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Abstract: Given a2”-dimensional Cayley-Dickson algebra, whére< N < 6, we first
observe that the multiplication table of its imaginary srit, 1 < a < 2V — 1, is encoded
in the properties of the projective space (PG- 1, 2) if these imaginary units are regarded
as points and distinguished triads of thém, e, e.}, 1 < a < b < ¢ < 2V — 1 and
e.6p = te., as lines. This projective space is seen to feature twondiskinds of lines
according asus + b = cora+ b # c¢. Consequently, it also exhibits (at least two)
different types of points in dependence on how many linesitbiee kind pass through
each of them. In order to account for such partition of thg PG- 1, 2), the concept of
Veldkamp space of a finite point-line incidence structurengployed. The corresponding
point-line incidence structure is found to be a specific bird configurationCy; in
particular,C; (octonions) is isomorphic to the Pash, 43)-configurationC, (sedenions) is
the famous Desargués$0s)-configurationC; (32-nions) coincides with the Cayley-Salmon
(154, 203)-configuration found in the well-known Pascal mystic hexagand’s (64-nions)

is identical with a particula(215, 353)-configuration that can be viewed as four triangles in
perspective from a line where the points of perspectivitgigfpairs of them form a Pasch
configuration. Finally, a brief examination of the struetof generic y leads to a conjecture
thatCy is isomorphic to a combinatorial Grassmannian of tgéN + 1).
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1. Introduction

As itis well known (see, for examplel P]), the Cayley-Dickson algebras represent a nested sequence
Ao, Ay, Ay, ..., Ay, ... of 2¥-dimensional (in general non-associati®glgebras withAy C Ay,
whereA, = R and where for anyW > 0 the setd y; comprises all ordered pairs of elements frdm
with conjugation defined by:

(z,y)" = (2", —y) (1)
and multiplication by:
(x,)(X,Y) = (X = Yy*, 2"V + Xy) (2)

Every finite-dimensional algebra (see, for exam@®@$), i defined by the multiplication rule of its basis.
The basis elements (or unitg), ey, es, . .., eanvt1_ Of Ay 1, e being the real basis element (identity),
can be chosen in various ways. Our preference is the candisis:

ep = (e, 0), e; = (e1,0), ey = (e9,0), Co., E9N_q = (eyv_1,0)

€oN = (0, 60), €2N+1 = (07 61), €2N+2 = (07 62), ceey CoN+1_1q = (O, €2N71>

where, by abuse of notation (see, for exam@8, fhe same symbols are also used for the basis elements
of Ay. This is because the paper essentially focuses on muétict properties of basis elements and
the canonical basis seems to display most naturally theenbhesymmetry of this operation. For, in
addition to revealing the nature of the Cayley-Dickson reimerprocess, it also implies that for bath
andb being non-zero we havge, = +e,q;, Where the symbold” denotes “exclusive or” of the binary
representations of andb (see, for exampled]). From the above expressions and Equatidys(d @)
one can readily find the product of any two distinct unitsAf ., if the multiplication properties of
those of Ay are given. Such products are usually expressed/presentethbular form, and we shall
also follow this tradition here. All the multiplication teds we made use of were computed for us by
Jorg Arndt; the computer program is named cayley-dicksemalcc and is freely available from his
web-site p].

Employing such a multiplication table ofy, N > 2, it can be verified that the" — 1 imaginaries
e 1 < a <2V —1, form (2N2‘1)/3 distinguished sets each of which comprises three diffenaits
{eq, ep, €.} that satisfy the equation:

eqy = Le, (3)

and where each unit is found to belon@t6-! —1 such sets. (Although these properties will explicitly be
illustrated only for the cases< N < 6, due to the nested structure of the algebras they must bleitadhi
by any other higher-dimensionaly.). Regarding the imaginaries as points and their distifgpals
triples as lines, one gets a point-line incidence geomehlgrevevery line has three points and through
each point there pag¥—! — 1 lines and which is isomorphic to R& — 1, 2), the(N — 1)-dimensional
projective space over the smallest Galois fi6lH(2) (see also§] for N = 3 and [7/] for N = 4). Let

us assume, without loss of generality, that the elementsyirdestinguished triplge,, ;, e.} of Ay are
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ordered in such a way that< b < ¢. Then, forN > 3, we can naturally speak about two different kinds
of triples and, hence, two distinct kinds of lines of the assed2” -nionic P@N — 1,2), according as
a-+b=cora+ b +# c; in what follows a line of the former kind will be called ordiry and that of the
latter kind defective. This stratification of the line-sétloe PG N — 1, 2) induces a similar partition of
the point-set of the latter space into several types, whe@ird of a given type is characterized by the
same number of lines of either kind that pass through it.

Obviously, if our projective space RG — 1,2) is regarded as an abstract geometey se every
point and/or every line in it has the same footing. So, to antéor the above-described “refinement”
of the structure of oue”-nionic P@QN — 1, 2), it turns out to be necessary to find a representation of
this space where each point/line is ascribed a certainrfiatéstructure, which at first sight may seem
to be quite a challenging task. To tackle this task succlgsite need to introduce a few ideas from the
realm of finite geometry.

We start with a finite point-line incidence structwe= (P, L, ) where? and L are finite sets of
points and lines and where incidente_ P x L is a binary relation indicating which point-line pairs
are incident (see, for exampld])]. Here, we shall only be concerned with specific point-imgdence
structures called configuration8][ A (v,, b,)-configuration is & where: (1)v = |P| andb = |L];

(2) every line ha# points and every point is onlines; and (3) two distinct lines intersect in at most one
point and every two distinct points are joined by at most ame la configuration where = b andr = k&

is called symmetric (or balanced), and usually denoted(as)econfiguration. A(v,., by )-configuration
with v = (") andb = ("} ") is called abinomial configuration. Next, we define a geometric
hyperplane o = (P, L, I), which is a proper subset @ such that a line fron@ either lies fully in

the subset, or shares with it only one pointCIpossesses geometric hyperplanes, then one can define
the Veldkamp space df, V(C), as follows [LQ]: (i) a point of V(C) is a geometric hyperplane 6fand

(i) a line of V(C) is the collectionH’ H" of all geometric hyperplaned of C such thatd’ N H" =
H'NH =H"NHorH = H', H",whereH' andH" are distinct geometric hyperplanes. If each lin€ of
has three points ar@“behaves well”, a line oV’(C) is also of size three and can equivalently be defined
as{H' H",H'AH"}, where the symbol\ stands for the symmetric difference of the two geometric
hyperplanes and an overbar denotes the complement of tketobglicated. From its definition it is
obvious thatV(C) is well suited for our needs because its points, being theessets of points, have
different “internal” structure and so, in general, they camlonger be on the same par; clearly, the
same applies to the lin@g(C). Our task thus basically boils down to finding su&h whoseV(Cy) is
isomorphic to PGN — 1, 2) and completely reproduces it§ -nionic fine structure. This will be carried
out in great detail for the first four non-trivial cas&s< N < 6, which, when combined with the two
trivial cases (V = 1, 2), will provide us with sufficient amount of information to gss a general pattern.

The paper is organized as follows. In Section 2 it is shown gha(octonions) is isomorphic
to the Pasch(6,,43)-configuration, which plays a key role in classifying Steirigple systems.

In Section 3 one demonstrates th& (sedenions) is nothing but the famous Desargues
(103)-configuration. In Section 4 ow; (32-nions) is shown to be identical with the Cayley-Salmon
(154, 203)-configuration found in the well-known Pascal mystic hesagr In Section 5 we find
that Cs corresponds to a particul@®21s, 353)-configuration encompassing seven distinct copies of the
Cayley-Salmon(154, 203)-configuration as geometric hyperplanes. In Section 6 saménentary
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2 3
to a combinatorial Grassmannian of tygg(/V + 1) is conjectured. Finally, Section 7 is reserved for

concluding remarks.

properties of the generi€y = ((N“)N_l, (N+1)3>-configuration are outlined and its isomorphism

2. Octonions and the Pascli6,, 43)-Configuration

From the nesting property of the Cayley-Dickson constructb Ay it is obvious that the smallest
non-trivial case to be addressedAs, the algebra of octonions, whose multiplication table sspnted
in Tablel.

Table 1. The multiplication table of the imaginary unit octonioas 1 < a < 7. For the
sake of simplicity, in what follows we shall employ a shoarl notatiore, = a; likewise
for the real unitz; = 0. There are also delineated multiplication tables corredpw to the
distinguished nested sequence of sub-algebras of complebers ¢ = 1, the upper left
corner) and quaternion$ € a < 3, the upper lef8 x 3 square).

*

1\234567

0| -3 +2|-5 +4 +7 -6
+3| -0 -1|-6 -7 +4 +5
2| +1 —0|-7 +6 -5 +4
+7/-0 -1 -2 -3
4] +7 —6|+1 -0 +3 -2
-7 -4 45| +2 -3 -0 +1
+6| -5 —4|+3 +2 -1 -0

~N o O AW N
+
ol
+
(o]

The above-given multiplication table implies the existent the following seven distinguished trios
of imaginary units:
{]" 27 3}7 {17 47 5}7 {17 6’ 7})

{2,4,6},{2,5,7},
{3,4,7},{3,5,6}

Regarding the seven imaginary units as points and the seséngiiished triples of them as lines, we
obtain a point-line incidence structure where each lingtase points and, dually, each point is on three
lines, and which is isomorphic to the smallest projectivenpl PG2,2), often called the Fano plane,
depicted in Figurd.

It is then readily seen that we have six ordinary lines, ngmel

{]'7 27 3}7 {17 47 5}7 {]'7 67 7}7

{2,4,6},{2,5,7},
{3,4,7}
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and only single defective one, that is:
{3,5,6}

Similarly, our octonionic P@, 2) features two distinct types of points. A type-one point iststhat
two lines passing through it are ordinary, the remaininglegiag defective; such a point lies in the set:

{3,5,6} =«
A type-two point is such that every line passing through @rdinary; such a point belongs to the set:
{1, 2,4, 7} =7

which is highlighted by gray color in Figurke

Figure 1. An illustration of the structure of P@,2), the Fano plane, that provides the
multiplication law for octonions (see, e.g6]]. The points of the plane are seven small
circles. The lines are represented by triples of circleatied on the sides of the triangle, on
its altitudes, and by the triple lying on the big circle. Theee imaginaries lying on the same
line satisfy Equation3).

A configurationC; whose Veldkamp space reproduces the above-describetiguesrtdf points and
lines of PG2,2) is, as we will soon see, nothing but the well-known Pa&ih4;)-configuration,P.
This configuration, which plays a very important role in sifgng Steiner triple systems (see, for
example, 11]), is depicted in Figur@ in a form showing an automorphism of order three; it alsoslive
the Fano plane and, as it is readily seen by comparing Figuaesl2, it can be obtained from the latter
by removal of any of its seven points and all the three linessing through it.

In order to see thal(P) = PG(2,2) we shall first show, using our diagrammatical represemntatio
of P, all seven geometric hyperplanes BfFigure3. We see that they are indeed of two different
forms, of cardinality three and four. A member of the formet somprises two points at maximum
distance from each other. Such geometric hyperplane qameis to a type-one (ar-) point of PG 2, 2).

A member of the latter set features three points on a commnern such a geometric hyperplane7af
corresponds to a type-two (@i-) point of our PG2,2). The seven lines oP(P) are illustrated in
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a compact diagrammatic form in Figudeas it is easily discernible, each of the six ordinary lireesfi
the form{«, 3, f}, whilst the remaining defective one has the «, o} shape.

—/

Figure 2. An illustrative portrayal of the Pasch configuration: aexlistand for its points,
whereas its lines are represented by triples of points ommamstraight segments (three)

and the triple lying on a big circle.

Figure 3. The seven geometric hyperplanes of the Pasch configurdienhyperplanes are
labelled by imaginary units of octonions in such a way thatdéven lines of the Veldkamp
space of the Pasch configuration are identical with the sdistimguished triples of units,
that is with the seven lines of the P%2) shown in Figurel.
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Figure 4. A unified view of the seven Veldkamp lines of the Pasch confgon. The reader

can readily verify that for any three geometric hyperplaye®y on a given line of the Fano
plane, one is the complement of the symmetric differencb@bther two.

3. Sedenions and the Desargué€$0s)-Configuration

Our next focus is oM, the sedenions, whose basic multiplication propertiessaremarized in
Table2.
An inspection of this table yields as many as 35 distingudghiples, namely:

{1,2,3},{1,4,5},{1,6,7},{1,8,9},{1,10, 11}, {1, 12, 13}, {1, 14, 15},

{2,4,6},{2,5,7},{2,8,10},{2,9, 11}, {2, 12, 14}, {2, 13, 15},
{3,4,7},{3,5,6},{3,8,11},{3,9, 10}, {3,12, 15}, {3, 13, 14},
{4,8,12},{4,9,13}, {4, 10, 14}, {4, 11,15},
{5,8,13},{5,9,12}, {5,10,15}, {5, 11, 14},
{6,8,14},{6,9,15}, {6, 10, 12}, {6, 11,13},
{7.8,15},{7,9,14}, {7,10,13}, {7, 11,12}

Regarding the 15 imaginary units as points and the 35 digghgd trios of them as lines, we obtain
a point-line incidence structure where each line has thodetpand each point is on seven lines, and
which is isomorphic to P@, 2), the smallest projective space—as depicted in Figufihe latter figure
employs a diagrammatical model of P332) built, after Polster12], around the pentagonal model of
the generalized quadrangle of type @(2) whose 15 lines are illustrated by triples of points lying on
black line-segments (10 of them) and/or black arcs of cir¢. The remaining 20 lines of R&G 2)
comprise four distinct orbits: the yellow, red, blue andagr@ne consisting, respectively, of the yellow
({1,10,11}), red {1, 8,9}), blue (3,13,14}) and green{3, 12,15}) line and other four lines we get
from each by rotation through 72 degrees around the centbegientagon.
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Table 2. The multiplication table of the imaginary unit sedeniepsl < a < 15. As in the

1199

previous section, we shall employ a short-hand notatjoee a; likewise for the real unit
eo = 0. There are also shown multiplication tables corresponttirige distinguished nested

sequence of sub-algebras starting with complex numbets 1), quaternionsi( < a < 3)

and octonionsi(< a < 7).

*/12)2 3|4 5 6 7|8 9 10 11 12 13 14 15
1/ -0| -3 +2| -5 +4 +7 -6 -9 +8 +11 -10 +13 -12 -15 +14
2|3, -0 -1|-6 -7 +4 +5|-10 -11 +8 +9 +14 +15 -12 -13
3|-2|+1 -O0|-7 +6 -5 +4 |-11 +10 -9 +8 +15 -14 +13 -12
4 | +5 +6 +7 /-0 -1 -2 -3|-12 -13 -14 -15 +8 +9 +10 +11
5| 4|+ -6|+1 -0 +3 -2 |-13 +12 -15 +14 -9 +8 -11 +10
6| -7, -4 +% | +2 -3 -0 +1|-14 +15 +12 -13 -10 +11 +8 -9
7/+%6 | -5 4| +3 +2 -1 -0]|-15 -14 +13 +12 -11 -10 +9 +8
8| +9 | 410 +11| +12 +13 +14 +15 -0 -1 -2 -3 -4 -5 -6 -7
9, -8 |+11 -10| +13 -12 -15 +14| +1 -0 +3 -2 +5 -4 -7 46
10| -11| -8 +9 | +14 +15 -12 -13| +2 -3 -0 +1 +6 +7 -4 -5
11| +10| -9 -8 | +15 -14 +13 -12| +3 +2 -1 -0 +7 -6 +5 -4
12| -13| -14 -15| -8 +9 +10 +11| +4 -5 -6 -7 -0 +1 +2 +3
13| +12| -15 +14| -9 -8 —-11 +10| +b +4 -7 +6 -1 -0 -3 +2
14| +15| +12 -13| -10 +11 -8 -9 | +6 +7 +4 -5 -2 +3 -0 -1
15| -14| +13 +12|-11 -10 +9 -8 | +7 -6 +5 +4 -3 -2 +1 -0

Figure 5. An illustration of the structure of P@, 2) that provides the multiplication law for
sedenions. As in the previous case, the three imaginaimggs dyn the same line are such that

the product of two of them yields the third one, sign disregdt



Mathematic2015 3 1200

It is not difficult to verify that we have 25 ordinary lines,maly:
{1,2,3},{1,4,5},{1,6,7},{1,8,9},{1,10, 11}, {1,12,13}, {1, 14, 15},

{2,4,6},{2,5,7},{2,8,10},{2,9, 11}, {2, 12, 14}, {2, 13, 15},
{3,4,7},{4,8,12},{4,9,13}, {4, 10, 14}, {4, 11, 15},
{3,8,11}, {5,8,13}, {6, 8,14}, {7,8, 15},
{3,12,15}, {5,10,15},{6,9, 15}

and 10 defective ones, namely:
{3,5,6},{3,9,10}, {3,13, 14},

{5,9,12}, {5, 11, 14},
{6,10,12}, {6, 11,13},
{7,9,14},{7,10,13},{7,11,12}

Similarly, our sedenionic P@,2) features two distinct types of points. A type-one point istsu
that four lines passing through it are ordinary, the renmgjrthree being defective; such a point lies
in the set :

{3,5,6,7,9,10,11,12,13,14} = «

A type-two point is such that every line passing through @rdinary; such a point belongs to the set:
{1,2,4,8,15} = p

being illustrated by gray shading in Figube We see that all defective lines are of the same form,
namely{«, o, a}. The 25 ordinary lines split into two distinct families. Tehthem are of the form

{a, 5, 5}, namely:
{1, 2, 3}, {1, 4, 5}, {1, 8, 9}, {1, 14, 15},

{2,4,6},{2,8,10},{2,13, 15},
{4,8,12}, {4,11,15},
{7.8,15}

and the remaining 15 are of the fofm, a, 5}, namely:
{1,6,7},{1,10,11},{1,12,13},

{2,5,7},{2,9,11},{2,12, 14},
(3,4,7},{4,9,13}, {4, 10, 14},
(3,8,11},{5,8,13},{6,8, 14},
{3,12,15}, {5, 10, 15}, {6, 9, 15}

A configurationC, whose Veldkamp space reproduces the above-describetigrartdf points and
lines of PG3,2) is, as demonstrated below, the famous DesargL&s-configuration,D, which is one
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of the most prominent point-line incidence structures (feexample, 13]). Up to isomorphism, there
exist altogether 10105)-configurations. The Desargues configuration is, unlikethers, flag-transitive
and the only one where for each of its points the three polraisare not collinear with it lie on a line.
This configuration, depicted in Figufin a form showing its automorphism of order three, also lives
in our sedenionic PG, 2); here, its points are the 1@-points and its lines are all the defective lines.
In order to see tha?(D) = PG(3, 2) we shall first introduce, using our diagrammatical represém

of D, all 15 geometric hyperplanes BFigure7. We see that they are indeed of two different forms,
and of required cardinality ten and five. A member of the farset comprises a point and three points
not collinear with it. Such geometric hyperplane corregsoto a type-one (o«-) point of PG3, 2).

A member of the latter set features six points located onlfoas, with two lines per each point; this is
nothing but the Pasch configuration we introduced in theipusvsection. Such a geometric hyperplane
of D corresponds to a type-two (¢F) point of our PG3, 2). Itis also a straightforward task to verify
thatV (D) is endowed with 35 lines splitting into the required thremifees; those that correspond to
defective lines of our sedenionic P%&2) are shown in Figur8, while those that correspond to ordinary
lines are depicted in Figur@ (of type {«, 3, 5}) and FigurelO (of type {«, «, 5}). Figurel1l offers a
“condensed” view of the isomorphisit(D) = PG(3, 2).

Figure 6. An illustrative portrayal of the Desargues configuratiounilttaround the model
of the Pasch configuration shown in Fig@ecircles stand for its points, whereas its lines
are represented by triples of points on common straight satg{six), arcs of circles (three)
and a big circle.

We shall finalize this section by pointing out that the exist of two different kinds of geometric
hyperplanes of the Desargues configuration is closely adadewith two well-known views of this
configuration. The first one is as a pair of triangles that ar@earspective from both a point and
a line (Desargues’ theorem), the point and the line formingeametric hyperplane. The other
view is as the incidence sum of a complete quadrangée @ (43, 6,)-configuration) and a Pasch
(62, 43)-configuration 18].
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Figure 7. The 15 geometric hyperplanes of the Desargues configurafibe hyperplanes
are labelled by imaginary units of sedenions in such a waty-tha we shall verify in the
next three figures—the 35 lines of the Veldkamp space of theafeies configuration are
identical with the 35 distinguished triples of units, thawith the 35 lines of the P@, 2)
shown in Figures.
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Figure 8. The 10 Veldkamp lines of the Desargues configuration thatesgmt
the 10 defective lines of the sedenionicB). Here, as well as in the next two figures, the
three geometric hyperplanes comprising a given Veldkangdre distinguished by different
colors, with their common elements (here just a single pdieing colored black. For each
Veldkamp line we also explicitly indicate its composition.
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A

Figure 11. A compact graphical view of illustrating the bijection betn 15 imaginary unit
sedenions and 15 geometric hyperplanes of the Desarguiguration, as well as between
35 distinguished triples of units and 35 Veldkamp lines ef Bresargues configuration.

4. 32-Nions and the Cayley-Salmoif15,, 205 )-Configuration

Our next case isl;, or the 32-nions, whose multiplication properties are €edan Table3.

From this table we infer the existence of 155 distinguistrgalets of imaginary units. Regarding
the 31 imaginary units ofl; as points and the 155 distinguished triples of them as Iwespbtain a
point-line incidence structure where each line has thréggand each point is on 15 lines, and which is
isomorphic to PG4, 2). We next find that 65 lines of this space are defective and @idary. However,
unlike the preceding two cases, there are three differgrestyof points in our 32-nionic R@,2):
10 a-points,

a ={7,11,13,14,19, 21, 22, 25, 26, 28},
each of which is on nine defective and six ordinary linespisoints,
g =1{3,5,6,9,10,12,15,17, 18, 20, 23, 24, 27,29, 30},
each of which is on seven defective and eight ordinary linad;six~y-points,

v ={1,2,4,8,16,31},
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each of them being on 15 ordinary (and, hence, on zero def¢tities. This stratification of the point-set
of PG(4, 2) leads, in turn, to two different kinds of defective lines ahdee distinct kinds of ordinary
lines. Concerning the former, there are 45 of them of typgy, 5}, namely:

{3,13,14},{3,21,22},{3,25, 26},

{5,11,14}, {5,19,22}, {5,25, 28},
{6,11,13},{6,19,21}, {6, 26, 28},
{7,9,14},{7,10,13}, {7, 11,12}, {7,17,22},{7,18, 21}, {7, 19, 20},
{7,25,30}, {7,26,29}, {7,27,28},
{9,19,26}, {9, 21, 28},

{10,19, 25}, {10, 22, 28},

{11,17,26}, {11,18,25}, {11,19,24}, {11,21,30}, {11,22,29}, {11, 23,28},
{12,21,25},{12,22,26},
{13,17,28},{13,19,30}, {13,20,25}, {13, 21,24}, {13,22,27}, {13, 23, 26},
{14,18,28},{14,19,29}, {14,20,26}, {14, 21, 27}, {14, 22, 24}, {14, 23, 25},
{15,19,28}, {15, 21, 26}, {15, 22,25}

and 20 of type{ 3, 5, 8}, namely:
{3,5,6},{3,9,10},{3,17,18}, {3, 29, 30},

{5,9,12},{5,17,20}, {5, 27, 30},
{6,10,12}, {6, 18,20}, {6,27, 29},
{9,17,24}, {9, 23, 30},
{10,18,24}, {10, 23,29},
{12,20,24}, {12, 23,27},
{15,17,30}, {15, 18,29}, {15,20, 27}, {15, 23, 24}
As per the latter, one finds 15 of them of type, 3, 5}, namely:

{3,12,15}, {3, 20,23}, {3, 24, 27},

{5,10,15}, {5, 18,23}, {5, 24, 29},
{6,9,15}, {6,17,23}, {6, 24, 30},
{9,18,27}, {9, 20, 29},
{10,17,27}, {10,20, 30},
{12,17,29}, {12, 18,30}
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60 of type{«, 3,7}, namely:
{1,6,7},{1,10,11},{1,12,13},{1,14,15},{1,18,19}, {1, 20,21},

{1,22,23},{1,24,25}, {1, 26,27}, {1,28, 29},
{2,5,7},{2,9,11}, {2,12,14}, {2, 13,15}, {2, 17, 19}, {2, 20, 22},
{2,21,23},{2,24,26}, {2,25,27}, {2, 28,30},
{3,4,7},{3,8,11},{3,16,19}, {3, 28,31},

{4,9,13}, {4,10,14}, {4,11,15}, {4,17,21}, {4, 18,22},
{4,19,23}, {4, 24,28}, {4, 25,29}, {4, 26, 30},
{5,8,13}, {5,16,21},{5,26,31},
{6,8,14}, {6, 16,22}, {6, 25,31},
{7.8,15},{7,16,23},{7,24,31},
{8,17,25},{8,18,26}, {8, 19,27}, {8,20, 28}, {8, 21,29}, {8, 22, 30},
{9,16,25}, {9, 22,31},
{10,16,26}, {10, 21,31},
{11,16,27},{11,20,31},
{12,16,28}, {12, 19,31},

{13,16,29}, {13,18,31},
{14,16,30}, {14, 17,31}

and, finally, 15 of typg 3, v, v}, namely:

{1,2,3},{1,4,5},{1,8,9},{1,16,17},{1, 30,31},
{2,4,6},{2,8,10}, {2, 16, 18}, {2, 29, 31},
{4,8,12}, {4,16,20}, {4, 27, 31},
{8,16,24}, {8, 23,31},

{5,16,31}
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Table 3. The multiplication table—for better readability split mmtwo parts—of the
imaginary unit 32-nions,, 1 < a < 31, in short-hand notation, = a (ande, = 0).

*[12]2 3|4 5 6 7|8 9 10 11 12 13 14 15
1,-0| -3 +2| -5 +4 +7 -6|-9 +8 +11 -10 +13 -12 -15 +14
2| 43| -0 -1 -6 -7 +4 +5 | —-10 —-11 +8 +9 +14 +15 -12 -13
3|-2|+1 -0 -7 +6 -5 +4 |-11 +10 -9 +8 +15 -—-14 +13 -12
4 | +5 | +6 +7 | -0 -1 -2 -3 |-12 -13 -14 -15 +8 +9 +10 +11
5, -4+ -6|+1 -0 +3 -2 |-13 +12 -15 +14 -9 +8 —11 +10
6| 7| -4 + | +2 -3 -0 +1|-14 +15 +12 -13 -10 +11 +8 -9
7| +6 | -5 -4 | +3 +2 -1 -0 |-15 -14 +13 +12 -11 -10 +9 +8
8| +9 | +10 +11| +12 +13 +14 +15 -0 -1 -2 -3 -4 -5 -6 -7
9, -8 | +11 -10| +13 -—-12 —-15 +14| +1 -0 +3 -2 +5 -4 -7 46
10| -11| -8 +9 | +14 +15 -12 -13| +2 -3 -0 +1 +6 +7 -4 -5
11| +10| -9 -8 | +15 —-14 +13 -12| 43 +2 -1 -0 +7 -6 +5 -4
12| -13| -14 -15| -8 +9 +10 +11| +4 -5 -6 -7 -0 +1 +2 +3
13| +12| -15 +14| -9 -8 -—-11 +10| 45 +4 -7 +6 -1 -0 -3 +2
14| +15| +12 -13|-10 +11 -8 -9 | +6 +7 +4 -5 -2 +3 -0 -1
15| -14| +13 +12|-11 -10 +9 -8 | +7 -6 +5 +4 -3 -2 +1 -0
16| +17 | +18 +19| +20 +21 +22 +23| +24 +25 +26 +27 +28 +29 +30 +31
17| -16| +19 —-18| +21 —-20 —23 +22| +25 —-24 27 +26 —-29 +28 +31 -30
18| —19| —16 +17| +22 +23 —-20 —-21| +26 +27 —-24 —-25 —-30 —-31 +28 +29
19| +18 | —17 —-16| +23 —22 +21 —-20| +27 —-26 +25 —-24 —-31 +30 —-29 +28
20| —21| —22 —-23| —-16 +17 +18 +19| +28 +29 +30 +31 -24 -25 -26 27
21| 420 | —23 +22| —-17 -16 —-19 +18| +29 —-28 +31 —-30 +25 —-24 +27 —-26
22| 423 | +20 —-21| -18 +19 —-16 —17| +30 —-31 —-28 +29 +26 —-27 —-24 +25
23| —22| +21 +20| -19 -18 +17 —-16| +31 +30 —-29 —-28 +27 +26 —-25 -24
24| -25| -26 -27| -28 -29 -30 -31|-16 +17 +18 +19 +20 +21 +22 +23
25| +24 | 27 +26| —29 +28 +31 -30|-17 -16 -19 +18 —-21 +20 +23 -22
26| +27 | +24 —-25| -30 —-31 +28 +29|-18 +19 -16 -—-17 -22 -23 +20 +21
27| —-26| +25 +24| -31 +30 —-29 +28| -19 -18 +17 -—-16 —-23 +22 -21 +20
28| +29 | +30 +31| +24 -25 -26 —-27|-—-20 +21 +22 +23 -16 -17 -—-18 -19
29| —28| +31 30| +25 +24 +27 —-26|-21 —-20 +23 —22 +17 -16 +19 -18
30| —31| —28 +29| +26 —-27 +24 +25| 22 —-23 —-20 +21 +18 —-19 -—-16 +17
31| +30 | —29 -28| +27 +26 —-25 +24|-23 +22 -21 -20 +19 +18 -17 -16
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Table 3. Cont.

*

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1|-17 +16 +19 —-18 +21 —-20 —-23 +22 +25 24 -27 +26 —-29 +28 +31 -30
2 |-18 —-19 +16 +17 +22 +23 —-20 —-21 +26 +27 —-24 -25 —-30 —-31 +28 +29
3|-19 +18 -17 +16 +23 -22 +21 -20 +27 —-26 +25 —-24 —-31 +30 —-29 +28
4 | -20 -21 -22 -—-23 +16 +17 +18 +19 +28 +29 +30 +31-24 -25 -26 -27
5|-21 +20 -23 +22 -17 +16 -—-19 +18 +29 -28 +31 —-30 +25 -24 +27 -26
6 | —22 +23 +20 -21 -18 +19 +16 —-17 +30 —-31 -28 +29 +26 —-27 -—-24 +25
7 | —-23 —-22 +21 +20 -19 -18 +17 +16 +31 +30 —29 -—-28 +27 +26 —-25 -24
8| -24 -25 -26 -27 —-28 —-29 —-30 —-31 +16 +17 +18 +19 +20 +21 +22 +23
9| -25 +24 -27 +26 —-29 +28 +31 -30 -—-17 +16 -—-19 +18 -21 +20 +23 —22
10| —26 +27 +24 —-25 —-30 —-31 +28 +29 -18 +19 +16 —-17 -—-22 -23 +20 +21
11| -27 -26 +25 +24 -31 +30 —-29 +28 -19 -18 +17 +16 —-23 +22 -21 +20
12| -28 +29 +30 +31 +24 -25 -26 -—-27 —-20 +21 +22 +23 +16 —-17 -18 -19
13| -29 —-28 +31 —-30 +25 +24 +27 —-26 —-21 -—-20 +23 —-22 +17 +16 +19 -18
14| -30 —-31 -—-28 +29 +26 —-27 +24 +25 -22 -23 -20 +21 +18 -19 +16 +17
15| -31 +30 —-29 -28 +27 +26 —-25 +24 -—-23 +22 -21 -20 +19 +18 -—-17 +16
%65/ -0 -2 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -—-14 -15
17| +1 -0 +3 -2 +5 -4 -7 +6 +9 -8 -11 +10 -13 +12 +15 -14
18| +2 -3 -0 +1 +6 +7 -4 -5 +10 +11 -8 -9 -14 -15 +12 +13
19| +3 +2 -1 -0 +7 -6 +5 -4 +11 -10 +9 -8 -—-15 +14 -13 +12
200 +4 -5 -6 -7 -0 +1 +2 +3 +12 +13 +14 +15 -8 -9 -10 -11
21| +5 +4 -7 +6 -1 -0 -3 +2 +13 -12 +15 -14 +9 -8 +11 -10
22| +6 +7 +4 -5 -2 +3 -0 -1 +14 -15 -12 +13 +10 -11 -8 +9
23| +7 -6 +5 +4 -3 -2 +1 -0 +15 +14 -13 -12 +11 +10 -9 -8
24| +8 -9 -10 -11 -12 -13 -14 -15 -0 +1 +2 +3 +4 +5 +6 +7
25| +9 +8 -11 +10 —-13 +12 +15 -14 -1 -0 -3 +2 -5 +4 +7 -6
26| +10 +11 +8 -9 -14 -15 +12 +13 -2 +3 -0 -1 -6 -7 +4 +5
27| +11 -10 +9 +8 -15 +14 -13 +12 -3 -2 +1 -0 -7 +6 -5 +4
28| +12 +13 +14 +15 +8 -9 -10 —-11 -4 +5 +6 +7 -0 -1 -2 -3
29| +13 -12 +15 -14 +9 +8 +11 -10 -5 -4 +7 -6 +1 -0 +3 =2
30| +14 -15 -12 +13 +10 -11 +8 +9 -6 -7 -4 +5 +2 -3 -0 +1
31| +15 +14 -13 -—-12 +11 +10 -9 +8 -7 +6 -5 —4 +3 +2 -1 -0

A point-line configurationC; whose Veldkamp space accounts for these stratificationsotif b
the point- and line-set of our 32-nionic P42) is of type (154,203). (It is worth mentioning
here that there exists another remarkable configurationsevhldkamp space does the same job
for us, namely the generalized quadrangle of order two, &fsmwvn as the Cremona-Richmond
(153)-configuration (see, for examplel4]). However, this configuration is triangle-free and so it
camot contain the Desargues configuration as dictated by thengegtoperty of the Cayley-Dickson
algebras.) This configuration is formed within our B®) by 15 g-points and 20 defective
lines of {5,3,3} type and its structure is sketched in Figut® It is a rather easy task
to verify that this particular(154, 203)-configuration possesses 31 distinct geometric hyperplane
that fall into three different types. A type-one hyperplacensists of a pair of skew lines at
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maximum distance from each other; there are, as depictedgurd=13, 10 hyperplanes of this
type and they correspond te-points of PG4,2). A type-two hyperplane features a point and
all the points not collinear with it, the latter forming th@dh configuration; there are, as shown
in Figure14, 15 hyperplanes of this type and their counterpartssap@ints of PG4, 2). A type-three
hyperplane is identical with the Desargues configuratiomfind, as portrayed in Figurkb, altogether
six hyperplanes of this type, each standing farpoint of PG4, 2).

Figure 12. An illustration of the structure of thél5,, 205)-configuration, built around the

model of the Desargues configuration shown in FigbureThe five points added to the

Desargues configuration are the three peripheral pointstended and blue point in the

center. The 10 lines added are three lines denoted by red tmiee blue lines, three lines

joining pairwise the three peripheral points and the lirs¢ tomprises the three points in the
center of the figure, that is the ones represented by a biggderircle, a smaller blue circle

and a medium-sized black one.

Figure 13. The 10 geometric hyperplanes of thih,, 203)-configuration of type one; the
number below a subfigure indicates how many copies of thecpkat hyperplane we get by
rotating the corresponding subfigure through 120 degremsdrits center.
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Figure 15. The six geometric hyperplanes of thi,, 203)-configuration of type three.
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Figure 16. The five types of Veldkamp lines of tha5,, 203)-configuration. Here, unlike
Figures 8-10, each representative of a geometric hyperpgaiiawn separately and different
colors are used to distinguish between different hypemplgpes: red is reserved for type
one, yellow for type two and blue for type three hyperplanas. before, the black color
denotes the core of a Veldkamp line, that is the elements @onioall the three hyperplanes

comprising it.

We also find that ouf15,, 203)-configuration yields 155 Veldkamp lines that are, as exqubaif five
different types. A type-I Veldkamp line, shown in Figuk6a, features two hyperplanes of type one and
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a type-two hyperplane and its core consists of two pointsateat maximum distance from each other;
there are(lzo) = 15 x 6/2 = 45 Veldkamp lines of this type and they correspond to defedtives

of PG(4,2) of type {a, a, 5}. A type-ll Veldkamp line, featured in Figurgsh, is composed of three
hyperplanes of type two that share three points on a commen there are, obviously, 20 Veldkamp
lines of this type, having for their counterparts defectines of PG4, 2) of type {5, 5, 3}. A type-lll
Veldkamp line, portrayed in Figurkee, also consists of three hyperplanes of type two, but indase
the three common points are pairwise at maximum distanga &ach other; a quick count leads to
15 Veldkamp lines of this type, these being in a bijectionhwiib ordinary lines of P@L, 2) of type
{B, 5, B8}. Next, we have a type-IV Veldkamp line, depicted in Figli6e, which exhibits a hyperplane
of each type and whose core is composed of a line and a poin¢ abaximum distance from it; since
for each line of our(154, 205)-configuration there are three points at maximum distarm® fit, there
are20 x 3 = 60 Veldkamp lines of this type, having their twins in ordinanyds of PG4, 2) of type
{a, 5,~}. Finally, we meet a type-V Veldkamp line, sketched in Figliée, which is endowed with
two hyperplanes of type three and a single one of type twoydrabe core is isomorphic to the Pasch
configuration; hence, we ha\@) = 15 Veldkamp lines of this type, being all representatives dfroary
lines of PG4, 2) of type {53, ~,~}.

Before embarking on the final case to be dealt with in details iWworth having a closer look at
our (154, 205)-configuration and pointing out its intimate relation withetfamous Pascal’'s Mystic
Hexagram. If six arbitrary points are chosen on a conic secind joined by line segments in any
order to form a hexagon, then the three pairs of opposites afieghe hexagon meet in three points
that lie on a straight line, the latter being called the Plakiga. Taking the permutations of the six
points, one obtains 60 different hexagons. Thus, the deecabmplete Pascal hexagon determines
altogether 60 Pascal lines, which generate a remarkabfeyooation of 146 points and 110 lines called
the hexagrammum mysticum, or the complete Pascal figurei{@most comprehensive, applet-based
representation of this remarkable geometrical object] Bgj® Both the points and lines of the complete
Pascal figure split into several distinct families, usualiyned after their discoverers in the first half of
the 19-th century. We are concerned here with the 15 Salmorspand the 20 Cayley lines (see, for
example, 16,17]) which form a(15,4, 203)-configuration. This configuration is discussed in someilleta
in [18], where it is also depicted (Figure 6) and called the Caylelyrn®n (15,4, 203)-configuration. It
is precisely this Cayley-Salmofi5,, 203)-configuration which our 32-nioni€l5,4, 205)-configuration
is isomorphic to. The same configuration is also portrayeéigure 8 of [L5]. In the latter work, two
different views/interpretations of the configuration alsamentioned. One is as three pairwise-disjoint
triangles that are in perspective from a line, in which cémedenters of perspectivity are guaranteed
by Desargues’ theorem to also lie on a line; we just stress tiat these two lines form a geometric
hyperplane (of type one, see Figlr®. The other view of the figure takes any point of the configarat
to be the center of perspectivity of two quadrangles whogepairs of corresponding sides meet
necessarily in the points of a Pasch configuration; agagpttint and the associated Pasch configuration
form a geometric hyperplane (of type two, see Figi®. We can offer one more view of the
configuration, stemming from the existence of type-threpenglanes, namely as the incidence sum
of a Desargues configuration and three triangles on a comnsider(see Figur&b).
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5. 64-Nions and a(215, 353)-Configuration

The final algebra we shall treat in sufficient detaildg, or the 64-nions. From the corresponding
multiplication table, which due to its size we do not showehleut which is freely available al 9], we
infer the existence of 651 distinguished triples of imagmanits. Regarding the 63 imaginary units of
64-nions as points and the 651 distinguished triples of therlines, we obtain a point-line incidence
structure where each line has three points and each poimt &ldines, and which is isomorphic to
PG(5,2). Following the usual procedure, we find that 350 lines of 8pace are defective and 301
ordinary. Likewise the preceding case, we encounter thifgereht types of points in our 64-nionic
PG(5,2): 35 a-points, each of which is on 21 defective and 10 ordinarydijri2l 5-points, each of
which is on 15 defective and 16 ordinary lines; and seygoints, each of them being on 31 ordinary
(and, hence, on zero defective) lines. This stratificatibthe point-set of PG, 2) leads, in turn, to
three different kinds of defective lines and four distingtds of ordinary lines. Out of 350 defective
lines, we find 105 of typda, a, a}, 210 of type{«a, a, 3} and 35 of type{3, 5, 5}. On the other hand,
301 ordinary lines are partitioned into 105 lines of tyje 3, 5}, 70 of type{a, a,~}, 105 of type
{a, 8,7} and 21 of type{ 3,7, 7}

The Veldkamp space mimicking such a fine structure of(R® is that of a particular
(215, 353)-configuration,Cg, that also lives in our PG, 2) and whose points are the Zipoints and
whose lines are the 35 defective lines {of, 5, 5} type. To visualise this configuration, we build
it around the model of the Cayley-Salm@t5,, 203)-configuration of 32-nions shown in Figufe.
Given the Cayley-Salmon configuration, there are six points £ lines to be added to yield our
(215, 353)-configuration, and this is to be done in such a way that théguration we started with forms
a geometric hyperplane in it. As putting all the lines intaragke figure would make the latter look rather
messy, in Figurd 7 we briefly illustrate this construction by drawing six diéat figures, each featuring
all six additional points (gray) but only five out of 15 addital lines (these lines being also drawn in
gray color), namely those passing through a selected addltpoint (represented by a doubled circle).
Employing this handy diagrammatical representation, arewerify that our(215, 353)-configuration
exhibits 63 geometric hyperplanes that fall into threeinicsttypes. A type-one hyperplane consists
of a line and its complement, which is the Pasch configuratibaere are 35 distinct hyperplanes of
this form, each corresponding to arpoint of our PG5, 2). A type-two hyperplane comprises a point
and its complement, which is the Desargues configuratiarethre 21 hyperplanes of this form, each
having ag-point for its PG5, 2) counterpart. Finally, a type-three hyperplane is isomiorpb the
Cayley-Salmon configuration; there are seven distinct lplpees of this type, each answering to a
~v-point of the PG5, 2). We leave it with the interested reader to verify by themsehhat the Veldkamp
space of our215, 353)-configuration indeed features 651 lines that do fall inte #bove-mentioned
seven distinct kinds.

As in the previous two cases, we shall briefly describe a @wbl interesting views of our
(215, 353)-configuration, both related to type-one hyperplanes. Tist €ine is as four triangles in
perspective from a line where the points of perspectivitgioipairs of them form a Pasch configuration,
the line and the Pasch configuration comprising a geomegpeiplane (compare with the first view of
both the Desargues and the Cayley-Salmon configuration$.igsketched in Figur&8, where the four
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triangles are denoted, in boldfacing, by green, red, yelhlod blue color, the line of perspectivity by

boldfaced gray color, and the points of perspectivity ofpaf triangles (together with the corresponding
lines they lie on and that are also boldfaced) by black colbhe other view is as three complete

guadrangles that are pairwise in perspective in such a walyttie three points of perspectivity lie

on a line and where the six triples of their correspondingsitheet at points located on a Pasch
configuration, again the line and the Pasch configuratianifog a geometric hyperplane (compare with
the second view of both the Desargues and the Cayley-Salnmdigaration).

Figure 17. An illustration of the structure of th&1;, 35;)-configuration, built around the
model of the Cayley-Salmofi5,, 203)-configuration shown in Figurg&2.

Figure 18. A “generalized Desargues” view of ttie15, 353)-configuration.
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6.2"-Nions and a((Ngrl)N_l, (N;1)3)-Configuration

At this point it is quite easy to spot the general pattern. M€ @lso includes the trivial cases
of complex numbers ¥ = 1), where the relevant geometry is just a single point, thatthe
(10, 03)-configuration, and quaternionsV( = 2), whose geometry is a single line, that is, the
(31, 13)-configuration, we obtain the following nested sequence arffigurations whose Veldkamp
spaces capture the stratification/partition of the pointd &ne-sets of the”-nionic PQN — 1,2),

N being a positive integer,

( (N + 1) (N + 1) )

2 N—l7 3 3 ’
It is curious to notice that the first entry represents a ¢jidar number, while the second one is
a tetrahedral number, or triangular pyramidal number. heptvords, we get a nested sequence of
binomial (") | ("} "), )-configurations with- = N — 1 andk = 3, whose properties have very

recently been discussed in a couple of interesting pa@6r21]. The first few configurations are shown,
in a form where the configurations are nested inside each, athieigure19.

®
s

64 ...

Figure 19. A nested hierarchy of finitfé(N“)N_l, (N“)3>-configurations oR™-nions for

2 3
1 < N < 5 when embedded in the Cayley-Salmon configurati¥n< 5).
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A particular character of this nesting is reflected in theuctrre of geometric hyperplanes.

Denoting our generi((N;“)N_l, (N;”)S)-configuration byCx, we can express the types of geometric

hyperplanes of the above-discussed cases in a compact $dioticavs:

Ci: o,
Cyi (4,
CgZ CQ, Cl |—|Cly
Cyt C5, ColUCy,

Cs: Cyy C3UC, CoUCy,
CG: C5, C4|_|Cl, CgUCQ

which implies the following generic hyperplane composiso
Cy: Cnvo1y Cy2UC, CyosUCy .oy CyUCy
or
Cni Cn-1, CnaUC, CysUCy ..., ClyUCy,

according asV is even or odd, respectively; here, the symhdal §tands for a disjoint union of two sets.
In the spirit of previous sections, let us also have a closek kt the nature of our generi;. To
this end, we first recall the following observatiors,, the Desargues configuration, can be viewed as
(4 — 2 =) two triangles in perspective from a line which are also pecsive from a point, that i§;; the
line and the point form a geometric hyperplan€gfNext,Cs, the Cayley-Salmon configuration, admits
aview as { — 2 =) three triangles in perspective from a line where the patserspectivity of three
pairs of them are on a line, aka; the two lines form a geometric hyperplane@t Finally, Cs, our
(215, 353)-configuration, can be treated d@s- 2 =) four triangles in perspective from a line where the
points of perspectivity of six pairs of them lie on a Paschfigpmation, alia<’s; the line and the Pasch
configuration form a geometric hyperplane@t Generalizing these observations, we conjecture that
forany N > 4, Cy can be regarded as — 2 triangles that are in perspective from a line in such a way
that the points of perspectivity ¢f'; *) pairs of them form the configuration isomorphiaie_s, where
the latter and the axis of perspectivity form a geometricdngfane otC .
Next, we invoke the concept of combinatorial Grassmannsae,(for example,2,23]). Briefly,
a combinatorial Grassmanniah,(|.X |), wherek is a positive integer and’ is a finite set, is a point-line
incidence structure whose points arelement subsets df and whose lines arg + 1)-element subsets
of X, incidence being inclusion. It is know2Z] that if | X| = N + 1 andk = 2, Go(N + 1) is
a binomial ((NQH)N_l, (Ngl)?’)-configuration; in particular(,(4) is the Pasch configurationy,(5)
is the Desargues configuration adg(N + 1)'s with N > 5 are called generalized Desargues
configurations. Now, from our detailed examination of therfeases it follows thats, C4, Cs, C, . .. ,Cx
are endowed with 1, 5, 15, 35, . () ') Pasch configurations. And &) is also the number of Pasch
configurations inGy(N +1), N > 3, we are also naturally led to conjecture tlgt= Go(N +1). From
what we have found in the previous sections it follows th& finoperty indeed holds far < N < 6,
being illustrated fotNV = 5 and N = 6 in Figure20.
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Figure 20. Left: A diagrammatical proof of the isomorphism betwegnandG,(6). The
points ofC; are labeled by pairs of elements from the{de®, ..., 6} in such a way that each
line of the configuration is indeed of the forfda, b}, {a, c},{b,c}}, a # b # ¢ # a. Right:

A pictorial illustration ofCs = G5(7). Here, the labels of six additional points are only
depicted, the rest of the labeling being identical to thaishin the left-hand side figure.

7. Conclusions

An intriguing finite-geometrical underpinning of the mplication tables of Cayley-Dickson algebras
An, 3 < N < 6, has been found that admits generalization to any higheedsionalAy. This
started with an observation that the multiplication proisrof imaginary units of the algebr&y are
encoded in the structure of the projective spacg¢ /PG 1,2). Next, this space was shown to possess
a refined structure stemming from particular propertiegipfdas of imaginary units forming its lines.
To account for this refinement, we employed the concept ofiRégghp space of point-line incidence
structure and found out the latter to be a binor(ié?’f)]v_l, (N?fl)g)-configuratiort]v; in particular,
C; (octonions) was found to be isomorphic to the Pagtsh4;)-configuration,C, (sedenions) to the
famous Desargue§l0;)-configuration,Cs (32-nions) to the Cayley-Salmofi5,, 203)-configuration
found in the well-known Pascal mystic hexagram @&gd64-nions) was shown to be identical with a
particular(21;, 353 )-configuration that can be viewed as four triangles in patspefrom a line where
the points of perspectivity of six pairs of them form a Pasahfiguration. These configurations are seen
to form a remarkable nested pattern, whéxe ; is embedded i, as its geometric hyperplane, that
naturally reflects the spirit of the Cayley-Dickson recuestonstruction of corresponding algebras.

It is a well-known fact that the only first four algebrds;, 0 < N < 3, are “well-behaved” in the
sense of being normed, alternative and devoid of zeroatisis-the facts that are frequently offered as an
explanation why a relatively little attention has been aidiar to their higher-dimensional cousins, these
latter being even regarded by some scholars as “patholbgitenay well be that our finite-geometric,
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Veldkamp-space-based approach will be able to shed a nowepected light at this issue as it is only
starting with V' = 4 whenCy is found to feature a “generalized Desargues property” ensénse that

it can be interpreted a& — 2 triangles that are in perspective from a line in such a waytti@points

of perspectivity of(NZj?) pairs of them form the configuration isomorphicdq_3. Or, in a slightly
different form, it is only forV > 4 whenCy contains Desargues configurations, these occurring as
components of its geometric hyperplanes at that.
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