# Representing Measurement as a Thermodynamic Symmetry Breaking

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

**Assumption**

**1**

**.**We assume a decomposition of $U=$ “everything” into $OW$, where O is the “observer” and W is the “world” with which the observer interacts. We require that the state $|U\rangle $ be separable as $|U\rangle =|OW\rangle =|O\rangle |W\rangle $, at least up to some recoherence time that is long with respect to any time interval of interest.

**Assumption**

**2**

**.**We assume the Hilbert space ${\mathcal{H}}_{U}={\mathcal{H}}_{O}\otimes {\mathcal{H}}_{W}$ has finite dimension ${d}_{U}={d}_{O}+{d}_{W}$.

- We formulate the distinction between system identification and pointer-state measurement as a collection of equivalence relations on cocones, and showing that: (1) transitions between cocone equivalence classes can be represented more generally as groupoid operations; and (2) these groupoid operations correspond to entanglement swaps that result in O-relative decoherence [27].
- We show that free-energy acquisition and waste-heat dissipation into the “environment” component of W can generically have non-negligible effects on observational outcomes due to entanglement swapping/contextuality.

## 2. Interaction as Mutual Measurement by $\mathit{O}$ and $\mathit{W}$

#### 2.1. Sequential Measurements

#### 2.2. Mutual Measurement Is Classical Communication

**Theorem**

**1.**

**Proof**

**of**

**Theorem**

**1.**

## 3. System Identification and Measurement by $\mathit{O}$

#### 3.1. Systems Require Reference Components with Invariant States

#### 3.2. Reference Components Can Be Represented as Cocones over One-Bit Classifiers

**Definition**

**1.**

**Definition**

**2.**

- The ${\mathcal{A}}_{ij}$ must be representable as a finite nonredundant set $\left\{{\mathcal{A}}_{k}\right\}$ with infomorphisms $fij:{\mathcal{A}}_{i}\to {\mathcal{A}}_{j}$.
- There exist infomorphisms ${h}_{i}:{\mathcal{C}}_{i}\to \mathbf{C}$ and ${h}_{ij}:{\mathcal{C}}_{i}\to {\mathcal{C}}_{j}$.
- All compositions of infomorphisms with codomain $\mathbf{C}$ commute.

#### 3.3. Measuring the Pointer State $|P\rangle $ of an Identified System S

#### 3.4. Sequential Measurements Induce Decoherence

#### 3.5. Entanglement Swapping Induces Contextuality

#### 3.6. CCD Commutativity Enforces Bayesian Coherence

- that only the shortest paths between objects in a diagram (such as a CCD) are labeled, and that the probability of a such a path is the product of the probabilities of its component arrows; and
- that the probabilities of all paths sum to unity.

**Definition**

**3.**

## 4. Thermodynamic Asymmetries and Their Effects

#### 4.1. Information Processing Demands Are Asymmetrical between R, P and E

#### 4.2. Thermodynamic Interactions with E Generically Disturb $|P\rangle $

## 5. Discussion

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

EPR | Einstein–Podolsky–Rosen |

IGUS | Information Gathering and Using System |

CCD | Cocone Diagram |

CCCD | Cone–Cocone Diagram |

CbD | Contextuality by Default |

## References

- Landsman, N.P. Between classical and quantum. In Handbook of the Philosophy of Science: Philosophy of Physics; Butterfield, J., Earman, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 417–553. [Google Scholar]
- Schlosshauer, M. Decoherence and the Quantum to Classical Transition; Springer: Berlin, Germany, 2007. [Google Scholar]
- Bohr, N. The quantum postulate and the recent development of atomic theory. Nature
**1928**, 121, 580–590. [Google Scholar] [CrossRef][Green Version] - Fröwis, F.; Sekatski, P.; Dür, W.; Gisin, N.; Sangouard, N. Macroscopic quantum states: Measures, fragility, and implementations. Rev. Mod. Phys.
**2018**, 90, 025004. [Google Scholar] [CrossRef][Green Version] - Schrödinger, E. The present situation in quantum mechanics. Naturwissenschaften
**1980**, 23, 807–812. (In German) (English translation by Trimmer, J. D. Proc. Am. Phil. Soc.**1980**, 124, 323–328) [Google Scholar] [CrossRef] - Wigner, E.P. Remarks on the mind-body question. In The Scientist Speculates; Good, I.J., Ed.; Heinemann: London, UK, 1961; pp. 284–302. [Google Scholar]
- Mermin, D. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys.
**1993**, 65, 803–815. [Google Scholar] [CrossRef] - Zurek, W.H. Decoherence, einselection and the existential interpretation (the rough guide). Philos. Trans. R. Soc. A
**1998**, 356, 1793–1821. [Google Scholar] [CrossRef][Green Version] - Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.
**2003**, 75, 715–775. [Google Scholar] [CrossRef][Green Version] - Schlosshauer, M. Quantum decoherence. Phys. Rep.
**2019**, 831, 1–57. [Google Scholar] [CrossRef][Green Version] - Ollivier, H.; Poulin, D.; Zurek, W.H. Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Phys. Rev. A
**2005**, 72, 042113. [Google Scholar] [CrossRef][Green Version] - Chiribella, G.; D’Ariano, G.M. Quantum information becomes classical when distributed to many users. Phys. Rev. Lett.
**2006**, 97, 250503. [Google Scholar] [CrossRef][Green Version] - Zurek, W.H. Quantum Darwinism. Nat. Phys.
**2009**, 5, 181–188. [Google Scholar] [CrossRef] - Korbicz, J.K.; Horodecki, P.; Horodecki, R. Objectivity in a noisy photonic environment through quantum state information broadcasting. Phys. Rev. Lett.
**2014**, 112, 120402. [Google Scholar] [CrossRef] [PubMed][Green Version] - Fields, C. Quantum Darwinism requires an extra-theoretical assumption of encoding redundancy. Int. J. Theor. Phys.
**2010**, 49, 2523–2527. [Google Scholar] [CrossRef][Green Version] - Kastner, R.E. ‘Einselection’ of pointer observables: The new H-theorem? Stud. Hist. Phil. Mod. Phys.
**2014**, 48, 56–58. [Google Scholar] [CrossRef][Green Version] - Fields, C. Some consequences of the thermodynamic cost of system identification. Entropy
**2018**, 20, 797. [Google Scholar] [CrossRef][Green Version] - Ghirardi, G.C.; Rimini, A.; Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D
**1986**, 34, 470–491. [Google Scholar] [CrossRef] - Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit.
**1996**, 28, 581–600. [Google Scholar] [CrossRef] - Weinberg, S. Collapse of the state vector. Phys. Rev. A
**2012**, 85, 062116. [Google Scholar] [CrossRef][Green Version] - Wheeler, J.A. Law without law. In Quantum Theory and Measurement; Wheeler, J.A., Zurek, W.H., Eds.; Princeton University Press: Princeton, NJ, USA, 1983; pp. 182–213. [Google Scholar]
- Emary, C.; Lambert, N.; Nori, F. Leggett-Garg inequalities. Rep. Prog. Phys.
**2013**, 77, 016001. [Google Scholar] [CrossRef] - Kochen, S.; Specker, E.P. The problem of hidden variables in quantum mechanics. J. Math. Mech.
**1967**, 17, 59–87. [Google Scholar] [CrossRef] - Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev.
**1961**, 5, 183–195. [Google Scholar] [CrossRef] - Barwise, J.; Seligman, J. Information Flow: The Logic of Distributed Systems; Cambridge Tracts in Theoretical Computer Science 44; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Fields, C.; Glazebrook, J.F. A mosaic of Chu spaces and Channel Theory I: Category-theoretic concepts and tools. J. Expt. Theor. Artif. intell.
**2019**, 31, 177–213. [Google Scholar] [CrossRef] - Fields, C. Decoherence as a sequence of entanglement swaps. Results Phys.
**2019**, 12, 1888–1892. [Google Scholar] [CrossRef] - Dzhafarov, E.N.; Kujala, J.V.; Cervantes, V.H. Contextuality-by-default: A brief overview of concepts and terminology. In Lecture Notes in Computer Science 9525; Atmanspacher, H., Filik, T., Pothos, E., Eds.; Springer: Heidelberg, Germany, 2016; pp. 12–23. [Google Scholar]
- Dzhafarov, E.N.; Kujala, J.V. Contextuality-by-Default 2.0: Systems with binary random variables. In Lecture Notes in Computer Science 10106; Barros, J.A., Coecke, B., Pothos, E., Eds.; Springer: Berlin, Germany, 2017; pp. 16–32. [Google Scholar]
- Dzharfarov, E.N.; Kon, M. On universality of classical probability with contextually labeled random variables. J. Math. Psych.
**2018**, 85, 17–24. [Google Scholar] [CrossRef][Green Version] - Bartlett, S.D.; Rudolph, T.; Spekkens, R.W. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys.
**2007**, 79, 555–609. [Google Scholar] [CrossRef][Green Version] - Gell-Mann, M.; Hartle, J.B. Quantum mechanics in the light of quantum cosmology. In Foundations of Quantum Mechanics in the Light of New Technology; Nakajima, S., Murayama, Y., Tonomura, A., Eds.; World Scientific: Singapore, 1997; pp. 347–369. [Google Scholar]
- Fields, C.; Marcianò, A. Sharing nonfungible information requires shared nonfungible information. Quant. Rep.
**2019**, 1, 252–259. [Google Scholar] [CrossRef][Green Version] - Zanardi, P. Virtual quantum subsystems. Phys. Rev. Lett.
**2001**, 87, 077901. [Google Scholar] [CrossRef][Green Version] - Zanardi, P.; Lidar, D.A.; Lloyd, S. Quantum tensor product structures are observable-induced. Phys. Rev. Lett.
**2004**, 92, 060402. [Google Scholar] [CrossRef][Green Version] - Dugić, M.; Jeknić, J. What is “system”: Some decoherence-theory arguments. Int. J. Theor. Phys.
**2006**, 45, 2215–2225. [Google Scholar] [CrossRef][Green Version] - Dugić, M.; Jeknić, J. What is “system”: The information-theoretic arguments. Int. J. Theor. Phys.
**2008**, 47, 805–813. [Google Scholar] [CrossRef][Green Version] - Fuchs, C.A.; Schack, R. Quantum-bayesian coherence. Rev. Mod. Phys.
**2013**, 85, 1693–1715. [Google Scholar] [CrossRef][Green Version] - Leifer, M.S.; Spekkens, R.W. Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A
**2013**, 88, 052130. [Google Scholar] [CrossRef][Green Version] - Fields, C. If physics is an information science, what is an observer? Information
**2012**, 3, 92–123. [Google Scholar] [CrossRef][Green Version] - Mueller, M.P. Law without law: From observer states to physics via algorithmic information theory. arXiv
**2019**, arXiv:1712.01826v4. [Google Scholar] - Realpe-Gómez, J. Modeling observers as physical systems representing the world from within: Quantum theory as a physical and self-referential theory of inference. arXiv
**2019**, arXiv:1705.04307v4. [Google Scholar] - Smith, J.E.; Nair, R. The architecture of virtual machines. IEEE Comput.
**2005**, 38, 32–38. [Google Scholar] [CrossRef][Green Version] - Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Fields, C.; Glazebrook, J.F. A mosaic of Chu spaces and Channel Theory II: Applications to object identification and mereological complexity. J. Expt. Theor. Artif. Intell.
**2019**, 31, 237–265. [Google Scholar] [CrossRef] - Roederer, J. Information and Its Role in Nature; Springer: Berlin, Germany, 2005. [Google Scholar]
- Weinstein, A. Groupoids: Unifying internal and external symmetry. Notices AMS
**1996**, 43, 744–752. [Google Scholar] - Brown, R. Topology and Groupoids; Ronald Brown: Deganwy, UK, 2006. [Google Scholar]
- Cervantes, V.H.; Dzhafarov, E.N. Snow Queen is evil and beautiful: Experimental evidence for probabilistic contextuality in human choices. Decision
**2018**, 5, 193–204. [Google Scholar] [CrossRef] - Dzhafarov, E.N.; Zhang, R.; Kujala, J. Is there contextuality in behavioural and social systems? Philos. Trans. R. Soc. A
**2016**, 374, 20150099. [Google Scholar] [CrossRef] - De Finetti, B. Theory of Probability, Vol. I; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Allwein, G.; Moskowitz, I.S.; Chang, L.-W. A New Framework for Shannon Information Theory; Technical Report A801024; Naval Research Laboratory: Washington, DC, USA, 2004.
- Seligman, J. Channels: From logic to probability. In Formal Theories of Information; Sommaruga, G., Ed.; Lecture Notes in Computer Science, 5363; Springer: Berlin, Geramny, 2009; pp. 193–233. [Google Scholar]
- Adams, E.W. A Primer of Probabilistic Logic; University of Chicago Press: Chicago, IL, USA, 1998. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Information and Quantum Computation; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Tegmark, M. How unitary cosmology generalizes thermodynamics and solves the inflationary entropy problem. Phys. Rev. D
**2012**, 85, 123517. [Google Scholar] [CrossRef][Green Version] - Pegg, D.; Barnett, S.; Jeffers, J. Quantum theory of preparation and measurement. J. Mod. Opt.
**2002**, 49, 913–924. [Google Scholar] [CrossRef][Green Version] - Walter, M.; Gross, D.; Eisert, J. Multi-partite entanglement. In Lectures on Quantum Information; Bruss, D., Leuchs, D., Eds.; Wiley-VCH: Weinheimm, Germany, 2006. [Google Scholar]
- Arkani-Hamed, N.; Trnka, J. The amplituhedron. J. High Energy Phys.
**2014**, 10, 030. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Observer O and world W exchange bits via an ancillary array of non-interacting qubits. Bit values are preserved if a quantum reference frame (here, a z axis) is shared a priori.

**Figure 2.**To be identifiable by observation, a system S must have a reference component R with a time-invariant state $|R\rangle $. To be of interest for measurements, S must also have a pointer component P with a time-varying state $|P\rangle $.

**Figure 3.**A cocone diagram (CCD) is a commuting diagram depicting maps (infomorphisms) ${f}_{ij}$ between classifiers ${\mathcal{A}}_{i}$ and ${\mathcal{A}}_{j}$, maps ${g}_{k}l$ from the ${\mathcal{A}}_{k}$ to one or more channels ${\mathcal{C}}_{l}$ over a subset of the ${\mathcal{A}}_{i}$, and maps ${h}_{l}$ from channels ${\mathcal{C}}_{l}$ to the colimit $\mathbf{C}$ (cf. Equation (6.7) of [26]).

**Figure 4.**A sequence of CCDs identifying R (blue triangles) and measuring pointer components ${P}_{i},{P}_{j},{P}_{k}\dots {P}_{l}$. Transitions between CCDs are implemented by groupoid elements, e.g., ${\mathcal{G}}_{ij}$ and labeled by discrete times, e.g., ${\tau}_{i}$. The operators ${M}_{k}^{P}$ can equally well be generalized to subsets ${\left\{{M}^{P}\right\}}_{k}$ of mutually-commuting pointer-state observables.

**Figure 5.**Bayesian coherence is obtained if probabilities along all paths in a diagram sum to unity. Probabilities are not assigned within the R-identifying cocone (blue triangle).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fields, C.; Glazebrook, J.F.
Representing Measurement as a Thermodynamic Symmetry Breaking. *Symmetry* **2020**, *12*, 810.
https://doi.org/10.3390/sym12050810

**AMA Style**

Fields C, Glazebrook JF.
Representing Measurement as a Thermodynamic Symmetry Breaking. *Symmetry*. 2020; 12(5):810.
https://doi.org/10.3390/sym12050810

**Chicago/Turabian Style**

Fields, Chris, and James F. Glazebrook.
2020. "Representing Measurement as a Thermodynamic Symmetry Breaking" *Symmetry* 12, no. 5: 810.
https://doi.org/10.3390/sym12050810