Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = akbulut cork

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1404 KiB  
Article
SL(2,C) Scheme Processing of Singularities in Quantum Computing and Genetics
by Michel Planat, Marcelo M. Amaral, David Chester and Klee Irwin
Axioms 2023, 12(3), 233; https://doi.org/10.3390/axioms12030233 - 23 Feb 2023
Cited by 4 | Viewed by 2682
Abstract
Revealing the time structure of physical or biological objects is usually performed thanks to the tools of signal processing such as the fast Fourier transform, Ramanujan sum signal processing, and many other techniques. For space-time topological objects in physics and biology, we propose [...] Read more.
Revealing the time structure of physical or biological objects is usually performed thanks to the tools of signal processing such as the fast Fourier transform, Ramanujan sum signal processing, and many other techniques. For space-time topological objects in physics and biology, we propose a type of algebraic processing based on schemes in which the discrimination of singularities within objects is based on the space-time-spin group SL(2,C). Such topological objects possess an homotopy structure encoded in their fundamental group, and the related SL(2,C) multivariate polynomial character variety contains a plethora of singularities somehow analogous to the frequency spectrum in time structures. Our approach is applied to a model of quantum computing based on an Akbulut cork in exotic R4, to an hyperbolic model of topological quantum computing based on magic states and to microRNAs in genetics. Such diverse topics reveal the manifold of possibilities of using the concept of a scheme spectrum. Full article
(This article belongs to the Special Issue Advances in Algebraic Geometry)
Show Figures

Figure 1

13 pages, 956 KiB  
Article
Quantum Computation and Measurements from an Exotic Space-Time R4
by Michel Planat, Raymond Aschheim, Marcelo M. Amaral and Klee Irwin
Symmetry 2020, 12(5), 736; https://doi.org/10.3390/sym12050736 - 5 May 2020
Cited by 7 | Viewed by 3769
Abstract
The authors previously found a model of universal quantum computation by making use of the coset structure of subgroups of a free group G with relations. A valid subgroup H of index d in G leads to a ‘magic’ state ψ in d [...] Read more.
The authors previously found a model of universal quantum computation by making use of the coset structure of subgroups of a free group G with relations. A valid subgroup H of index d in G leads to a ‘magic’ state ψ in d-dimensional Hilbert space that encodes a minimal informationally complete quantum measurement (or MIC), possibly carrying a finite ‘contextual’ geometry. In the present work, we choose G as the fundamental group π 1 ( V ) of an exotic 4-manifold V, more precisely a ‘small exotic’ (space-time) R 4 (that is homeomorphic and isometric, but not diffeomorphic to the Euclidean R 4 ). Our selected example, due to S. Akbulut and R. E. Gompf, has two remarkable properties: (a) it shows the occurrence of standard contextual geometries such as the Fano plane (at index 7), Mermin’s pentagram (at index 10), the two-qubit commutation picture G Q ( 2 , 2 ) (at index 15), and the combinatorial Grassmannian Gr ( 2 , 8 ) (at index 28); and (b) it allows the interpretation of MICs measurements as arising from such exotic (space-time) R 4 s. Our new picture relating a topological quantum computing and exotic space-time is also intended to become an approach of ‘quantum gravity’. Full article
(This article belongs to the Special Issue Symmetry in Quantum Systems)
Show Figures

Figure 1

Back to TopTop