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Abstract: The authors previously found a model of universal quantum computation by making use
of the coset structure of subgroups of a free group G with relations. A valid subgroup H of index d in
G leads to a ‘magic’ state |ψ〉 in d-dimensional Hilbert space that encodes a minimal informationally
complete quantum measurement (or MIC), possibly carrying a finite ‘contextual’ geometry. In the
present work, we choose G as the fundamental group π1(V) of an exotic 4-manifold V, more precisely
a ‘small exotic’ (space-time) R4 (that is homeomorphic and isometric, but not diffeomorphic to the
Euclidean R4). Our selected example, due to S. Akbulut and R. E. Gompf, has two remarkable
properties: (a) it shows the occurrence of standard contextual geometries such as the Fano plane (at
index 7), Mermin’s pentagram (at index 10), the two-qubit commutation picture GQ(2, 2) (at index
15), and the combinatorial Grassmannian Gr(2, 8) (at index 28); and (b) it allows the interpretation
of MICs measurements as arising from such exotic (space-time) R4s. Our new picture relating a
topological quantum computing and exotic space-time is also intended to become an approach of
‘quantum gravity’.
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group; finite geometry; Cayley–Dickson algebras
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1. Introduction

Concepts in quantum computing and the mathematics of 3-manifolds could be combined, as
shown in our previous papers [1–4]. In the present work, we consider that quantum computing is
performed dynamically in four dimensions interpreted as the Euclidean space-time R4. This offers a
preliminary connection to the field called ‘quantum gravity’ with unconventional methods. In four
dimensions, the topological and the smooth structure of a manifold are apart. There exist infinitely
many 4-manifolds that are homeomorphic but non-diffeomorphic to each other [5–8]. They can be
seen as distinct copies of space-time not identifiable to the ordinary Euclidean space-time.

A cornerstone of our approach is an ‘exotic’ 4-manifold called an Akbulut cork W that is
contractible, compact, and smooth, but not diffeomorphic to the 4-ball [8]. In our approach, we do not
need the full toolkit of 4-manifolds since we are focusing on W and its neighboors only. All we need is
to understand the handlebody decomposition of a 4-manifold, the fundamental group π1(∂W) of the
three-dimensional boundary ∂W of W, and related fundamental groups. Following the methodology of
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our previous work, the subgroup structure of such π1s corresponds to the Hilbert spaces of interest. Our
view is close to the many-worlds interpretation of quantum mechanics where all possible outcomes
of quantum measurements are realized in some ‘world’ and are objectively real [9]. One arrives
at a many-manifolds view of quantum computing—reminiscent of the many-worlds—where the
many-manifolds are in an exotic class and can be seen as many-quantum generalized measurements,
the latter being POVMs (positive operator valued measures).

In quantum information theory, the two-qubit configuration and its properties, namely quantum
entanglement and quantum contextuality, have been discussed at length as prototypes of peculiarities
or resources in the quantum world. Our model of quantum computing is based on the concept of
a magic state—a state that has to be added to the eigenstates of the d-dimensional Pauli group—to
allow universal quantum computation. This was started by Bravyi and Kitaev in 2005 [10] for qubits
(d = 2). A subset of magic states consists of states associated to minimal informationally complete
measurements, which we called MIC states [1] (see Appendix A for a definition). We require that
magic states should be MIC states as well. To obtain the candidate MIC states, one uses the fact that a
permutation may be realized as a permutation matrix/gate and that mutually commuting matrices
share eigenstates. They are either of the stabilizer type (as elements of the Pauli group) or of the magic
type. One keeps magic states that are MIC states in order to preserve complete information during the
computation and measurements. The detailed process of quantum computation is not revealed at this
stage and will depend on the physical support for the states.

A further step in our quantum computing model is to introduce a three-dimensional manifold M3

whose fundamental group G = π1(M3) would be the source of MIC states [2,3]. Recall that G is a free
group with relations and that a d-dimensional MIC state may be obtained from the permutation group
that organizes the cosets of an appropriate subgroup of index d of G. It was considered by us quite
remarkable that two group geometrical axioms very often govern the MIC states of interest [4]: (i) the
normal (or conjugate) closure {g−1hg|g ∈ Gandh ∈ H} of the appropriate subgroup H of G equals
G itself; and (ii) there is no geometry (a triple of cosets does not produce equal pairwise stabilizer
subgroups). See [4] (Section 1.1) for our method of building a finite geometry from coset classes and
Appendix B for the special case of the Fano plane. However, these rules had to be modified by allowing
either the simultaneous falsification of (i) and (ii) or by tolerating a few exceptions. The latter item
means a case of geometric contextuality, the parallel to quantum contextuality [11].

We are fortunate that the finite geometrical structures sustaining two-qubit commutation, the
projective plane or Fano plane PG(2, 2) over the two-element field F2, the generalized quadrangle of
order two GQ(2, 2), its embedding three-dimensional projective space PG(3, 2), and other structures
relevant to quantum contextuality, are ingredients in our quantum computing model based on an
Akbulut cork. Even more appealing is the recovery of the Grassmannian configuration Gr(2, 8) on 28
vertices and 56 lines that connects to Cayley–Dickson algebras up to level 8.

Our description is organized as follows. Section 2 summarizes the peculiarities of small exotic
4-manifolds of type R4. This includes the handlebody structure of an arbitrary 4-manifold in Section 2.1,
the concept of an Akbulut cork in Section 2.2, and examples of small exotic 4-manifolds that are
homeomorphic but not diffeomorphic to the Euclidean space R4 in Section 2.3. In Section 3, the
connection of quantum computing to a manifold M is through the fundamental group π1(M).
The subgroup structure of π1(M) is explored when M is the boundary ∂W of an Akbulut cork (in
Section 3.1), the manifold W̄ in Akbulut h-cobordism (in Section 3.2), and the middle level Q between
diffeomorphic connected sums involving the exotic R4s (in Section 3.3). Section 4 is a discussion of the
obtained results and their potential interest for connecting quantum information and the structure of
space-time. Calculations in this paper were performed using Magma [12] and SnapPy [13].
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2. Excerpts on the Theory of 4-Manifolds and Exotic R4s

2.1. Handlebody of a 4-Manifold

Let us introduce some excerpts of the theory of 4-manifolds needed for our paper [5–7]. It concerns
the decomposition of a 4-manifold into one- and two-dimensional handles, as shown in Figure 1,
see [5] (Figure 1.1 and Figure 1.2). Let Bn and Sn be the n-dimensional ball and the n-dimensional
sphere, respectively. An observer is placed at the boundary ∂B4 = S3 of the 0-handle B4 and watches
the attaching regions of the 1- and 2-handles. The attaching region of 1-handle is a pair of balls B3 (the
yellow balls), and the attaching region of 2-handles is a framed knot (the red knotted circle) or a knot
going over the 1-handle (shown in blue). Notice that the 2-handles are attached after the 1-handles.
For closed 4-manifolds, there is no need for visualizing a 3-handle since it can be directly attached to
the 0-handle. The 1-handle can also be figured out as a dotted circle S1 × B3 obtained by squeezing
together the two three-dimensional balls B3 so that they become flat and close together [6] (p. 169), as
shown in Figure 1b. For the attaching region of a 2- and a 3-handle, one needs to enrich our knowledge
by introducing the concept of an Akbulut cork, as described below. The surgering of a 2-handle to
a 1-handle is illustrated in Figure 2a (see also [6] (Figure 5.33)). The 0-framed 2-handle (left) and the
‘dotted’ 1-handle (right) are diffeomorphic at their boundary ∂. The boundary of a 2- and a 3-handle is
intimately related to the Akbulut cork shown in Figure 2b, as described in Section 2.3.

Figure 1. (a) Handlebody of a 4-manifold with the structure of 1- and 2-handles over the 0-handle B4 ;
and (b) the structure of a 1-handle as a dotted circle S1 × B3.

2.2. Akbulut Cork

A Mazur manifold is a contractible, compact, smooth 4-manifold (with boundary) not
diffeomorphic to the standard 4-ball B4 [5]. Its boundary is a homology 3-sphere. If one restricts to
Mazur manifolds that have a handle decomposition into a single 0-handle, a single 1-handle and a
single 2-handle, then the manifold has to be of the form of the dotted circle S1 × B3 (as in Figure 2a)
(right) union a 2-handle.

Recall that, given p, q, r (with p ≤ q ≤ r), the Brieskorn 3-manifold Σ(p, q, r) is the intersection in
the complex 3-space C3 of the five-dimensional sphere S5 with the surface of equation zp

1 + zq
2 + zr

3 = 0.
The smallest known Mazur manifold is the Akbulut cork W [8,14] pictured in Figure 2b and its
boundary is the Brieskorn homology sphere Σ(2, 5, 7).
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According to Reference [15], there exists an involution f : ∂W → ∂W that surgers the dotted
1-handle S1 × B3 to the 0-framed 2-handle S2 × B2 and back, in the interior of W. The Akbulut cork is
shown in Figure 2b. The Akbulut cork has a simple definition in terms of the framings±1 of (−3, 3,−3)
pretzel knot also called K = 946 [15] (Figure 3). It has been shown that ∂W = Σ(2, 5, 7) = K(1, 1) and
W = K(−1, 1).

Figure 2. (a) A 0-framed 2-handle S2× B2 (left) and a dotted 1-handle S1× B3 (right) are diffeomorphic
at their boundary ∂ = S2 × S1; and (b) two equivalent pictures of the Akbulut cork W.

2.3. Exotic Manifold R4

An exotic R4 is a differentiable manifold that is homeomorphic but not diffeomorphic to the
Euclidean space R4. An exotic R4 is called small if it can be smoothly embedded as an open subset
of the standard R4 and is called large otherwise. Here, we are concerned with an example of a small
exotic R4. Let us quote Theorem 1 of [8].

Theorem 1. There is a smooth contractible 4-manifold V with ∂V = ∂W, such that V is homeomorphic but
not diffeomorphic to W relative to the boundary.

Proof. Sketch of proof [8]:
Let α be a loop in ∂W as in Figure 3a. α is not slice in W (does not bound an imbedded smooth B2

in W) but φ(α) is slice. Then, φ does not extend to a self-diffeomorphism φ : W →W.

It is time to recall that a cobordism between two oriented m-manifolds M and N is any oriented
(m + 1)-manifold W0 such that the boundary is ∂W0 = M̄ ∪ N, where M appears with the reverse
orientation. The cobordism M× [0, 1] is called the trivial cobordism. Next, a cobordism W0 between M
and N is called an h-cobordism if W0 is homotopically such as the trivial cobordism. The h-cobordism
due to S. Smale in 1960 states that, if Mm and Nm are compact simply-connected oriented M-manifolds
that are h-cobordant through the simply-connected (m + 1)-manifold Wm+1

0 , then M and N are
diffeomorphic [7] (p. 29). However, this theorem fails in dimension 4. If M and N are cobordant
4-manifolds, then N can be obtained from M by cutting out a compact contractible submanifold W
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and gluing it back in by using an involution of ∂W. The 4-manifold W is a ‘fake’ version of the 4-ball
B4 called an Akbulut cork [7] (Figure 2.23).

Figure 3. (a) The loop α is not slice on the Akbulut cork; (b) the non-trivial h-cobordism between small
exotic manifolds V and W; and (c) the mediating 4-manifold W̄.

The h-cobordism under question in our example may be described by attaching an algebraic
cancelling pair of 2- and 3-handles to the interior of Akbulut cork W, as pictured in Figure 3b
(see [8] (p. 343)). The 4-manifold W̄ mediating V and W as shown in Figure 3c [alias the 0-surgery
L7a6(0, 1)(0, 1)] (see [8] (p. 355)).

The result is relative since V itself is diffeomorphic to W but such a diffeomorphism cannot extend
to the identity map ∂V → ∂W on the boundary [14]. In the previous reference, two exotic manifolds
Q1 and Q2 are built that are homeomorphic but not diffeomorphic to each other in their interior.

By the way, the exotic R4 manifolds Q1 and Q2 are related by a diffeomorphism Q1#S2 × S2 ≈
Q ≈ Q2#S2 × S2 (where # is the connected sum between two manifolds) and Q is called the middle
level between such connected sums. This is shown in Figure 4 for the two R4 manifolds Q1 and
Q2 [14,16] (Figure 2).

Figure 4. Exotic R4 manifolds Q1 shown in (a) and Q2 shown in (b). The connected sums Q1#S2 × S2

and Q2#S2 × S2 are diffeomorphic with middle level Q shown in (c).
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3. Finite Geometry of Small Exotic R4s and Quantum Computing

From now, we focus on the relationship between the aforementioned small exotic R4s and a
model of quantum computing and (generalized) quantum measurements based on the magic states.
The background about the magic states is recalled in the introduction (see also [1–4]). This connection
is established by computing the finite index subgroup structure of the fundamental group for the
boundary ∂W of Akbulut cork W, for W̄ in Figure 3 and for Q in Figure 4, and by making use of earlier
results of the authors.

In the present paper, we choose G as the fundamental group π1(M4) of a 4-manifold M4 that is
the boundary ∂W of Akbulut cork W, or governs the Akbulut h-cobordism. More precisely, one takes
the manifold M4 as W̄ in Figure 3 and Q in Figure 4. Manifolds Q1 and Q2 are the small exotic R4s
introduced in Reference [14] (Figures 1 and 2). There are homeomorphic but not diffeomorphic to each
other in their interiors. This choice has two important consequences.

Recall the Introduction that Axioms (i) and (ii) are expected to govern the subgroup structure of
groups G relevant to our model of quantum computing based on magic states. For the aforementioned
manifolds M4, the fundamental group G = π1(M4) is such that: (i) it is always satisfied; and (ii) most
often it is true or geometric contextuality occurs with corresponding finite geometries of great interest
such as the Fano plane PG(2, 2) (at index 7), the Mermin’s pentagram (at index 10), the finite projective
space PG(3, 2) or its subgeometry GQ(2, 2) that is known to control 2-qubit commutation [4] (Figure 1)
(at index 15), the Grassmannian Gr(2, 8) containing Cayley–Dickson algebras (at index 28), and a few
maximally multipartite graphs.

Second, this new frame provides a physical interpretation of quantum computation and
measurements as follows. Let us imagine that R4 is our familiar space-time. Thus, the ‘fake’ 4-ball
W—the Akbulut cork—allows the existence of smoothly embedded open subsets of space-time—the
exotic R4 manifolds such as Q1 and Q2—that we interpret in this model as 4-manifolds associated to
quantum measurements.

3.1. The Boundary ∂W of Akbulut Cork

As announced above, ∂W = K(1, 1) ≡ Σ(2, 5, 7) is a Brieskorn sphere with fundamental group

π1(Σ(2, 5, 7)) =
〈

a, b|aBab2aBab3, a4bAb
〉

, where A = a−1, B = b−1.

The cardinality structure of subgroups of this fundamental group is found to be the sequence

ηd[π1(Σ(2, 5, 7))] = [0, 0, 0, 0, 0, 0, 2, 1, 0, 3, 0, 0, 0, 12, 145, 178, 47, 0, 0, 4, · · · ] .

All the subgroups H of the above list satisfy Axiom (i).
Up to index 28, exceptions to Axiom (ii) can be found at index d = 14, 16, 20 featuring the

geometry of multipartite graphs K(d/2)
2 with d/2 parties, at index d = 15, and finally at index 28. Here

and below, the bold notation features the existence of such exceptions.
Apart from these exceptions, the permutation group organizing the cosets is an alternating group

Ad. The coset graph is the complete graph Kd on d vertices. One cannot find a triple of cosets with
strictly equal pairwise stabilizer subgroups of Ad (no geometry), thus (ii) is satisfied.

At index 15, when (ii) is not satisfied, the permutation group organizing the cosets is isomorphic
to A7. The stabilized geometry is the finite projective space PG(3, 2) (with 15 points, 15 planes, and
35 lines), as illustrated in Figure 5a. A different enlightening of the projective space PG(3, 2) appears
in [17] with the connection to the Kirkman schoolgirl problem. The geometry is contextual in the sense
that all lines not going through the identity element do not show mutually commuting cosets.
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Figure 5. (a) A picture of the smallest finite projective space PG(3, 2). It is found at Frans Marcelis’
website [18]. The coset coordinates shown on the Fano plane with red bullets of PG(3, 2) correspond
the case in Table 2. (b) A picture of the generalized quadrangle of order two GQ(2, 2) embedded in
PG(3, 2). It may also be found at Frans Marcelis’ website.

At index 28, when (ii) is not satisfied, there are two cases. In the first case, the group P is of order
288! and the geometry is the multipartite graph K(7)

4 . In the second case, the permutation group is
P = A8 and the geometry is the configuration [286, 563] on 28 points and 56 lines of size 3. It has been
shown that the geometry in question corresponds to the combinatorial Grassmannian of type Gr(2, 8),
alias the configuration obtained from the points off the hyperbolic quadric Q+(5, 2) in the complex
projective space PG(5, 2) [19]. Interestingly, Gr(2, 8) can be nested by gradual removal of a so-called
‘Conwell heptad’ and be identified to the tail of the sequence of Cayley–Dickson algebras [19,20]
(Table 4).

One expects a connection of the 28-point configuration to a del Pezzo surface of degree 2 (since
the 56 lines of such a del Pezzo surface map in pairs to the 28 bitangents of a quartic). With the
Freudenthal–Tits magic square, there should also exist a link of such a symmetry to octooctonions and
the Lie group E8 [21,22] that may be useful for particle physics. Further, a Cayley–Dickson sequence is
proposed to connect quantum information and quantum gravity in [23].

The [286, 563] configuration on 28 points and 56 lines.
Below are given some hints about the configuration that is stabilized at the index 28 subgroup H

of the fundamental group π1(∂W) whose permutation group P organizing the cosets is isomorphic to
A8. Recall that ∂W is the boundary of Akbulut cork W. The 28-letter permutation group P has two
generators as follows

P = 〈28|g1, g2〉withg1 = (2, 4, 8, 6, 3)(5, 10, 15, 13, 9)(11, 12, 18, 25, 17)

(14, 20, 19, 24, 21)(16, 22, 26, 28, 23), g2 = (1, 2, 5, 11, 6, 7, 3)(4, 8, 12, 19, 22, 14, 9)

(10, 16, 24, 27, 21, 26, 17)(13, 20, 18, 25, 28, 23, 15).

Using the method described in Appendix B, one derives the configuration [286, 563] on 28
points and 56 lines. As shown in [19] (Table 4), the configuration is isomorphic to the combinatorial
Grassmannian Gr(2, 8) and nested by a sequence of binomial configurations isomorphic to Gr(2, i),
i ≤ 8, associated with Cayley–Dickson algebras. This statement is checked by listing the 56 lines on
the 28 points of the configuration as follows
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{1, 7, 27},→ Gr(2, 3)

{1, 15, 23}, {15, 17, 27}, {7, 17, 23},→ Gr(2, 4)

{1, 5, 26}, {5, 18, 27}, {5, 15, 24}, {23, 24, 26}, {17, 18, 24}, {7, 18, 26},→ Gr(2, 5)

{12, 14, 17}, {1, 9, 22}, {5, 8, 9}, {9, 14, 15}, {7, 12, 22}, {8, 12, 18},
{8, 14, 24}, {8, 22, 26}, {14, 22, 23}, {9, 12, 27},→ Gr(2, 6)

{3, 10, 15}, {3, 6, 24}, {3, 17, 25}, {3, 23, 28}, {1, 10, 28}, {3, 14, 19}, {7, 25, 28}, {6, 8, 19},
{19, 22, 28}, {5, 6, 10}, {12, 19, 25}, {10, 25, 27}, {9, 10, 19}, {6, 18, 25}, {6, 26, 28},→ Gr(2, 7)

{4, 11, 12}, {11, 21, 25}, {6, 20, 21}, {2, 3, 21}, {2, 4, 14}, {7, 11, 16}, {2, 16, 23}, {1, 13, 16},
{2, 11, 17}, {4, 19, 21}, {16, 20, 26}, {2, 13, 15}, {11, 13, 27}, {16, 21, 28}, {2, 20, 24},

{5, 13, 20}, {11, 18, 20}, {4, 9, 13}, {4, 8, 20}, {4, 16, 22}, {10, 13, 21} → Gr(2, 8).

More precisely, the distinguished configuration [215, 353] isomorphic to Gr(2, 7) in the list above
is stabilized thanks to the subgroup of P isomorphic to A7. The distinguished Cayley–Salmon
configuration [154, 203] isomorphic to Gr(2, 6) in the list is obtained thanks to one of the two subgroups
of P isomorphic to A6. The upper stages of the list correspond to a Desargues configuration [103, 103],
to a Pasch configuration [62, 43], and to a single line [31, 13] and are isomorphic to the Grassmannians
Gr(2, 5), Gr(2, 4), and Gr(2, 3), respectively. The Cayley–Salmon configuration configuration is shown
in Figure 6, see also [20] (Figure 12). For the embedding of Cayley–Salmon configuration into [215, 353]

configuration, see [20] (Figure 18).

Figure 6. The Cayley–Salmon configuration built around the Desargues configuration (itself built
around the Pasch configuration) as in [20] (Figure 12).

Frank Marcelis provided a parameterization of the Cayley–Salmon configuration in terms of
3-qubit operators [18].

Not surprisingly, geometric contextuality (in the coset coordinatization not given here) is a
common feature of all lines except for the ones going through the identity element.

As a final note for this subsection, we find Brieskorn spheres other than Σ(2, 5, 7) whose
fundamental group admits an index 28 subgroup isomorphic to A8 whose geometry is the configuration
with 28 points and 56 lines. Three-manifolds Σ(2, 4, 7), Σ(3, 4, 5), Σ(3, 4, 7), and Σ(3, 5, 7) are such
Brieskorn spheres.
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3.2. The Manifold W̄ Mediating the Akbulut Cobordism between Exotic Manifolds V and W

The fundamental group π1(W̄) of the h-cobordism W̄ is as follows

π1(W̄) =
〈

a, b|a3b2 AB3 Ab2, (ab)2aB2 Ab2 AB2
〉

.

The cardinality structure of subgroups of this fundamental group is

ηd[π1(W̄)] = [0, 0, 0, 0, 1, 1, 2, 0, 0, 1, 0, 5, 4, 9, 7, 1 · · · ]

As is the previous subsection, all subgroups H of the above list satisfy Axiom (i). When Axiom
(ii) is not satisfied, the geometry is contextual. All cases are listed in Table 1. Columns 4 and 5 give
details about the existence of a MIC at the corresponding dimension when this can be checked, i.e., the
cardinality of P is low enough.

Table 1. Geometric structure of subgroups of the fundamental group π1(W̄) for the h-cobordism W̄
between exotic manifolds V and W. Bold characters are for the contextual geometries. G1092 is the
simple group of order 1092. When a MIC state can be found, details are given in Column 4, while the
number pp of distinct values of pairwise products in the MIC is in Column 5.

d P Geometry MIC Fiducial pp

5 A5 K5 (0, 1,−1,−1, 1) 1
6 A6 K6 (1, ω6 − 1, 0, 0,−ω6, 0) 2
7 A7 K7

10 A5 Mermin pentagram no
12 A12 K12

A5 K(2,2,2,2,2,2) no
13 A13 K13
14 G1092, A14 K14

26 o A5 K(2,2,2,2,2,2,2)
15 A15 K15

A5 K(3,3,3,3,3) yes 3
A7 PG(3,2)

16 A16 K16

A picture of (contextual) Mermin pentagram stabilized at index 10 is given in Figure 7.

Figure 7. Mermin pentagram as the contextual geometry occuring for the index 10 subgroup in the
fundamental group π1(W̄) of the h-cobordism W̄ between exotic manifolds V and W.
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3.3. The Middle Level Q between the Diffeomorphic Connected Sums

The fundamental group for the middle level Q between diffeomorphic connected sums Q1#S2× S2

and Q2#S2 × S2 is as follows

π1(Q) =
〈

a, b|a2bA2ba2BAB, a2BA3Ba2b3
〉

.

The cardinality structure of subgroups of this fundamental group is

ηd[π1(Q)] = [0, 0, 0, 0, 0, 2, 2, 1, 0, 1, 0, 0, 0, 2, 2, 3 · · · ]

As in the previous subsection, all the subgroups H of the above list satisfy Axiom (i). When Axiom
(ii) is not satisfied, the geometry is contextual. All cases are listed in Table 2. The coset coordinates
of the (contextual) Fano plane are shown on Figure 5a (see also Figure A1 in Appendix B). Columns
4 and 5 give details about the existence of a MIC at the corresponding dimension when this can be
checked, i.e., if the cardinality of P is low enough. Notice that, at index 15, both the the finite projective
space PG(3, 2) and the embedded generalized quadrangle of order two GQ(2, 2) (shown in Figure 5)
are stabilized. Both geometries are contextual. The latter case is pictured in [4] (Figure 1) with a double
coordinatization: the cosets or the two-qubit operators.

These results about the h-cobordism of R4 exotic manifolds and the relation to quantum
computing, as developed in our model, are encouraging us to think about a physical implementation.
However, this is left open in this paper.

Table 2. Geometric structure of subgroups of the fundamental group π1(Q) for the middle level Q
of Akbulut’s h-cobordism between connected sums Q1#S2 × S2 and Q2#S2 × S2. Bold characters are
for the contextual geometries. When a MIC state can be found, details are given in Column 4, while
the number pp of distinct values of pairwise products in the MIC is in Column 5. GQ(2, 2) is the
generalized quadrangle of order two embedded in PG(3,2), as shown in Figure 5b.

d P Geometry MIC Fiducial pp

6 A6 K6 (1, ω6 − 1, 0, 0,−ω6, 0) 2
7 PSL(2, 7) Fano plane (1, 1, 0,−1, 0,−1, 0) 2
8 PSL(2, 7) K8 no

10 A6 K10 yes 5
14 PSL(2, 7) K(2,2,2,2,2,2,2) no
15 A6 PG(3,2), GQ(2,2) yes 4
16 A16 K16 no

SL(2, 7) K(2,2,2,2,2,2,2,2) no

4. Conclusions

As recalled in Section 2.3, the h-cobordism theorem in four dimensions is true topologically—there
is a homotopy equivalence of the inclusion maps of four-dimensional manifolds M and N into the
five-dimensional cobordism—but is false piecewise linearly and smoothly—a piecewise linear structure
or atlas cannot be smoothed in an unique way. These statements had to await topologists Michael
Friedmann and Simon Donaldson in the twentieth century to be rigorously established [5–7]. Handle
decomposition in a way described in Section 2, handle trading, handle cancellation, and handle
sliding are the main techniques for establishing the failure of the four-dimensional h-cobordism
theorem and the possible existence of infinitely many (exotic) R4 manifolds that are homeomorphic
but not diffeomorphic to the Euclidean R4. It has been emphasized that the non-trivial h-cobordism
between exotic R4 manifolds may occur through a ‘pasting’ ingredient called an Akbulut cork W
whose three-dimensional boundary ∂W is described explicitly as the Brieskorn sphere Σ(2, 5, 7).

We use the fundamental group π1(∂W) as a witness of symmetries encoded into the 4-manifolds
under investigation. Interpreting R4 as the ordinary space-time, the symmetries have potential
applications to space-time physics (e.g., cosmology) and quantum mechanics (e.g., particle physics
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and quantum computation). Attempts to connect the issues of geometry and topology of exotic R4 to
quantum gravity have been developed in other papers (e.g., [24,25]). Another promising approach is
in [26]. In the past, the Brieskorn sphere Σ(2, 3, 5), alias the Poincaré dodecahedral space, was proposed
as the ‘shape’ of space because such a 3-manifold—the boundary of the 4-manifold E8—explains some
anomalies in the cosmic microwave background [27,28]. It would be interesting to use Σ(2, 5, 7) as an
alternative model in the line of work performed in [29,30] and related work.

We find in Section 3 subgroups of index 15 and 28 of π1(∂W) connecting to the three-dimensional
projective space PG(3, 2) and to the Grassmannian Gr(2, 8), respectively. The former finite geometry
has relevance to the two-qubit model of quantum computing and the latter geometry connect
to Cayley–Dickson algebras already used for particle physics. In our previous work, we found
that MICs (minimal informationally complete POVMs) built from finite index subgroups of the
fundamental group π1(M3) of a 3-manifold M3 serve as models of universal quantum computing
(UQC). A MIC-UQC model based on a finite index subgroup of the fundamental group π1(M4) of an
exotic M4 has interest for interpreting (generalized) quantum measurements as corresponding to the
non-diffeomorphic branches (to the exotic copies) of M4 or its submanifolds.

To conclude, we are confident that an exotic 4-manifold approach of theoretical physics allows
establishing bridges between space-time physics and quantum physics as an alternative or as a
complement to string theory and loop quantum gravity.
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Appendix A

A POVM is a collection of positive semi-definite operators {E1, . . . , Em} that sum to the identity.
In the measurement of a state ρ, the ith outcome is obtained with a probability given by the Born
rule p(i) = tr(ρEi). For a minimal and informationally complete POVM (or MIC), one needs d2

one-dimensional projectors Πi = |ψi〉 〈ψi|, with Πi = dEi, such that the rank of the Gram matrix with
elements tr(ΠiΠj), is precisely d2.

A SIC (a symmetric informationally complete POVM) obeys the remarkable relation

∣∣〈ψi|ψj
〉∣∣2 = tr(ΠiΠj) =

dδij + 1
d + 1

,

that allows the recovery of the density matrix as

ρ =
d2

∑
i=1

[
(d + 1)p(i)− 1

d

]
Πi.

This type of quantum tomography is often known as quantum-Bayesian, where the p(i)s represent
agents’ Bayesian degrees of belief, because the measurement depends on the filtering of ρ by the selected
SIC (for an unknown classical signal, this looks similar to the frequency spectrum) [31].

New MICs have been derived with Hermitian angles
∣∣〈ψi|ψj

〉∣∣
i 6=j ∈ A = {a1, . . . , al}, a discrete

set of values of small cardinality l [1]. A SIC is equiangular with |A| = 1 and a1 = 1√
d+1

.

Appendix B

Let us summarize how a finite geometry is built from coset classes [4,11].
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Let H be a subgroup of index d of a free group G with generators and relations. A coset table over
the subgroup H is built by means of a Coxeter–Todd algorithm. Given the coset table, one builds a
permutation group P that is the image of G given by its action on the cosets of H.

First, one asks that the d-letter group P act faithfully and transitively on the set Ω = {1, 2, · · · , d}.
The action of P on a pair of distinct elements of Ω is defined as (α, β)p = (αp, βp), p ∈ P, α 6= β.
The number of orbits on the product set Ω×Ω is called the rank r of P on Ω. Such a rank of P is at least
two, and it also known that two-transitive groups may be identified to rank two permutation groups.

One selects a pair (α, β) ∈ Ω×Ω, α 6= β and one introduces the two-point stabilizer subgroup
P(α,β) = {p ∈ P|(α, β)p = (α, β)}. There are 1 < m ≤ r such non-isomorphic (two-point stabilizer)
subgroups of P. Selecting one of them with α 6= β, one defines a point/line incidence geometry
G whose points are the elements of the set Ω and whose lines are defined by the subsets of Ω that
share the same two-point stabilizer subgroup. Two lines of G are distinguished by their (isomorphic)
stabilizers acting on distinct subsets of Ω. A non-trivial geometry is obtained from P as soon as the rank
of the representation P of P is r > 2, and, at the same time, the number of non isomorphic two-point
stabilizers of P is m > 2. Further, G is said to be contextual (shows geometrical contextuality) if at least
one of its lines/edges is such that a set/pair of vertices is encoded by non-commuting cosets [11].

One of the simplest geometries obtained from coset classes is that of the Fano plane shown in
Figure A1 (see also Figures 5–7).

Figure A1. The Fano plane as the geometry of the subgroup of index 7 of fundamental group π1(W̄)

for the manifold W̄ mediating the Akbulut cobordism between exotic manifold V and W. The cosets of
π1 are organized through the permutation group P = 〈7|(1, 2, 4, 5, 6, 7, 3), (2, 5, 6)(3, 7, 4)〉. The cosets
are labeled as [1, . . . , 7] =

[
e, a, a−1, a2, ab, ab−1, a−1b

]
. The two-point stabilizer subgroups of P for

each line are distinct (acting on different subsets) but isomorphic to each other and to the Klein
group Z2 × Z2. They are as follows: s1 = 〈(2, 7)(4, 5), (2, 4)(5, 7)〉, s2 = 〈(1, 6)(5, 7), (1, 7)(5, 6)〉,
s3 = 〈(1, 5)(2, 3), (1, 2)(3, 5)〉, s4 = 〈(3, 5)(4, 6), (3, 6)(4, 5)〉, s5 = 〈(2, 6)(3, 7), (2, 7)(3, 6)〉, s6 =

〈(1, 7)(3, 4), (1, 4)(3, 7)〉, and s7 = 〈(1, 2)(4, 6), (1, 6)(2, 4)〉.
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