The Boundary $\partial W$ of Akbulut Cork

#### 3.2. The Manifold $\overline{W}$ Mediating the Akbulut Cobordism between Exotic Manifolds V and W

#### 3.3. The Middle Level Q between the Diffeomorphic Connected Sums

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

## Appendix B

**Figure A1.**The Fano plane as the geometry of the subgroup of index 7 of fundamental group ${\pi}_{1}\left(\overline{W}\right)$ for the manifold $\overline{W}$ mediating the Akbulut cobordism between exotic manifold V and W. The cosets of ${\pi}_{1}$ are organized through the permutation group $P=\u23297\left|\right(1,2,4,5,6,7,3),(2,5,6\left)\right(3,7,4)\u232a$. The cosets are labeled as $\left[1,\dots ,7\right]=\left[e,a,{a}^{-1},{a}^{2},ab,a{b}^{-1},{a}^{-1}b\right]$. The two-point stabilizer subgroups of P for each line are distinct (acting on different subsets) but isomorphic to each other and to the Klein group ${\mathbb{Z}}_{2}\times {\mathbb{Z}}_{2}$. They are as follows: ${s}_{1}=\u2329(2,7)(4,5),(2,4)(5,7)\u232a$, ${s}_{2}=\u2329(1,6)(5,7),(1,7)(5,6)\u232a$, ${s}_{3}=\u2329(1,5)(2,3),(1,2)(3,5)\u232a$, ${s}_{4}=\u2329(3,5)(4,6),(3,6)(4,5)\u232a$, ${s}_{5}=\u2329(2,6)(3,7),(2,7)(3,6)\u232a$, ${s}_{6}=\u2329(1,7)(3,4),(1,4)(3,7)\u232a$, and ${s}_{7}=\u2329(1,2)(4,6),(1,6)(2,4)\u232a$.

## References

- Planat, M.; Gedik, Z. Magic informationally complete POVMs with permutations. R. Soc. Open Sci.
**2017**, 4, 170387. [Google Scholar] [CrossRef] [PubMed][Green Version] - Planat, M.; Aschheim, R.M.; Amaral, M.; Irwin, K. Universal quantum computing and three-manifolds, Universal quantum computing and three-manifolds. Symmetry
**2018**, 10, 773. [Google Scholar] [CrossRef][Green Version] - Planat, M.; Aschheim, R.; Amaral, M.M.; Irwin, K. Quantum computing, Seifert surfaces and singular fibers. Quantum Rep.
**2019**, 1, 12–22. [Google Scholar] [CrossRef][Green Version] - Planat, M.; Aschheim, R.; Amaral, M.M.; Irwin, K. Group geometrical axioms for magic states of quantum computing. Mathematics
**2019**, 7, 948. [Google Scholar] [CrossRef][Green Version] - Akbulut, S. 4-Manifolds, Oxford Graduate Texts in Mathematics; Oxford University Press: Oxford, UK, 2016; Volume 25. [Google Scholar]
- Gompf, R.E.; Stipsicz, A.I. 4-Manifolds and Kirby Calculus; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 1999; Volume 20. [Google Scholar]
- Scorpian, A. The Wild World of 4-Manifolds; American Mathematical Society: Providence, RI, USA, 2011. [Google Scholar]
- Akbulut, S. A fake compact contractible 4-manifold. J. Diff. Geom.
**1991**, 33, 335–356. [Google Scholar] [CrossRef] - DeWitt, B.S. Quantum mechanics and reality. Phys. Today
**1970**, 23, 30. [Google Scholar] [CrossRef] - Bravyi, S.; Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev.
**2005**, A71, 22316. [Google Scholar] [CrossRef][Green Version] - Planat, M. Geometry of contextuality from Grothendieck’s coset space. Quantum Inf. Process.
**2015**, 14, 2563–2575. [Google Scholar] [CrossRef] - Bosma, W.; Cannon, J.J.; Fieker, C.; Steel, A. (Eds.) Handbook of Magma Functions, 2.23 ed.; University of Sidney: Sydney, Australia, 2017; 5914p. [Google Scholar]
- Culler, M.; Dunfield, N.M.; Goerner, M.; Weeks, J.R. SnapPy, a Computer Program for Studying the Geometry and Topology of 3-Manifolds. Available online: http://snappy.computop.org (accessed on 1 January 2019).
- Akbulut, S. An exotic 4-manifold. J. Diff. Geom.
**1991**, 33, 357–361. [Google Scholar] [CrossRef] - Akbulut, S.; Durusoy, S. An involution acting nontrivially on Heegard-Floer homology. In Geometry and Topology of Manifolds; Fields Inst. Commun. Amer. Math. Soc.: Providence, RI, USA, 2005; Volume 47, pp. 1–9. [Google Scholar]
- Gompf, R.E. An exotic menagerie. J. Differ. Geom.
**1993**, 37, 199–223. [Google Scholar] [CrossRef] - Marceaux, J.P.; Rau, A.R. Mapping qubit algebras to combinatorial designs. Quantum Inf. Proc.
**2020**, 19, 49. [Google Scholar] [CrossRef] - Marcelis, F. Available online: https://fgmarcelis.wordpress.com (accessed on 1 January 2019).
- Saniga, M. The complement of binary Klein quadric as a combinatoriam Grassmannian. Mathematics
**2015**, 3, 481–486. [Google Scholar] [CrossRef][Green Version] - Saniga, M.; Holweck, F.; Pracna, P. Pracna, From Cayley-Dickson algebras to combinatorial Grassmannians. Mathematics
**2015**, 3, 1192–1221. [Google Scholar] [CrossRef][Green Version] - Baez, J.C. The Octonions. Bull. Am. Math. Soc.
**2002**, 39, 145–205. [Google Scholar] [CrossRef][Green Version] - Koeplinger, J. Nonassociative quantum theory on octooctonionalgebra. J. Phys. Math.
**2009**, 1, S090501. [Google Scholar] - Aschheim, R.; Irwin, K. Constructing numbers in quantum gravity: Infinions. J. Phys. Conf. Ser.
**2019**, 1194, 012008. [Google Scholar] [CrossRef] - Etesi, G. The von Neumann algebra of smooth four-manifolds and a quantum theory of space-time and gravity. arXiv
**2018**, arXiv:1712.01828. [Google Scholar] - Asselmeyer-Maluga, T.; Król, J.; Bielas, K.; Klimasara, P. From quantum to cosmological regime. The role of forcing and exotic 4-Smoothness. Universe
**2017**, 3, 31. [Google Scholar] - Tozzi, A.; Ahmad, M.Z.; Peters, J.F. Quantum computing in four spatial dimensions. Available online: https://www.preprints.org/manuscript/201905.0021/v1 (accessed on 1 March 2020).
- Antoniou, S.; Kauffman, L.H.; Lambropoulou, S. Topological surgery in cosmic phenomena. arXiv
**2018**, arXiv:1812.00837. [Google Scholar] [CrossRef][Green Version] - Luminet, J.P.; Weeks, J.; Riazuelo, A.; Lehoucq, R.; Uzan, J.-P. Uzan, Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background. Nature
**2003**, 425, 593–595. [Google Scholar] [CrossRef][Green Version] - Asselmeyer-Maluga, T.; Krol, J. How to obtain a cosmological constant from small exotic R
^{4}. Phys. Dark Univers.**2018**, 19, 66–77. [Google Scholar] [CrossRef][Green Version] - Asselmeyer-Maluga, T. Braids, 3-manifolds, elementary particles, number theory and symmetry in particle physics. Symmetry
**2019**, 10, 1297. [Google Scholar] [CrossRef][Green Version] - Fuchs, C.A. On the quantumness of a Hilbert space. Quantum Inf. Comp.
**2004**, 4, 467–478. [Google Scholar]

Sample Availability: The codes were written on softwares Snappy and Magma. Part of the calculation is detailed in Section 3.1 and Appendix B. |

**Figure 1.**(

**a**) Handlebody of a 4-manifold with the structure of 1- and 2-handles over the 0-handle ${B}^{4}$; and (

**b**) the structure of a 1-handle as a dotted circle ${S}^{1}\times {B}^{3}$.

**Figure 2.**(

**a**) A 0-framed 2-handle ${S}^{2}\times {B}^{2}$ (

**left**) and a dotted 1-handle ${S}^{1}\times {B}^{3}$ (

**right**) are diffeomorphic at their boundary $\partial ={S}^{2}\times {S}^{1}$; and (

**b**) two equivalent pictures of the Akbulut cork W.

**Figure 3.**(

**a**) The loop $\alpha $ is not slice on the Akbulut cork; (

**b**) the non-trivial h-cobordism between small exotic manifolds V and W; and (

**c**) the mediating 4-manifold $\overline{W}$.

**Figure 4.**Exotic ${R}^{4}$ manifolds ${Q}_{1}$ shown in (

**a**) and ${Q}_{2}$ shown in (

**b**). The connected sums ${Q}_{1}\#{S}^{2}\times {S}^{2}$ and ${Q}_{2}\#{S}^{2}\times {S}^{2}$ are diffeomorphic with middle level Q shown in (

**c**).

**Figure 5.**(

**a**) A picture of the smallest finite projective space $PG(3,2)$. It is found at Frans Marcelis’ website [18]. The coset coordinates shown on the Fano plane with red bullets of $PG(3,2)$ correspond the case in Table 2. (

**b**) A picture of the generalized quadrangle of order two $GQ(2,2)$ embedded in $PG(3,2)$. It may also be found at Frans Marcelis’ website.

**Figure 6.**The Cayley–Salmon configuration built around the Desargues configuration (itself built around the Pasch configuration) as in [20] (Figure 12).

**Figure 7.**Mermin pentagram as the contextual geometry occuring for the index 10 subgroup in the fundamental group ${\pi}_{1}\left(\overline{W}\right)$ of the h-cobordism $\overline{W}$ between exotic manifolds V and W.

**Table 1.**Geometric structure of subgroups of the fundamental group ${\pi}_{1}\left(\overline{W}\right)$ for the h-cobordism $\overline{W}$ between exotic manifolds V and W. Bold characters are for the contextual geometries. ${G}_{1092}$ is the simple group of order 1092. When a MIC state can be found, details are given in Column 4, while the number $pp$ of distinct values of pairwise products in the MIC is in Column 5.

d | P | Geometry | MIC Fiducial | pp |
---|---|---|---|---|

5 | ${A}_{5}$ | ${K}_{5}$ | $(0,1,-1,-1,1)$ | 1 |

6 | ${A}_{6}$ | ${K}_{6}$ | $(1,{\omega}_{6}-1,0,0,-{\omega}_{6},0)$ | 2 |

7 | ${A}_{7}$ | ${K}_{7}$ | ||

10 | ${A}_{5}$ | Mermin pentagram | no | |

12 | ${A}_{12}$ | ${K}_{12}$ | ||

${A}_{5}$ | K(2,2,2,2,2,2) | no | ||

13 | ${A}_{13}$ | ${K}_{13}$ | ||

14 | ${G}_{1092}$, ${A}_{14}$ | ${K}_{14}$ | ||

${2}^{6}\u22ca{A}_{5}$ | K(2,2,2,2,2,2,2) | |||

15 | ${A}_{15}$ | ${K}_{15}$ | ||

${A}_{5}$ | K(3,3,3,3,3) | yes | 3 | |

${A}_{7}$ | PG(3,2) | |||

16 | ${A}_{16}$ | ${K}_{16}$ |

**Table 2.**Geometric structure of subgroups of the fundamental group ${\pi}_{1}\left(Q\right)$ for the middle level Q of Akbulut’s h-cobordism between connected sums ${Q}_{1}\#{S}^{2}\times {S}^{2}$ and ${Q}_{2}\#{S}^{2}\times {S}^{2}$. Bold characters are for the contextual geometries. When a MIC state can be found, details are given in Column 4, while the number $pp$ of distinct values of pairwise products in the MIC is in Column 5. $GQ(2,2)$ is the generalized quadrangle of order two embedded in PG(3,2), as shown in Figure 5b.

d | P | Geometry | MIC Fiducial | pp |
---|---|---|---|---|

6 | ${A}_{6}$ | ${K}_{6}$ | $(1,{\omega}_{6}-1,0,0,-{\omega}_{6},0)$ | 2 |

7 | $PSL(2,7)$ | Fano plane | $(1,1,0,-1,0,-1,0)$ | 2 |

8 | $PSL(2,7)$ | ${K}_{8}$ | no | |

10 | ${A}_{6}$ | ${K}_{10}$ | yes | 5 |

14 | $PSL(2,7)$ | K(2,2,2,2,2,2,2) | no | |

15 | ${A}_{6}$ | PG(3,2), GQ(2,2) | yes | 4 |

16 | ${A}_{16}$ | ${K}_{16}$ | no | |

$SL(2,7)$ | K(2,2,2,2,2,2,2,2) | no |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Planat, M.; Aschheim, R.; Amaral, M.M.; Irwin, K. Quantum Computation and Measurements from an Exotic Space-Time *R*^{4}. *Symmetry* **2020**, *12*, 736.
https://doi.org/10.3390/sym12050736

**AMA Style**

Planat M, Aschheim R, Amaral MM, Irwin K. Quantum Computation and Measurements from an Exotic Space-Time *R*^{4}. *Symmetry*. 2020; 12(5):736.
https://doi.org/10.3390/sym12050736

**Chicago/Turabian Style**

Planat, Michel, Raymond Aschheim, Marcelo M. Amaral, and Klee Irwin. 2020. "Quantum Computation and Measurements from an Exotic Space-Time *R*^{4}" *Symmetry* 12, no. 5: 736.
https://doi.org/10.3390/sym12050736