A Note on Parametric Kinds of the Degenerate Poly-Bernoulli and Poly-Genocchi Polynomials
Abstract
:1. Introduction
2. Parametric Kinds of the Degenerate Poly-Bernoulli Polynomials
3. Parametric Kinds of Degenerate Poly-Genocchi Polynomials
4. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
MKdV | modified Korteweg–de Vries equation |
References
- Avram, F.; Taqqu, M.S. Noncentral limit theorems and Appell polynomials. Ann. Probab. 1987, 15, 767–775. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Lee, H. A note on degenerate Euler and Bernoulli polynomials of complex variable. Symmetry 2019, 11, 1168. [Google Scholar] [CrossRef] [Green Version]
- Carlitz, L. Degenerate Stirling Bernoulli and Eulerian numbers. Util. Math. 1979, 15, 51–88. [Google Scholar]
- Carlitz, L. A degenerate Staud-Clausen theorem. Arch. Math. 1956, 7, 28–33. [Google Scholar] [CrossRef]
- Haroon, H.; Khan, W.A. Degenerate Bernoulli numbers and polynomials associated with degenerate Hermite polynomials. Commun. Korean Math. Soc. 2018, 33, 651–669. [Google Scholar]
- Masjed-Jamei, M.; Beyki, M.R.; Koepf, W. A new type of Euler polynomials and numbers. Mediterr. J. Math. 2018, 15, 138. [Google Scholar] [CrossRef]
- Lim, D. Some identities of degenerate Genocchi polynomials. Bull. Korean Math. Soc. 2016, 53, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.A. A note on Hermite-based poly-Euler and multi poly-Euler polynomials. Palest. J. Math. 2017, 6, 204–214. [Google Scholar]
- Khan, W.A. A note on degenerate Hermite poly-Bernoulli numbers and polynomials. J. Class. Anal. 2016, 8, 65–76. [Google Scholar] [CrossRef]
- Kim, D. A note on the degenerate type of complex Appell polynomials. Symmetry 2019, 11, 1339. [Google Scholar] [CrossRef] [Green Version]
- Ryoo, C.S.; Khan, W.A. On two bivariate kinds of poly-Bernoulli and poly-Genocchi polynomials. Mathematics 2020, 8, 417. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K. A note on degenerate poly-Genocchi polynomials. Int. J. Adv. Appl. Sci. 2020, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Kim, T. A note on degenerate poly-Bernoulli numbers polynomials. Adv. Diff. Equat. 2015, 2015, 258. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Khan, W.A.; Ryoo, C.S. A parametric kind of the degenerate Fubini numbers and polynomials. Mathematics 2020, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Jang, Y.S.; Seo, J.J. A note on poly-Genocchi numbers and polynomials. Appl. Math. Sci. 2014, 8, 4475–4781. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Jang, G.-W. A note on degenerate gamma function and degenerate Stirling numbers of the second kind. Adv. Stud. Contemp. Math. 2018, 28, 207–214. [Google Scholar]
- Kim, T. A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 2017, 20, 319–331. [Google Scholar]
- Kim, T.; Yao, Y.; Kim, D.S.; Jang, G.-W. Degenerate r-Stirling numbers and r-Bell polynomials. Russ. J. Math. Phys. 2018, 25, 44–58. [Google Scholar] [CrossRef]
- Kim, T.; Ryoo, C.S. Some identities for Euler and Bernoulli polynomials and their zeros. Axioms 2018, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S.; Kim, H.Y.; Jang, L.-C. Degenerate poly-Bernoulli number and polynomials. Informatica 2020, 31, 2–8. [Google Scholar]
- Kim, T.; Kim, D.S.; Kwon, H.-I. A note on degenerate Stirling numbers and their applications. Proc. Jangjeon Math. Soc. 2018, 21, 195–203. [Google Scholar]
- Kim, D. A class of Sheffer sequences of some complex polynomials and their degenerate types. Mathematics 2019, 7, 1064. [Google Scholar] [CrossRef] [Green Version]
- Masjed-Jamei, M.; Beyki, M.R.; Koepf, W. An extension of the Euler-Maclaurin quadrature formula using a parametric type of Bernoulli polynomials. Bull. Sci. Math. 2019, 156, 102798. [Google Scholar] [CrossRef]
- Masjed-Jamei, M.; Koepf, W. Symbolic computation of some power trigonometric series. J. Symb. Comput. 2017, 80, 273–284. [Google Scholar] [CrossRef]
- Masjed-Jamei, M.; Beyki, M.R.; Omey, E. On a parametric kind of Genocchi polynomials. J. Inq. Spec. Funct. 2018, 9, 68–81. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Khan, W.A.; Sharma, S.K.; Ghayasuddin, M. A Note on Parametric Kinds of the Degenerate Poly-Bernoulli and Poly-Genocchi Polynomials. Symmetry 2020, 12, 614. https://doi.org/10.3390/sym12040614
Kim T, Khan WA, Sharma SK, Ghayasuddin M. A Note on Parametric Kinds of the Degenerate Poly-Bernoulli and Poly-Genocchi Polynomials. Symmetry. 2020; 12(4):614. https://doi.org/10.3390/sym12040614
Chicago/Turabian StyleKim, Taekyun, Waseem A. Khan, Sunil Kumar Sharma, and Mohd Ghayasuddin. 2020. "A Note on Parametric Kinds of the Degenerate Poly-Bernoulli and Poly-Genocchi Polynomials" Symmetry 12, no. 4: 614. https://doi.org/10.3390/sym12040614
APA StyleKim, T., Khan, W. A., Sharma, S. K., & Ghayasuddin, M. (2020). A Note on Parametric Kinds of the Degenerate Poly-Bernoulli and Poly-Genocchi Polynomials. Symmetry, 12(4), 614. https://doi.org/10.3390/sym12040614