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Abstract: Given a2N -dimensional Cayley-Dickson algebra, where3 ≤ N ≤ 6, we first

observe that the multiplication table of its imaginary units ea, 1 ≤ a ≤ 2N − 1, is encoded

in the properties of the projective space PG(N − 1, 2) if these imaginary units are regarded

as points and distinguished triads of them{ea, eb, ec}, 1 ≤ a < b < c ≤ 2N − 1 and

eaeb = ±ec, as lines. This projective space is seen to feature two distinct kinds of lines

according asa + b = c or a + b 6= c. Consequently, it also exhibits (at least two)

different types of points in dependence on how many lines of either kind pass through

each of them. In order to account for such partition of the PG(N − 1, 2), the concept of

Veldkamp space of a finite point-line incidence structure isemployed. The corresponding

point-line incidence structure is found to be a specific binomial configurationCN ; in

particular,C3 (octonions) is isomorphic to the Pasch(62, 43)-configuration,C4 (sedenions) is

the famous Desargues(103)-configuration,C5 (32-nions) coincides with the Cayley-Salmon

(154, 203)-configuration found in the well-known Pascal mystic hexagram andC6 (64-nions)

is identical with a particular(215, 353)-configuration that can be viewed as four triangles in

perspective from a line where the points of perspectivity ofsix pairs of them form a Pasch

configuration. Finally, a brief examination of the structure of genericCN leads to a conjecture

thatCN is isomorphic to a combinatorial Grassmannian of typeG2(N + 1).
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1. Introduction

As it is well known (see, for example, [1,2]), the Cayley-Dickson algebras represent a nested sequence

A0, A1, A2, . . . , AN , . . . of 2N -dimensional (in general non-associative)R-algebras withAN ⊂ AN+1,

whereA0 = R and where for anyN ≥ 0 the setAN+1 comprises all ordered pairs of elements fromAN

with conjugation defined by:

(x, y)∗ = (x∗,−y) (1)

and multiplication by:

(x, y)(X, Y ) = (xX − Y y∗, x∗Y +Xy) (2)

Every finite-dimensional algebra (see, for example, [2]) is defined by the multiplication rule of its basis.

The basis elements (or units)e0, e1, e2, . . . , e2N+1−1 of AN+1, e0 being the real basis element (identity),

can be chosen in various ways. Our preference is the canonical basis:

e0 = (e0, 0), e1 = (e1, 0), e2 = (e2, 0), . . . , e2N−1 = (e2N−1, 0)

e2N = (0, e0), e2N+1 = (0, e1), e2N+2 = (0, e2), . . . , e2N+1−1 = (0, e2N−1)

where, by abuse of notation (see, for example, [3]), the same symbols are also used for the basis elements

of AN . This is because the paper essentially focuses on multiplication properties of basis elements and

the canonical basis seems to display most naturally the inherent symmetry of this operation. For, in

addition to revealing the nature of the Cayley-Dickson recursive process, it also implies that for botha

andb being non-zero we haveeaeb = ±ea⊕b, where the symbol “⊕” denotes “exclusive or” of the binary

representations ofa andb (see, for example, [4]). From the above expressions and Equations (1) and (2)

one can readily find the product of any two distinct units ofAN+1 if the multiplication properties of

those ofAN are given. Such products are usually expressed/presented in a tabular form, and we shall

also follow this tradition here. All the multiplication tables we made use of were computed for us by

Jörg Arndt; the computer program is named cayley-dickson-demo.cc and is freely available from his

web-site [5].

Employing such a multiplication table ofAN , N ≥ 2, it can be verified that the2N − 1 imaginaries

ea, 1 ≤ a ≤ 2N − 1, form
(
2N−1

2

)
/3 distinguished sets each of which comprises three differentunits

{ea, eb, ec} that satisfy the equation:

eaeb = ±ec (3)

and where each unit is found to belong to2N−1−1 such sets. (Although these properties will explicitly be

illustrated only for the cases3 ≤ N ≤ 6, due to the nested structure of the algebras they must be exhibited

by any other higher-dimensionalAN .). Regarding the imaginaries as points and their distinguished

triples as lines, one gets a point-line incidence geometry where every line has three points and through

each point there pass2N−1 − 1 lines and which is isomorphic to PG(N − 1, 2), the(N − 1)-dimensional

projective space over the smallest Galois fieldGF (2) (see also [6] for N = 3 and [7] for N = 4). Let

us assume, without loss of generality, that the elements in any distinguished triple{ea, eb, ec} of AN are
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ordered in such a way thata < b < c. Then, forN ≥ 3, we can naturally speak about two different kinds

of triples and, hence, two distinct kinds of lines of the associated2N -nionic PG(N − 1, 2), according as

a + b = c or a + b 6= c; in what follows a line of the former kind will be called ordinary and that of the

latter kind defective. This stratification of the line-set of the PG(N − 1, 2) induces a similar partition of

the point-set of the latter space into several types, where apoint of a given type is characterized by the

same number of lines of either kind that pass through it.

Obviously, if our projective space PG(N − 1, 2) is regarded as an abstract geometryper se, every

point and/or every line in it has the same footing. So, to account for the above-described “refinement”

of the structure of our2N -nionic PG(N − 1, 2), it turns out to be necessary to find a representation of

this space where each point/line is ascribed a certain “internal” structure, which at first sight may seem

to be quite a challenging task. To tackle this task successfully, we need to introduce a few ideas from the

realm of finite geometry.

We start with a finite point-line incidence structureC = (P ,L, I) whereP andL are finite sets of

points and lines and where incidenceI ⊆ P × L is a binary relation indicating which point-line pairs

are incident (see, for example, [8]). Here, we shall only be concerned with specific point-lineincidence

structures called configurations [9]. A (vr, bk)-configuration is aC where: (1)v = |P| andb = |L|;

(2) every line hask points and every point is onr lines; and (3) two distinct lines intersect in at most one

point and every two distinct points are joined by at most one line; a configuration wherev = b andr = k

is called symmetric (or balanced), and usually denoted as a(vr)-configuration. A(vr, bk)-configuration

with v =
(
r+k−1

r

)
andb =

(
r+k−1

k

)
is called abinomial configuration. Next, we define a geometric

hyperplane ofC = (P ,L, I), which is a proper subset ofP such that a line fromC either lies fully in

the subset, or shares with it only one point. IfC possesses geometric hyperplanes, then one can define

the Veldkamp space ofC, V(C), as follows [10]: (i) a point ofV(C) is a geometric hyperplane ofC and

(ii) a line of V(C) is the collectionH ′H ′′ of all geometric hyperplanesH of C such thatH ′ ∩ H ′′ =

H ′∩H = H ′′∩H orH = H ′, H ′′, whereH ′ andH ′′ are distinct geometric hyperplanes. If each line ofC

has three points andC “behaves well”, a line ofV(C) is also of size three and can equivalently be defined

as{H ′, H ′′, H ′∆H ′′}, where the symbol∆ stands for the symmetric difference of the two geometric

hyperplanes and an overbar denotes the complement of the object indicated. From its definition it is

obvious thatV(C) is well suited for our needs because its points, being themselves sets of points, have

different “internal” structure and so, in general, they canno longer be on the same par; clearly, the

same applies to the linesV(C). Our task thus basically boils down to finding suchCN whoseV(CN) is

isomorphic to PG(N − 1, 2) and completely reproduces its2N -nionic fine structure. This will be carried

out in great detail for the first four non-trivial cases,3 ≤ N ≤ 6, which, when combined with the two

trivial cases (N = 1, 2), will provide us with sufficient amount of information to guess a general pattern.

The paper is organized as follows. In Section 2 it is shown that C3 (octonions) is isomorphic

to the Pasch(62, 43)-configuration, which plays a key role in classifying Steiner triple systems.

In Section 3 one demonstrates thatC4 (sedenions) is nothing but the famous Desargues

(103)-configuration. In Section 4 ourC5 (32-nions) is shown to be identical with the Cayley-Salmon

(154, 203)-configuration found in the well-known Pascal mystic hexagram. In Section 5 we find

that C6 corresponds to a particular(215, 353)-configuration encompassing seven distinct copies of the

Cayley-Salmon(154, 203)-configuration as geometric hyperplanes. In Section 6 some rudimentary
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properties of the genericCN ∼=
((

N+1

2

)
N−1

,
(
N+1

3

)
3

)
-configuration are outlined and its isomorphism

to a combinatorial Grassmannian of typeG2(N + 1) is conjectured. Finally, Section 7 is reserved for

concluding remarks.

2. Octonions and the Pasch(62, 43)-Configuration

From the nesting property of the Cayley-Dickson construction of AN it is obvious that the smallest

non-trivial case to be addressed isA3, the algebra of octonions, whose multiplication table is presented

in Table1.

Table 1. The multiplication table of the imaginary unit octonionsea, 1 ≤ a ≤ 7. For the

sake of simplicity, in what follows we shall employ a short-hand notationea ≡ a; likewise

for the real unite0 ≡ 0. There are also delineated multiplication tables corresponding to the

distinguished nested sequence of sub-algebras of complex numbers (a = 1, the upper left

corner) and quaternions (1 ≤ a ≤ 3, the upper left3× 3 square).

* 1 2 3 4 5 6 7

1 −0 −3 +2 −5 +4 +7 −6

2 +3 −0 −1 −6 −7 +4 +5

3 −2 +1 −0 −7 +6 −5 +4

4 +5 +6 +7 −0 −1 −2 −3

5 −4 +7 −6 +1 −0 +3 −2

6 −7 −4 +5 +2 −3 −0 +1

7 +6 −5 −4 +3 +2 −1 −0

The above-given multiplication table implies the existence of the following seven distinguished trios

of imaginary units:

{1, 2, 3}, {1, 4, 5}, {1, 6, 7},

{2, 4, 6}, {2, 5, 7},

{3, 4, 7}, {3, 5, 6}

Regarding the seven imaginary units as points and the seven distinguished triples of them as lines, we

obtain a point-line incidence structure where each line hasthree points and, dually, each point is on three

lines, and which is isomorphic to the smallest projective plane PG(2, 2), often called the Fano plane,

depicted in Figure1.

It is then readily seen that we have six ordinary lines, namely:

{1, 2, 3}, {1, 4, 5}, {1, 6, 7},

{2, 4, 6}, {2, 5, 7},

{3, 4, 7}



Mathematics2015, 3 1196

and only single defective one, that is:

{3, 5, 6}

Similarly, our octonionic PG(2, 2) features two distinct types of points. A type-one point is such that

two lines passing through it are ordinary, the remaining onebeing defective; such a point lies in the set:

{3, 5, 6} ≡ α

A type-two point is such that every line passing through it isordinary; such a point belongs to the set:

{1, 2, 4, 7} ≡ β

which is highlighted by gray color in Figure1.

e
4

e
1

e
6

e
2

e
3 e

5

e
7

Figure 1. An illustration of the structure of PG(2, 2), the Fano plane, that provides the

multiplication law for octonions (see, e.g., [6]). The points of the plane are seven small

circles. The lines are represented by triples of circles located on the sides of the triangle, on

its altitudes, and by the triple lying on the big circle. The three imaginaries lying on the same

line satisfy Equation (3).

A configurationC3 whose Veldkamp space reproduces the above-described partitions of points and

lines of PG(2, 2) is, as we will soon see, nothing but the well-known Pasch(62, 43)-configuration,P.

This configuration, which plays a very important role in classifying Steiner triple systems (see, for

example, [11]), is depicted in Figure2 in a form showing an automorphism of order three; it also lives in

the Fano plane and, as it is readily seen by comparing Figures1 and2, it can be obtained from the latter

by removal of any of its seven points and all the three lines passing through it.

In order to see thatV(P) ∼= PG(2, 2) we shall first show, using our diagrammatical representation

of P, all seven geometric hyperplanes ofP—Figure3. We see that they are indeed of two different

forms, of cardinality three and four. A member of the former set comprises two points at maximum

distance from each other. Such geometric hyperplane corresponds to a type-one (orα-) point of PG(2, 2).

A member of the latter set features three points on a common line; such a geometric hyperplane ofP

corresponds to a type-two (orβ-) point of our PG(2, 2). The seven lines ofV(P) are illustrated in
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a compact diagrammatic form in Figure4; as it is easily discernible, each of the six ordinary lines is of

the form{α, β, β}, whilst the remaining defective one has the{α, α, α} shape.

Figure 2. An illustrative portrayal of the Pasch configuration: circles stand for its points,

whereas its lines are represented by triples of points on common straight segments (three)

and the triple lying on a big circle.

3 5 6

7 4 2

1

Figure 3. The seven geometric hyperplanes of the Pasch configuration.The hyperplanes are

labelled by imaginary units of octonions in such a way that the seven lines of the Veldkamp

space of the Pasch configuration are identical with the sevendistinguished triples of units,

that is with the seven lines of the PG(2, 2) shown in Figure1.
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Figure 4. A unified view of the seven Veldkamp lines of the Pasch configuration. The reader

can readily verify that for any three geometric hyperplaneslying on a given line of the Fano

plane, one is the complement of the symmetric difference of the other two.

3. Sedenions and the Desargues(103)-Configuration

Our next focus is onA4, the sedenions, whose basic multiplication properties aresummarized in

Table2.

An inspection of this table yields as many as 35 distinguished triples, namely:

{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {1, 8, 9}, {1, 10, 11}, {1, 12, 13}, {1, 14, 15},

{2, 4, 6}, {2, 5, 7}, {2, 8, 10}, {2, 9, 11}, {2, 12, 14}, {2, 13, 15},

{3, 4, 7}, {3, 5, 6}, {3, 8, 11}, {3, 9, 10}, {3, 12, 15}, {3, 13, 14},

{4, 8, 12}, {4, 9, 13}, {4, 10, 14}, {4, 11, 15},

{5, 8, 13}, {5, 9, 12}, {5, 10, 15}, {5, 11, 14},

{6, 8, 14}, {6, 9, 15}, {6, 10, 12}, {6, 11, 13},

{7, 8, 15}, {7, 9, 14}, {7, 10, 13}, {7, 11, 12}

Regarding the 15 imaginary units as points and the 35 distinguished trios of them as lines, we obtain

a point-line incidence structure where each line has three points and each point is on seven lines, and

which is isomorphic to PG(3, 2), the smallest projective space—as depicted in Figure5. The latter figure

employs a diagrammatical model of PG(3, 2) built, after Polster [12], around the pentagonal model of

the generalized quadrangle of type GQ(2, 2) whose 15 lines are illustrated by triples of points lying on

black line-segments (10 of them) and/or black arcs of circles (5). The remaining 20 lines of PG(3, 2)

comprise four distinct orbits: the yellow, red, blue and green one consisting, respectively, of the yellow

({1, 10, 11}), red ({1, 8, 9}), blue ({3, 13, 14}) and green ({3, 12, 15}) line and other four lines we get

from each by rotation through 72 degrees around the center ofthe pentagon.
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Table 2. The multiplication table of the imaginary unit sedenionsea, 1 ≤ a ≤ 15. As in the

previous section, we shall employ a short-hand notationea ≡ a; likewise for the real unit

e0 ≡ 0. There are also shown multiplication tables correspondingto the distinguished nested

sequence of sub-algebras starting with complex numbers (a = 1), quaternions (1 ≤ a ≤ 3)

and octonions (1 ≤ a ≤ 7).

* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 −0 −3 +2 −5 +4 +7 −6 −9 +8 +11 −10 +13 −12 −15 +14

2 +3 −0 −1 −6 −7 +4 +5 −10 −11 +8 +9 +14 +15 −12 −13

3 −2 +1 −0 −7 +6 −5 +4 −11 +10 −9 +8 +15 −14 +13 −12

4 +5 +6 +7 −0 −1 −2 −3 −12 −13 −14 −15 +8 +9 +10 +11

5 −4 +7 −6 +1 −0 +3 −2 −13 +12 −15 +14 −9 +8 −11 +10

6 −7 −4 +5 +2 −3 −0 +1 −14 +15 +12 −13 −10 +11 +8 −9

7 +6 −5 −4 +3 +2 −1 −0 −15 −14 +13 +12 −11 −10 +9 +8

8 +9 +10 +11 +12 +13 +14 +15 −0 −1 −2 −3 −4 −5 −6 −7

9 −8 +11 −10 +13 −12 −15 +14 +1 −0 +3 −2 +5 −4 −7 +6

10 −11 −8 +9 +14 +15 −12 −13 +2 −3 −0 +1 +6 +7 −4 −5

11 +10 −9 −8 +15 −14 +13 −12 +3 +2 −1 −0 +7 −6 +5 −4

12 −13 −14 −15 −8 +9 +10 +11 +4 −5 −6 −7 −0 +1 +2 +3

13 +12 −15 +14 −9 −8 −11 +10 +5 +4 −7 +6 −1 −0 −3 +2

14 +15 +12 −13 −10 +11 −8 −9 +6 +7 +4 −5 −2 +3 −0 −1

15 −14 +13 +12 −11 −10 +9 −8 +7 −6 +5 +4 −3 −2 +1 −0
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Figure 5. An illustration of the structure of PG(3, 2) that provides the multiplication law for

sedenions. As in the previous case, the three imaginaries lying on the same line are such that

the product of two of them yields the third one, sign disregarded.
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It is not difficult to verify that we have 25 ordinary lines, namely:

{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {1, 8, 9}, {1, 10, 11}, {1, 12, 13}, {1, 14, 15},

{2, 4, 6}, {2, 5, 7}, {2, 8, 10}, {2, 9, 11}, {2, 12, 14}, {2, 13, 15},

{3, 4, 7}, {4, 8, 12}, {4, 9, 13}, {4, 10, 14}, {4, 11, 15},

{3, 8, 11}, {5, 8, 13}, {6, 8, 14}, {7, 8, 15},

{3, 12, 15}, {5, 10, 15}, {6, 9, 15}

and 10 defective ones, namely:

{3, 5, 6}, {3, 9, 10}, {3, 13, 14},

{5, 9, 12}, {5, 11, 14},

{6, 10, 12}, {6, 11, 13},

{7, 9, 14}, {7, 10, 13}, {7, 11, 12}

Similarly, our sedenionic PG(3, 2) features two distinct types of points. A type-one point is such

that four lines passing through it are ordinary, the remaining three being defective; such a point lies

in the set :

{3, 5, 6, 7, 9, 10, 11, 12, 13, 14} ≡ α

A type-two point is such that every line passing through it isordinary; such a point belongs to the set:

{1, 2, 4, 8, 15} ≡ β

being illustrated by gray shading in Figure5. We see that all defective lines are of the same form,

namely{α, α, α}. The 25 ordinary lines split into two distinct families. Tenof them are of the form

{α, β, β}, namely:

{1, 2, 3}, {1, 4, 5}, {1, 8, 9}, {1, 14, 15},

{2, 4, 6}, {2, 8, 10}, {2, 13, 15},

{4, 8, 12}, {4, 11, 15},

{7, 8, 15}

and the remaining 15 are of the form{α, α, β}, namely:

{1, 6, 7}, {1, 10, 11}, {1, 12, 13},

{2, 5, 7}, {2, 9, 11}, {2, 12, 14},

{3, 4, 7}, {4, 9, 13}, {4, 10, 14},

{3, 8, 11}, {5, 8, 13}, {6, 8, 14},

{3, 12, 15}, {5, 10, 15}, {6, 9, 15}

A configurationC4 whose Veldkamp space reproduces the above-described partitions of points and

lines of PG(3, 2) is, as demonstrated below, the famous Desargues(103)-configuration,D, which is one
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of the most prominent point-line incidence structures (see, for example, [13]). Up to isomorphism, there

exist altogether 10(103)-configurations. The Desargues configuration is, unlike theothers, flag-transitive

and the only one where for each of its points the three points that are not collinear with it lie on a line.

This configuration, depicted in Figure6 in a form showing its automorphism of order three, also lives

in our sedenionic PG(3, 2); here, its points are the 10α-points and its lines are all the defective lines.

In order to see thatV(D) ∼= PG(3, 2) we shall first introduce, using our diagrammatical representation

of D, all 15 geometric hyperplanes ofD—Figure7. We see that they are indeed of two different forms,

and of required cardinality ten and five. A member of the former set comprises a point and three points

not collinear with it. Such geometric hyperplane corresponds to a type-one (orα-) point of PG(3, 2).

A member of the latter set features six points located on fourlines, with two lines per each point; this is

nothing but the Pasch configuration we introduced in the previous section. Such a geometric hyperplane

of D corresponds to a type-two (orβ-) point of our PG(3, 2). It is also a straightforward task to verify

thatV(D) is endowed with 35 lines splitting into the required three families; those that correspond to

defective lines of our sedenionic PG(3, 2) are shown in Figure8, while those that correspond to ordinary

lines are depicted in Figure9 (of type{α, β, β}) and Figure10 (of type{α, α, β}). Figure11 offers a

“condensed” view of the isomorphismV(D) ∼= PG(3, 2).

Figure 6. An illustrative portrayal of the Desargues configuration, built around the model

of the Pasch configuration shown in Figure2: circles stand for its points, whereas its lines

are represented by triples of points on common straight segments (six), arcs of circles (three)

and a big circle.

We shall finalize this section by pointing out that the existence of two different kinds of geometric

hyperplanes of the Desargues configuration is closely connected with two well-known views of this

configuration. The first one is as a pair of triangles that are in perspective from both a point and

a line (Desargues’ theorem), the point and the line forming ageometric hyperplane. The other

view is as the incidence sum of a complete quadrangle (i.e., a (43, 62)-configuration) and a Pasch

(62, 43)-configuration [18].
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14 13 11

9 10 12

6 5 3

7

1 2 4

8 15

Figure 7. The 15 geometric hyperplanes of the Desargues configuration. The hyperplanes

are labelled by imaginary units of sedenions in such a way that—as we shall verify in the

next three figures—the 35 lines of the Veldkamp space of the Desargues configuration are

identical with the 35 distinguished triples of units, that is with the 35 lines of the PG(3, 2)

shown in Figure5.
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7-9-14 7-10-13 7-11-12

3-13-14 5-11-14 6-11-13

3-9-10 5-9-12 6-10-12

3-5-6

Figure 8. The 10 Veldkamp lines of the Desargues configuration that represent

the 10 defective lines of the sedenionic PG(3, 2). Here, as well as in the next two figures, the

three geometric hyperplanes comprising a given Veldkamp line are distinguished by different

colors, with their common elements (here just a single point) being colored black. For each

Veldkamp line we also explicitly indicate its composition.
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2-4-6 1-4-5 1-2-3

4-8-12 2-8-10 1-8-9

4-11-15 2-13-15 1-14-15

7-8-15

Figure 9. The 10 Veldkamp lines of the Desargues configuration that represent

the 10 ordinary lines of the sedenionic PG(3, 2) of type{α, β, β}.
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6-9-15 5-10-15 3-12-15

6-8-14 5-8-13 3-8-11

1-6-7 2-5-7 3-4-7

2-12-14 4-9-13 1-10-11

2-9-11 1-12-13 4-10-14

Figure 10. The 15 Veldkamp lines of the Desargues configuration that represent the 15

ordinary lines of the sedenionic PG(3, 2) of type{α, α, β}.
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101112
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15

Figure 11. A compact graphical view of illustrating the bijection between 15 imaginary unit

sedenions and 15 geometric hyperplanes of the Desargues configuration, as well as between

35 distinguished triples of units and 35 Veldkamp lines of the Desargues configuration.

4. 32-Nions and the Cayley-Salmon(154, 203)-Configuration

Our next case isA5, or the 32-nions, whose multiplication properties are encoded in Table3.

From this table we infer the existence of 155 distinguished triples of imaginary units. Regarding

the 31 imaginary units ofA5 as points and the 155 distinguished triples of them as lines,we obtain a

point-line incidence structure where each line has three points and each point is on 15 lines, and which is

isomorphic to PG(4, 2). We next find that 65 lines of this space are defective and 90 ordinary. However,

unlike the preceding two cases, there are three different types of points in our 32-nionic PG(4, 2):

10α-points,

α ≡ {7, 11, 13, 14, 19, 21, 22, 25, 26, 28},

each of which is on nine defective and six ordinary lines; 15β-points,

β ≡ {3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30},

each of which is on seven defective and eight ordinary lines;and sixγ-points,

γ ≡ {1, 2, 4, 8, 16, 31},
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each of them being on 15 ordinary (and, hence, on zero defective) lines. This stratification of the point-set

of PG(4, 2) leads, in turn, to two different kinds of defective lines andthree distinct kinds of ordinary

lines. Concerning the former, there are 45 of them of type{α, α, β}, namely:

{3, 13, 14}, {3, 21, 22}, {3, 25, 26},

{5, 11, 14}, {5, 19, 22}, {5, 25, 28},

{6, 11, 13}, {6, 19, 21}, {6, 26, 28},

{7, 9, 14}, {7, 10, 13}, {7, 11, 12}, {7, 17, 22}, {7, 18, 21}, {7, 19, 20},

{7, 25, 30}, {7, 26, 29}, {7, 27, 28},

{9, 19, 26}, {9, 21, 28},

{10, 19, 25}, {10, 22, 28},

{11, 17, 26}, {11, 18, 25}, {11, 19, 24}, {11, 21, 30}, {11, 22, 29}, {11, 23, 28},

{12, 21, 25}, {12, 22, 26},

{13, 17, 28}, {13, 19, 30}, {13, 20, 25}, {13, 21, 24}, {13, 22, 27}, {13, 23, 26},

{14, 18, 28}, {14, 19, 29}, {14, 20, 26}, {14, 21, 27}, {14, 22, 24}, {14, 23, 25},

{15, 19, 28}, {15, 21, 26}, {15, 22, 25}

and 20 of type{β, β, β}, namely:

{3, 5, 6}, {3, 9, 10}, {3, 17, 18}, {3, 29, 30},

{5, 9, 12}, {5, 17, 20}, {5, 27, 30},

{6, 10, 12}, {6, 18, 20}, {6, 27, 29},

{9, 17, 24}, {9, 23, 30},

{10, 18, 24}, {10, 23, 29},

{12, 20, 24}, {12, 23, 27},

{15, 17, 30}, {15, 18, 29}, {15, 20, 27}, {15, 23, 24}

As per the latter, one finds 15 of them of type{β, β, β}, namely:

{3, 12, 15}, {3, 20, 23}, {3, 24, 27},

{5, 10, 15}, {5, 18, 23}, {5, 24, 29},

{6, 9, 15}, {6, 17, 23}, {6, 24, 30},

{9, 18, 27}, {9, 20, 29},

{10, 17, 27}, {10, 20, 30},

{12, 17, 29}, {12, 18, 30}
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60 of type{α, β, γ}, namely:

{1, 6, 7}, {1, 10, 11}, {1, 12, 13}, {1, 14, 15}, {1, 18, 19}, {1, 20, 21},

{1, 22, 23}, {1, 24, 25}, {1, 26, 27}, {1, 28, 29},

{2, 5, 7}, {2, 9, 11}, {2, 12, 14}, {2, 13, 15}, {2, 17, 19}, {2, 20, 22},

{2, 21, 23}, {2, 24, 26}, {2, 25, 27}, {2, 28, 30},

{3, 4, 7}, {3, 8, 11}, {3, 16, 19}, {3, 28, 31},

{4, 9, 13}, {4, 10, 14}, {4, 11, 15}, {4, 17, 21}, {4, 18, 22},

{4, 19, 23}, {4, 24, 28}, {4, 25, 29}, {4, 26, 30},

{5, 8, 13}, {5, 16, 21}, {5, 26, 31},

{6, 8, 14}, {6, 16, 22}, {6, 25, 31},

{7, 8, 15}, {7, 16, 23}, {7, 24, 31},

{8, 17, 25}, {8, 18, 26}, {8, 19, 27}, {8, 20, 28}, {8, 21, 29}, {8, 22, 30},

{9, 16, 25}, {9, 22, 31},

{10, 16, 26}, {10, 21, 31},

{11, 16, 27}, {11, 20, 31},

{12, 16, 28}, {12, 19, 31},

{13, 16, 29}, {13, 18, 31},

{14, 16, 30}, {14, 17, 31}

and, finally, 15 of type{β, γ, γ}, namely:

{1, 2, 3}, {1, 4, 5}, {1, 8, 9}, {1, 16, 17}, {1, 30, 31},

{2, 4, 6}, {2, 8, 10}, {2, 16, 18}, {2, 29, 31},

{4, 8, 12}, {4, 16, 20}, {4, 27, 31},

{8, 16, 24}, {8, 23, 31},

{5, 16, 31}
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Table 3. The multiplication table—for better readability split into two parts—of the

imaginary unit 32-nionsea, 1 ≤ a ≤ 31, in short-hand notationea ≡ a (ande0 ≡ 0).

* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 −0 −3 +2 −5 +4 +7 −6 −9 +8 +11 −10 +13 −12 −15 +14

2 +3 −0 −1 −6 −7 +4 +5 −10 −11 +8 +9 +14 +15 −12 −13

3 −2 +1 −0 −7 +6 −5 +4 −11 +10 −9 +8 +15 −14 +13 −12

4 +5 +6 +7 −0 −1 −2 −3 −12 −13 −14 −15 +8 +9 +10 +11

5 −4 +7 −6 +1 −0 +3 −2 −13 +12 −15 +14 −9 +8 −11 +10

6 −7 −4 +5 +2 −3 −0 +1 −14 +15 +12 −13 −10 +11 +8 −9

7 +6 −5 −4 +3 +2 −1 −0 −15 −14 +13 +12 −11 −10 +9 +8

8 +9 +10 +11 +12 +13 +14 +15 −0 −1 −2 −3 −4 −5 −6 −7

9 −8 +11 −10 +13 −12 −15 +14 +1 −0 +3 −2 +5 −4 −7 +6

10 −11 −8 +9 +14 +15 −12 −13 +2 −3 −0 +1 +6 +7 −4 −5

11 +10 −9 −8 +15 −14 +13 −12 +3 +2 −1 −0 +7 −6 +5 −4

12 −13 −14 −15 −8 +9 +10 +11 +4 −5 −6 −7 −0 +1 +2 +3

13 +12 −15 +14 −9 −8 −11 +10 +5 +4 −7 +6 −1 −0 −3 +2

14 +15 +12 −13 −10 +11 −8 −9 +6 +7 +4 −5 −2 +3 −0 −1

15 −14 +13 +12 −11 −10 +9 −8 +7 −6 +5 +4 −3 −2 +1 −0

16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31

17 −16 +19 −18 +21 −20 −23 +22 +25 −24 −27 +26 −29 +28 +31 −30

18 −19 −16 +17 +22 +23 −20 −21 +26 +27 −24 −25 −30 −31 +28 +29

19 +18 −17 −16 +23 −22 +21 −20 +27 −26 +25 −24 −31 +30 −29 +28

20 −21 −22 −23 −16 +17 +18 +19 +28 +29 +30 +31 −24 −25 −26 −27

21 +20 −23 +22 −17 −16 −19 +18 +29 −28 +31 −30 +25 −24 +27 −26

22 +23 +20 −21 −18 +19 −16 −17 +30 −31 −28 +29 +26 −27 −24 +25

23 −22 +21 +20 −19 −18 +17 −16 +31 +30 −29 −28 +27 +26 −25 −24

24 −25 −26 −27 −28 −29 −30 −31 −16 +17 +18 +19 +20 +21 +22 +23

25 +24 −27 +26 −29 +28 +31 −30 −17 −16 −19 +18 −21 +20 +23 −22

26 +27 +24 −25 −30 −31 +28 +29 −18 +19 −16 −17 −22 −23 +20 +21

27 −26 +25 +24 −31 +30 −29 +28 −19 −18 +17 −16 −23 +22 −21 +20

28 +29 +30 +31 +24 −25 −26 −27 −20 +21 +22 +23 −16 −17 −18 −19

29 −28 +31 −30 +25 +24 +27 −26 −21 −20 +23 −22 +17 −16 +19 −18

30 −31 −28 +29 +26 −27 +24 +25 −22 −23 −20 +21 +18 −19 −16 +17

31 +30 −29 −28 +27 +26 −25 +24 −23 +22 −21 −20 +19 +18 −17 −16
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Table 3. Cont.

* 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 −17 +16 +19 −18 +21 −20 −23 +22 +25 −24 −27 +26 −29 +28 +31 −30

2 −18 −19 +16 +17 +22 +23 −20 −21 +26 +27 −24 −25 −30 −31 +28 +29

3 −19 +18 −17 +16 +23 −22 +21 −20 +27 −26 +25 −24 −31 +30 −29 +28

4 −20 −21 −22 −23 +16 +17 +18 +19 +28 +29 +30 +31−24 −25 −26 −27

5 −21 +20 −23 +22 −17 +16 −19 +18 +29 −28 +31 −30 +25 −24 +27 −26

6 −22 +23 +20 −21 −18 +19 +16 −17 +30 −31 −28 +29 +26 −27 −24 +25

7 −23 −22 +21 +20 −19 −18 +17 +16 +31 +30 −29 −28 +27 +26 −25 −24

8 −24 −25 −26 −27 −28 −29 −30 −31 +16 +17 +18 +19 +20 +21 +22 +23

9 −25 +24 −27 +26 −29 +28 +31 −30 −17 +16 −19 +18 −21 +20 +23 − 22

10 −26 +27 +24 −25 −30 −31 +28 +29 −18 +19 +16 −17 −22 −23 +20 +21

11 −27 −26 +25 +24 −31 +30 −29 +28 −19 −18 +17 +16 −23 +22 −21 +20

12 −28 +29 +30 +31 +24 −25 −26 −27 −20 +21 +22 +23 +16 −17 −18 −19

13 −29 −28 +31 −30 +25 +24 +27 −26 −21 −20 +23 −22 +17 +16 +19 −18

14 −30 −31 −28 +29 +26 −27 +24 +25 −22 −23 −20 +21 +18 −19 +16 +17

15 −31 +30 −29 −28 +27 +26 −25 +24 −23 +22 −21 −20 +19 +18 −17 +16

16 −0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15

17 +1 −0 +3 −2 +5 −4 −7 +6 +9 −8 −11 +10 −13 +12 +15 −14

18 +2 −3 −0 +1 +6 +7 −4 −5 +10 +11 −8 −9 −14 −15 +12 +13

19 +3 +2 −1 −0 +7 −6 +5 −4 +11 −10 +9 −8 −15 +14 −13 +12

20 +4 −5 −6 −7 −0 +1 +2 +3 +12 +13 +14 +15 −8 −9 −10 −11

21 +5 +4 −7 +6 −1 −0 −3 +2 +13 −12 +15 −14 +9 −8 +11 −10

22 +6 +7 +4 −5 −2 +3 −0 −1 +14 −15 −12 +13 +10 −11 −8 +9

23 +7 −6 +5 +4 −3 −2 +1 −0 +15 +14 −13 −12 +11 +10 −9 −8

24 +8 −9 −10 −11 −12 −13 −14 −15 −0 +1 +2 +3 +4 +5 +6 +7

25 +9 +8 −11 +10 −13 +12 +15 −14 −1 −0 −3 +2 −5 +4 +7 −6

26 +10 +11 +8 −9 −14 −15 +12 +13 −2 +3 −0 −1 −6 −7 +4 +5

27 +11 −10 +9 +8 −15 +14 −13 +12 −3 −2 +1 −0 −7 +6 −5 +4

28 +12 +13 +14 +15 +8 −9 −10 −11 −4 +5 +6 +7 −0 −1 −2 −3

29 +13 −12 +15 −14 +9 +8 +11 −10 −5 −4 +7 −6 +1 −0 +3 −2

30 +14 −15 −12 +13 +10 −11 +8 +9 −6 −7 −4 +5 +2 −3 −0 +1

31 +15 +14 −13 −12 +11 +10 −9 +8 −7 +6 −5 −4 +3 +2 −1 −0

A point-line configurationC5 whose Veldkamp space accounts for these stratifications of both

the point- and line-set of our 32-nionic PG(4, 2) is of type (154, 203). (It is worth mentioning

here that there exists another remarkable configuration whose Veldkamp space does the same job

for us, namely the generalized quadrangle of order two, alsoknown as the Cremona-Richmond

(153)-configuration (see, for example, [14]). However, this configuration is triangle-free and so it

cannot contain the Desargues configuration as dictated by the nesting property of the Cayley-Dickson

algebras.) This configuration is formed within our PG(4, 2) by 15 β-points and 20 defective

lines of {β, β, β} type and its structure is sketched in Figure12. It is a rather easy task

to verify that this particular(154, 203)-configuration possesses 31 distinct geometric hyperplanes

that fall into three different types. A type-one hyperplaneconsists of a pair of skew lines at
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maximum distance from each other; there are, as depicted in Figure 13, 10 hyperplanes of this

type and they correspond toα-points of PG(4, 2). A type-two hyperplane features a point and

all the points not collinear with it, the latter forming the Pasch configuration; there are, as shown

in Figure14, 15 hyperplanes of this type and their counterparts areβ-points of PG(4, 2). A type-three

hyperplane is identical with the Desargues configuration; we find, as portrayed in Figure15, altogether

six hyperplanes of this type, each standing for aγ-point of PG(4, 2).

Figure 12. An illustration of the structure of the(154, 203)-configuration, built around the

model of the Desargues configuration shown in Figure6. The five points added to the

Desargues configuration are the three peripheral points andthe red and blue point in the

center. The 10 lines added are three lines denoted by red color, three blue lines, three lines

joining pairwise the three peripheral points and the line that comprises the three points in the

center of the figure, that is the ones represented by a bigger red circle, a smaller blue circle

and a medium-sized black one.

1

333

Figure 13. The 10 geometric hyperplanes of the(154, 203)-configuration of type one; the

number below a subfigure indicates how many copies of the particular hyperplane we get by

rotating the corresponding subfigure through 120 degrees around its center.
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3

333

111

Figure 14. The 15 geometric hyperplanes of the(154, 203)-configuration of type two.

3

111

Figure 15. The six geometric hyperplanes of the(154, 203)-configuration of type three.
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e

d

c

b

a

Figure 16. The five types of Veldkamp lines of the(154, 203)-configuration. Here, unlike

Figures 8–10, each representative of a geometric hyperplane is drawn separately and different

colors are used to distinguish between different hyperplane types: red is reserved for type

one, yellow for type two and blue for type three hyperplanes.As before, the black color

denotes the core of a Veldkamp line, that is the elements common to all the three hyperplanes

comprising it.

We also find that our(154, 203)-configuration yields 155 Veldkamp lines that are, as expected, of five

different types. A type-I Veldkamp line, shown in Figure16a, features two hyperplanes of type one and
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a type-two hyperplane and its core consists of two points that are at maximum distance from each other;

there are
(
10

2

)
= 15 × 6/2 = 45 Veldkamp lines of this type and they correspond to defectivelines

of PG(4, 2) of type {α, α, β}. A type-II Veldkamp line, featured in Figure16b, is composed of three

hyperplanes of type two that share three points on a common line; there are, obviously, 20 Veldkamp

lines of this type, having for their counterparts defectivelines of PG(4, 2) of type{β, β, β}. A type-III

Veldkamp line, portrayed in Figure16c, also consists of three hyperplanes of type two, but in thiscase

the three common points are pairwise at maximum distance from each other; a quick count leads to

15 Veldkamp lines of this type, these being in a bijection with 15 ordinary lines of PG(4, 2) of type

{β, β, β}. Next, we have a type-IV Veldkamp line, depicted in Figure16d, which exhibits a hyperplane

of each type and whose core is composed of a line and a point at the maximum distance from it; since

for each line of our(154, 203)-configuration there are three points at maximum distance from it, there

are20 × 3 = 60 Veldkamp lines of this type, having their twins in ordinary lines of PG(4, 2) of type

{α, β, γ}. Finally, we meet a type-V Veldkamp line, sketched in Figure16e, which is endowed with

two hyperplanes of type three and a single one of type two, andwhose core is isomorphic to the Pasch

configuration; hence, we have
(
6

2

)
= 15 Veldkamp lines of this type, being all representatives of ordinary

lines of PG(4, 2) of type{β, γ, γ}.

Before embarking on the final case to be dealt with in detail, itis worth having a closer look at

our (154, 203)-configuration and pointing out its intimate relation with the famous Pascal’s Mystic

Hexagram. If six arbitrary points are chosen on a conic section and joined by line segments in any

order to form a hexagon, then the three pairs of opposite sides of the hexagon meet in three points

that lie on a straight line, the latter being called the Pascal line. Taking the permutations of the six

points, one obtains 60 different hexagons. Thus, the so-called complete Pascal hexagon determines

altogether 60 Pascal lines, which generate a remarkable configuration of 146 points and 110 lines called

the hexagrammum mysticum, or the complete Pascal figure (forthe most comprehensive, applet-based

representation of this remarkable geometrical object, see[15]). Both the points and lines of the complete

Pascal figure split into several distinct families, usuallynamed after their discoverers in the first half of

the 19-th century. We are concerned here with the 15 Salmon points and the 20 Cayley lines (see, for

example, [16,17]) which form a(154, 203)-configuration. This configuration is discussed in some detail

in [18], where it is also depicted (Figure 6) and called the Cayley-Salmon(154, 203)-configuration. It

is precisely this Cayley-Salmon(154, 203)-configuration which our 32-nionic(154, 203)-configuration

is isomorphic to. The same configuration is also portrayed inFigure 8 of [15]. In the latter work, two

different views/interpretations of the configuration are also mentioned. One is as three pairwise-disjoint

triangles that are in perspective from a line, in which case the centers of perspectivity are guaranteed

by Desargues’ theorem to also lie on a line; we just stress here that these two lines form a geometric

hyperplane (of type one, see Figure13). The other view of the figure takes any point of the configuration

to be the center of perspectivity of two quadrangles whose six pairs of corresponding sides meet

necessarily in the points of a Pasch configuration; again, the point and the associated Pasch configuration

form a geometric hyperplane (of type two, see Figure14). We can offer one more view of the

configuration, stemming from the existence of type-three hyperplanes, namely as the incidence sum

of a Desargues configuration and three triangles on a commmonside (see Figure15).
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5. 64-Nions and a(215, 353)-Configuration

The final algebra we shall treat in sufficient detail isA6, or the 64-nions. From the corresponding

multiplication table, which due to its size we do not show here but which is freely available at [19], we

infer the existence of 651 distinguished triples of imaginary units. Regarding the 63 imaginary units of

64-nions as points and the 651 distinguished triples of themas lines, we obtain a point-line incidence

structure where each line has three points and each point is on 31 lines, and which is isomorphic to

PG(5, 2). Following the usual procedure, we find that 350 lines of thisspace are defective and 301

ordinary. Likewise the preceding case, we encounter three different types of points in our 64-nionic

PG(5, 2): 35 α-points, each of which is on 21 defective and 10 ordinary lines; 21β-points, each of

which is on 15 defective and 16 ordinary lines; and sevenγ-points, each of them being on 31 ordinary

(and, hence, on zero defective) lines. This stratification of the point-set of PG(5, 2) leads, in turn, to

three different kinds of defective lines and four distinct kinds of ordinary lines. Out of 350 defective

lines, we find 105 of type{α, α, α}, 210 of type{α, α, β} and 35 of type{β, β, β}. On the other hand,

301 ordinary lines are partitioned into 105 lines of type{α, β, β}, 70 of type{α, α, γ}, 105 of type

{α, β, γ} and 21 of type{β, γ, γ}.

The Veldkamp space mimicking such a fine structure of PG(5, 2) is that of a particular

(215, 353)-configuration,C6, that also lives in our PG(5, 2) and whose points are the 21β-points and

whose lines are the 35 defective lines of{β, β, β} type. To visualise this configuration, we build

it around the model of the Cayley-Salmon(154, 203)-configuration of 32-nions shown in Figure12.

Given the Cayley-Salmon configuration, there are six points and 15 lines to be added to yield our

(215, 353)-configuration, and this is to be done in such a way that the configuration we started with forms

a geometric hyperplane in it. As putting all the lines into a single figure would make the latter look rather

messy, in Figure17we briefly illustrate this construction by drawing six different figures, each featuring

all six additional points (gray) but only five out of 15 additional lines (these lines being also drawn in

gray color), namely those passing through a selected additional point (represented by a doubled circle).

Employing this handy diagrammatical representation, one can verify that our(215, 353)-configuration

exhibits 63 geometric hyperplanes that fall into three distinct types. A type-one hyperplane consists

of a line and its complement, which is the Pasch configuration; there are 35 distinct hyperplanes of

this form, each corresponding to anα-point of our PG(5, 2). A type-two hyperplane comprises a point

and its complement, which is the Desargues configuration; there are 21 hyperplanes of this form, each

having aβ-point for its PG(5, 2) counterpart. Finally, a type-three hyperplane is isomorphic to the

Cayley-Salmon configuration; there are seven distinct hyperplanes of this type, each answering to a

γ-point of the PG(5, 2). We leave it with the interested reader to verify by themselves that the Veldkamp

space of our(215, 353)-configuration indeed features 651 lines that do fall into the above-mentioned

seven distinct kinds.

As in the previous two cases, we shall briefly describe a couple of interesting views of our

(215, 353)-configuration, both related to type-one hyperplanes. The first one is as four triangles in

perspective from a line where the points of perspectivity ofsix pairs of them form a Pasch configuration,

the line and the Pasch configuration comprising a geometric hyperplane (compare with the first view of

both the Desargues and the Cayley-Salmon configuration). This is sketched in Figure18, where the four
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triangles are denoted, in boldfacing, by green, red, yellowand blue color, the line of perspectivity by

boldfaced gray color, and the points of perspectivity of pairs of triangles (together with the corresponding

lines they lie on and that are also boldfaced) by black color.The other view is as three complete

quadrangles that are pairwise in perspective in such a way that the three points of perspectivity lie

on a line and where the six triples of their corresponding sides meet at points located on a Pasch

configuration, again the line and the Pasch configuration forming a geometric hyperplane (compare with

the second view of both the Desargues and the Cayley-Salmon configuration).

a b c

d e f

Figure 17. An illustration of the structure of the(215, 353)-configuration, built around the

model of the Cayley-Salmon(154, 203)-configuration shown in Figure12.

Figure 18. A “generalized Desargues” view of the(215, 353)-configuration.
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6. 2N -Nions and a
((

N+1

2

)
N−1

,
(
N+1

3

)
3

)
-Configuration

At this point it is quite easy to spot the general pattern. If one also includes the trivial cases

of complex numbers (N = 1), where the relevant geometry is just a single point, that is, the

(10, 03)-configuration, and quaternions (N = 2), whose geometry is a single line, that is, the

(31, 13)-configuration, we obtain the following nested sequence of configurations whose Veldkamp

spaces capture the stratification/partition of the point- and line-sets of the2N -nionic PG(N − 1, 2),

N being a positive integer,

(10, 03),

(31, 13),

(62, 43),

(103, 103),

(154, 203),

(215, 353),

. . . ,((
N + 1

2

)

N−1

,

(
N + 1

3

)

3

)
,

. . . .

It is curious to notice that the first entry represents a triangular number, while the second one is

a tetrahedral number, or triangular pyramidal number. In other words, we get a nested sequence of

binomial (
(
r+k−1

r

)
r
,
(
r+k−1

k

)
k
)-configurations withr = N − 1 andk = 3, whose properties have very

recently been discussed in a couple of interesting papers [20,21]. The first few configurations are shown,

in a form where the configurations are nested inside each other, in Figure19.

32S

OHC

64 ...

Figure 19. A nested hierarchy of finite
((

N+1

2

)
N−1

,
(
N+1

3

)
3

)
-configurations of2N -nions for

1 ≤ N ≤ 5 when embedded in the Cayley-Salmon configuration (N = 5).
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A particular character of this nesting is reflected in the structure of geometric hyperplanes.

Denoting our generic
((

N+1

2

)
N−1

,
(
N+1

3

)
3

)
-configuration byCN , we can express the types of geometric

hyperplanes of the above-discussed cases in a compact form as follows:

C1: ∅,

C2: C1,

C3: C2, C1 ⊔ C1,

C4: C3, C2 ⊔ C1,

C5: C4, C3 ⊔ C1, C2 ⊔ C2,

C6: C5, C4 ⊔ C1, C3 ⊔ C2

which implies the following generic hyperplane compositions:

CN : CN−1, CN−2 ⊔ C1, CN−3 ⊔ C2, . . . , CN

2

⊔ CN

2
−1

or

CN : CN−1, CN−2 ⊔ C1, CN−3 ⊔ C2, . . . , C⌊N

2
⌋ ⊔ C⌊N

2
⌋

according asN is even or odd, respectively; here, the symbol “⊔” stands for a disjoint union of two sets.

In the spirit of previous sections, let us also have a closer look at the nature of our genericCN . To

this end, we first recall the following observations.C4, the Desargues configuration, can be viewed as

(4− 2 =) two triangles in perspective from a line which are also perspective from a point, that isC1; the

line and the point form a geometric hyperplane ofC4. Next,C5, the Cayley-Salmon configuration, admits

a view as (5 − 2 =) three triangles in perspective from a line where the pointsof perspectivity of three

pairs of them are on a line, akaC2; the two lines form a geometric hyperplane ofC5. Finally, C6, our

(215, 353)-configuration, can be treated as (6 − 2 =) four triangles in perspective from a line where the

points of perspectivity of six pairs of them lie on a Pasch configuration, aliasC3; the line and the Pasch

configuration form a geometric hyperplane ofC6. Generalizing these observations, we conjecture that

for anyN ≥ 4, CN can be regarded asN − 2 triangles that are in perspective from a line in such a way

that the points of perspectivity of
(
N−2

2

)
pairs of them form the configuration isomorphic toCN−3, where

the latter and the axis of perspectivity form a geometric hyperplane ofCN .

Next, we invoke the concept of combinatorial Grassmannian (see, for example, [22,23]). Briefly,

a combinatorial GrassmannianGk(|X|), wherek is a positive integer andX is a finite set, is a point-line

incidence structure whose points arek-element subsets ofX and whose lines are(k+1)-element subsets

of X, incidence being inclusion. It is known [22] that if |X| = N + 1 andk = 2, G2(N + 1) is

a binomial
((

N+1

2

)
N−1

,
(
N+1

3

)
3

)
-configuration; in particular,G2(4) is the Pasch configuration,G2(5)

is the Desargues configuration andG2(N + 1)’s with N ≥ 5 are called generalized Desargues

configurations. Now, from our detailed examination of the four cases it follows thatC3, C4, C5, C6, . . . ,CN
are endowed with 1, 5, 15, 35, . . . ,

(
N+1

4

)
Pasch configurations. And as

(
N+1

4

)
is also the number of Pasch

configurations inG2(N+1), N ≥ 3, we are also naturally led to conjecture thatCN ∼= G2(N+1). From

what we have found in the previous sections it follows that this property indeed holds for1 ≤ N ≤ 6,

being illustrated forN = 5 andN = 6 in Figure20.
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Figure 20. Left: A diagrammatical proof of the isomorphism betweenC5 andG2(6). The

points ofC5 are labeled by pairs of elements from the set{1, 2, . . . , 6} in such a way that each

line of the configuration is indeed of the form{{a, b}, {a, c}, {b, c}}, a 6= b 6= c 6= a. Right:

A pictorial illustration ofC6 ∼= G2(7). Here, the labels of six additional points are only

depicted, the rest of the labeling being identical to that shown in the left-hand side figure.

7. Conclusions

An intriguing finite-geometrical underpinning of the multiplication tables of Cayley-Dickson algebras

AN , 3 ≤ N ≤ 6, has been found that admits generalization to any higher-dimensionalAN . This

started with an observation that the multiplication properties of imaginary units of the algebraAN are

encoded in the structure of the projective space PG(N − 1, 2). Next, this space was shown to possess

a refined structure stemming from particular properties of triples of imaginary units forming its lines.

To account for this refinement, we employed the concept of Veldkamp space of point-line incidence

structure and found out the latter to be a binomial
((

N+1

2

)
N−1

,
(
N+1

3

)
3

)
-configurationCN ; in particular,

C3 (octonions) was found to be isomorphic to the Pasch(62, 43)-configuration,C4 (sedenions) to the

famous Desargues(103)-configuration,C5 (32-nions) to the Cayley-Salmon(154, 203)-configuration

found in the well-known Pascal mystic hexagram andC6 (64-nions) was shown to be identical with a

particular(215, 353)-configuration that can be viewed as four triangles in perspective from a line where

the points of perspectivity of six pairs of them form a Pasch configuration. These configurations are seen

to form a remarkable nested pattern, whereCN−1 is embedded inCN as its geometric hyperplane, that

naturally reflects the spirit of the Cayley-Dickson recursive construction of corresponding algebras.

It is a well-known fact that the only first four algebrasAN , 0 ≤ N ≤ 3, are “well-behaved” in the

sense of being normed, alternative and devoid of zero-divisors—the facts that are frequently offered as an

explanation why a relatively little attention has been paidso far to their higher-dimensional cousins, these

latter being even regarded by some scholars as “pathological”. It may well be that our finite-geometric,
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Veldkamp-space-based approach will be able to shed a novel,unexpected light at this issue as it is only

starting withN = 4 whenCN is found to feature a “generalized Desargues property” in the sense that

it can be interpreted asN − 2 triangles that are in perspective from a line in such a way that the points

of perspectivity of
(
N−2

2

)
pairs of them form the configuration isomorphic toCN−3. Or, in a slightly

different form, it is only forN ≥ 4 whenCN contains Desargues configurations, these occurring as

components of its geometric hyperplanes at that.
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22. Prȧzmowska, M. Multiple perspectives and generalizations of the Desargues configuration.

Demonstr. Math.2006, 39, 887–906.
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