Some Identities on Type 2 Degenerate Bernoulli Polynomials of the Second Kind
Abstract
:1. Introduction
2. Type 2 Degenerate Bernoulli Polynomials of the Second Kind
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 1979, 15, 51–88. [Google Scholar]
- Carlitz, L. A degenerate Staudt-Clausen theorem. Arch. Math. 1956, 7, 28–33. [Google Scholar] [CrossRef]
- Dolgy, D.V.; Kim, T. Some explicit formulas of degenerate Stirling numbers associated with the degenerate special numbers and polynomials. Proc. Jangjeon Math. Soc. 2018, 21, 309–317. [Google Scholar]
- Haroon, H.; Khan, W.A. Degenerate Bernoulli numbers and polynomials associated with degenerate Hermite polynomials. Commun. Korean Math. Soc. 2018, 33, 651–669. [Google Scholar]
- Jang, G.-W.; Kim, T. A note on type 2 degenerate Euler and Bernoulli polynomials. Adv. Stud. Contemp. Math. 2019, 29, 147–159. [Google Scholar]
- Kim, T. A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 2017, 20, 319–331. [Google Scholar]
- Kim, T.; Kim, D.S. Identities of symmetry for degenerate Euler polynomials and alternating generalized falling factorial sums. Iran. J. Sci. Technol. Trans. Sci. 2017, 41, 939–949. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Degenerate central factorial numbers of the second kind. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S. Differential equations associated with degenerate Changhee numbers of the second kind. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 1785–1793. [Google Scholar] [CrossRef]
- Kim, T.; Yao, Y.; Kim, D.S.; Jang, G.-W. Degenerate r-Stirling numbers and r-Bell polynomials. Russ. J. Math. Phys. 2018, 25, 44–58. [Google Scholar] [CrossRef]
- Kim, T.; Jang, G.-W. A note on degenerate gamma function and degenerate Stirling numbers of the second kind. Adv. Stud. Contemp. Math. 2018, 28, 207–214. [Google Scholar]
- Kim, T.; Kim, D.S. Degenerate Laplace transfrom and degenerate gamma funmction. Russ. J. Math. Phys. 2017, 24, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S. A note on type 2 Changhee and Daehee polynomials. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2019, 113, 2783–2791. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Araci, S. Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials. Adv. Differ. Equ. 2014, 2014, 155. [Google Scholar] [CrossRef] [Green Version]
- Roman, S. The umbral calculus. In Pure and Applied Mathematics; Academic Press Inc.: New York, NY, USA, 1984; p. 193. ISBN 0-12-594380-6. [Google Scholar]
- Simsek, Y. Identities and relations related to combinatorial numbers and polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 127–135. [Google Scholar]
- Simsek, Y. Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math. 2011, 27, 199–212. [Google Scholar]
- Zhang, W.; Lin, X. Identities invoving trigonometric functions and Bernoulli numbers. Appl. Math. Comput. 2018, 334, 288–294. [Google Scholar]
- Kim, T.; Kim, D.S.; Kim, H.Y.; Kwon, J. Degenerate Stirling polynomials of the second kind and some applications. Symmetry 2019, 11, 1046. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S. Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 19. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kim, H.Y.; Jang, L.-C. Degenerate poly-Bernoulli numbers and polynomials. Informatica 2020, 31, 2–8. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Jang, L.-C.; Kim, D.S.; Kim, H.Y. Some Identities on Type 2 Degenerate Bernoulli Polynomials of the Second Kind. Symmetry 2020, 12, 510. https://doi.org/10.3390/sym12040510
Kim T, Jang L-C, Kim DS, Kim HY. Some Identities on Type 2 Degenerate Bernoulli Polynomials of the Second Kind. Symmetry. 2020; 12(4):510. https://doi.org/10.3390/sym12040510
Chicago/Turabian StyleKim, Taekyun, Lee-Chae Jang, Dae San Kim, and Han Young Kim. 2020. "Some Identities on Type 2 Degenerate Bernoulli Polynomials of the Second Kind" Symmetry 12, no. 4: 510. https://doi.org/10.3390/sym12040510
APA StyleKim, T., Jang, L.-C., Kim, D. S., & Kim, H. Y. (2020). Some Identities on Type 2 Degenerate Bernoulli Polynomials of the Second Kind. Symmetry, 12(4), 510. https://doi.org/10.3390/sym12040510