An Erdős-Ko-Rado Type Theorem via the Polynomial Method
Abstract
:1. Introduction
- (a)
- (b)
2. Results
- (a)
- (b)
- (a)
- (b)
- (c)
3. Polynomial Method
4. Proof of the Main Result
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Erdős, P.; Ko, C.; Rado, R. Intersection theorem for systems of finite sets. Q. J. Math. Oxf. Ser. 1961, 12, 313–320. [Google Scholar] [CrossRef]
- Frankl, P. The Erdős-Ko-Rado theorem is true for n = ckt. In Combinatorics, Proceedings of the Fifth Hungarian Colloquium, Keszthely; North-Holland Publishing Company: Amsterdam, The Netherlands, 1978; Volume 1, pp. 365–375. [Google Scholar]
- Wilson, R. The exact bound in the Erdős-Ko-Rado theorem. Combinatorica 1984, 4, 247–257. [Google Scholar] [CrossRef]
- Alon, N.; Aydinian, H.; Huang, H. Maximizing the number of nonnegative subsets. SIAM J. Discret. Math. 2014, 28, 811–816. [Google Scholar] [CrossRef] [Green Version]
- Deza, M.; Frankl, P. Erdős-Ko-Rado theorem–22 years later. SIAM J. Algebr. Discret. Methods 1983, 4, 419–431. [Google Scholar] [CrossRef]
- Ray-Chaudhuri, D.; Wilson, R. On t-designs. Osaka J. Math. 1975, 12, 737–744. [Google Scholar]
- Frankl, P.; Wilson, R. Intersection theorems with geometric consequences. Combinatorica 1981, 1, 357–368. [Google Scholar] [CrossRef]
- Deza, M.; Frankl, P.; Singhi, N. On functions of strength t. Combinatorica 1983, 3, 331–339. [Google Scholar] [CrossRef]
- Alon, N.; Babai, L.; Suzuki, H. Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems. J. Comb. Theory Ser. A 1991, 58, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.; Kim, Y. A proof of Alon-Babai-Suzuki’s Conjecture and Multilinear Polynomials. Eur. J. Comb. 2015, 43, 289–294. [Google Scholar] [CrossRef]
- Blokhuis, A. Solution of an extremal problem for sets using resultants of polynomials. Combinatorica 1990, 10, 393–396. [Google Scholar] [CrossRef]
- Chen, W.Y.C.; Liu, J. Set systems with L-intersections modulo a prime number. J. Comb. Theory Ser. A 2009, 116, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Füredi, Z.; Hwang, K.; Weichsel, P. A proof and generalization of the Erős-Ko-Rado theorem using the method of linearly independent polynomials. In Topics in Discrete Mathematics; Algorithms Combin. 26; Springer: Berlin, Germnay, 2006; pp. 215–224. [Google Scholar]
- Liu, J.; Yang, W. Set systems with restricted k-wise L-intersections modulo a prime number. Eur. J. Comb. 2014, 36, 707–719. [Google Scholar] [CrossRef]
- Qian, J.; Ray-Chaudhuri, D. On mod p Alon-Babai-Suzuki inequality. J. Algebr. Comb. 2000, 12, 85–93. [Google Scholar] [CrossRef]
- Ramanan, G. Proof of a conjecture of Frankl and Füredi. J. Comb. Theory Ser. A 1997, 79, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Snevily, H. On generalizations of the de Bruijn-Erdős theorem. J. Comb. Theory Ser. A 1994, 68, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Snevily, H. A sharp bound for the number of sets that pairwise intersect at k positive values. Combinatorica 2003, 23, 527–532. [Google Scholar] [CrossRef]
- Wang, X.; Wei, H.; Ge, G. A strengthened inequality of Alon-Babai-Suzuki’s conjecture on set systems with restricted intersections modulo p. Discret. Math. 2018, 341, 109–118. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, K.-W.; Kim, Y.; Sheikh, N.N. An Erdős-Ko-Rado Type Theorem via the Polynomial Method. Symmetry 2020, 12, 640. https://doi.org/10.3390/sym12040640
Hwang K-W, Kim Y, Sheikh NN. An Erdős-Ko-Rado Type Theorem via the Polynomial Method. Symmetry. 2020; 12(4):640. https://doi.org/10.3390/sym12040640
Chicago/Turabian StyleHwang, Kyung-Won, Younjin Kim, and Naeem N. Sheikh. 2020. "An Erdős-Ko-Rado Type Theorem via the Polynomial Method" Symmetry 12, no. 4: 640. https://doi.org/10.3390/sym12040640
APA StyleHwang, K.-W., Kim, Y., & Sheikh, N. N. (2020). An Erdős-Ko-Rado Type Theorem via the Polynomial Method. Symmetry, 12(4), 640. https://doi.org/10.3390/sym12040640