Triangular Single Valued Neutrosophic Data Envelopment Analysis: Application to Hospital Performance Measurement
Abstract
:1. Introduction
2. Preliminaries
- (i)
- if and only if,
- (ii)
- if and only if.
3. Data Envelopment Analysis
4. Neutrosophic Data Envelopment Analysis
Algorithm 1. The solution of TSVNN-CCR Model | |
Step 1. Construct the problem based on Model (8). | |
Step 2. Using Definition 3 (ii, iii), transform the TSVNN-CCR model of Step 1 into Model (8): | |
(8) | |
s.t: | |
Step 3. Transform Model (8) into the following model: | |
(9) | |
s.t: | |
Step 4. Based on Definitions 4–5, convert TSVNN-CCR Model (9) into crisp Model (10): | |
(10) | |
s.t: | |
Step 5. Run Model (10) and get the optimal efficiency of each DMU. |
5. Numerical Experiment
Case Study: The Efficiency of the Hospitals of TUMS
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Abbreviations: List of Acronyms
DEA | Data Envelopment Analysis |
DMU | Decision-Making Units |
CCR model | Charnes, Cooper, Rhodes model |
BCC model | Banker, Charnes, Cooper model |
CRS | Constant Returns-to-Scale |
VRS | Variable Returns-to-Scale |
AHP | Analytic Hierarchy Process |
TUMS | Tehran University of Medical Sciences |
FS | Fuzzy Set |
IFS | Intuitionistic Fuzzy Set |
NS | Neutrosophic Set |
SVNS | Single-Valued Neutrosophic Set |
TSVNN | Triangular Single-Valued Neutrosophic number |
References
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, B.K.; Tone, K. Decomposing capacity utilization in data envelopment analysis: An application to banks in India. Eur. J. Oper. Res. 2009, 195, 575–594. [Google Scholar] [CrossRef]
- Lee, Y.J.; Joo, S.J.; Park, H.G. An application of data envelopment analysis for Korean banks with negative data. Benchmarking Int. J. 2017, 24, 1052–1067. [Google Scholar] [CrossRef]
- Jiang, H.; He, Y. Applying Data Envelopment Analysis in Measuring the Efficiency of Chinese Listed Banks in the Context of Macroprudential Framework. Mathematics 2018, 6, 184. [Google Scholar] [CrossRef] [Green Version]
- Karasakal, E.; Aker, P. A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem. Omega 2017, 73, 79–92. [Google Scholar]
- Lacko, R.; Hajduová, Z.; Gábor, V. Data Envelopment Analysis of Selected Specialized Health Centres and Possibilities of its Application in the Terms of Slovak Republic Health Care System. J. Health Manag. 2017, 19, 144–158. [Google Scholar] [CrossRef]
- Ertay, T.; Ruan, D.; Tuzkaya, U.R. Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems. Inf. Sci. 2006, 176, 237–262. [Google Scholar] [CrossRef]
- Düzakın, E.; Düzakın, H. Measuring the performance of manufacturing firms with super slacks based model of data envelopment analysis: An application of 500 major industrial enterprises in Turkey. Eur. J. Oper. Res. 2007, 182, 1412–1432. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Lotfi, F.H.; Valami, H.B. Malmquist productivity index with interval and fuzzy data, an application of Data envelopment analysis. Int. Math. Forum 2006, 1, 1607–1623. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, M.; Lotfi, F.H.; Saleh, H. Supply chain performance evaluation with data envelopment analysis and balanced scorecard approach. Appl. Math. Model. 2014, 38, 5092–5112. [Google Scholar] [CrossRef]
- Soheilirad, S.; Govindan, K.; Mardani, A.; Zavadskas, E.K.; Nilashi, M.; Zakuan, N. Application of data envelopment analysis models in supply chain management: A systematic review and meta-analysis. Ann. Oper. Res. 2018, 271, 915–969. [Google Scholar] [CrossRef]
- Krmac, E.; Djordjević, B. A New DEA Model for Evaluation of Supply Chains: A Case of Selection and Evaluation of Environmental Efficiency of Suppliers. Symmetry 2019, 11, 565. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Hsu, T.; Tsai, Y.; Wu, H. The preference analysis for tourist choice of destination: A case study of Taiwan. Tour. Manag. 2009, 30, 288–297. [Google Scholar] [CrossRef]
- Finol, J.; Guo, Y.K.; Jing, X.D. A rule based fuzzy model for the prediction of petrophysical rock parameters. J. Pet. Sci. Eng. 2001, 29, 97–113. [Google Scholar] [CrossRef]
- Najafi, H.S.; Edalatpanah, S.A. An improved model for iterative algorithms in fuzzy linear systems. Comput. Math. Modeling 2013, 24, 443–451. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Edalatpanah, S.A. A new approach for solving fully fuzzy linear programming by using the lexicography method. Adv. Fuzzy Syst. 2016. [Google Scholar] [CrossRef] [Green Version]
- Das, S.K.; Edalatpanah, S.A.; Mandal, T. A proposed model for solving fuzzy linear fractional programming problem: Numerical Point of View. J. Comput. Sci. 2018, 25, 367–375. [Google Scholar] [CrossRef]
- Hatami-Marbini, A.; Emrouznejad, A.; Tavana, M. A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making. Eur. J. Oper. Res. 2011, 214, 457–472. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Tavana, M.; Hatami-Marbini, A. The state of the art in fuzzy data envelopment analysis. In Performance Measurement with Fuzzy Data Envelopment Analysis; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–45. [Google Scholar]
- Emrouznejad, A.; Yang, G.L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 2018, 61, 4–8. [Google Scholar] [CrossRef]
- Yen, B.T.; Chiou, Y.C. Dynamic fuzzy data envelopment analysis models: Case of bus transport performance assessment. RAIRO-Oper. Res. 2019, 53, 991–1005. [Google Scholar] [CrossRef]
- Lotfi, F.H.; Ebrahimnejad, A.; Vaez-Ghasemi, M.; Moghaddas, Z. Data Envelopment Analysis with R; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Rouyendegh, B.D. The DEA and intuitionistic fuzzy TOPSIS approach to departments’ performances: A pilot study. J. Appl. Math. 2011, 1–16. [Google Scholar] [CrossRef]
- Puri, J.; Yadav, S.P. Intuitionistic fuzzy data envelopment analysis: An application to the banking sector in India. Expert Syst. Appl. 2015, 42, 4982–4998. [Google Scholar] [CrossRef]
- Edalatpanah, S.A. A data envelopment analysis model with triangular intuitionistic fuzzy numbers. Int. J. Data Envel. Anal. 2019, 7, 47–58. [Google Scholar]
- Arya, A.; Yadav, S.P. Development of intuitionistic fuzzy data envelopment analysis models and intuitionistic fuzzy input–output targets. Soft Comput. 2019, 23, 8975–8993. [Google Scholar] [CrossRef]
- Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, MA, USA, 1999. [Google Scholar]
- Smarandache, F. A unifying field in logics: Neutrosophic logic. In Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, 3rd ed.; American Research Press: Rehoboth, MA, USA, 2003. [Google Scholar]
- Broumi, S.; Smarandache, F. Correlation coefficient of interval neutrosophic set. Appl. Mech. Mater. 2013, 436, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [Google Scholar] [CrossRef]
- Broumi, S.; Smarandache, F.; Talea, M.; Bakali, A. An introduction to bipolar single valued neutrosophic graph theory. Appl. Mech. Mater. 2016, 841, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, H.Y.; Wang, J.Q. Frank Choquet Bonferroni mean operators of bipolar neutrosophic sets and their application to multi-criteria decision-making problems. Int. J. Fuzzy Syst. 2018, 20, 13–28. [Google Scholar] [CrossRef]
- Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]
- Chakraborty, A.; Mondal, S.P.; Ahmadian, A.; Senu, N.; Alam, S.; Salahshour, S. Different Forms of Triangular Neutrosophic Numbers, De-Neutrosophication Techniques, and their Applications. Symmetry 2018, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Garg, H. New Logarithmic operational laws and their applications to multiattribute decision making for single-valued neutrosophic numbers. Cogn. Syst. Res. 2018, 52, 931–946. [Google Scholar] [CrossRef] [Green Version]
- Garg, H. Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to multiple-attribute group decision-making. J. Ambient Intell. Hum. Comput. 2018, 9, 1975–1997. [Google Scholar] [CrossRef]
- Smarandache, F. About Nonstandard Neutrosophic Logic: Answers to Imamura’s “Note on the Definition of Neutrosophic Logic”; Infinite Study: Coimbatore, India, 2019. [Google Scholar]
- Garg, H. Algorithms for possibility linguistic single-valued neutrosophic decision-making based on COPRAS and aggregation operators with new information measures. Measurement 2019, 138, 278–290. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Edalatpanah, S.A.; Jha, S.; Broumi, S.; Dey, A. Neutrosophic shortest path problem. Neutrosophic Sets Syst. 2018, 23, 5–15. [Google Scholar]
- Edalatpanah, S.A. Nonlinear approach for neutrosophic linear programming. J. Appl. Res. Ind. Eng. 2019, 6, 367–373. [Google Scholar]
- Edalatpanah, S.A. Neutrosophic perspective on DEA. J. Appl. Res. Ind. Eng. 2018, 5, 339–345. [Google Scholar]
- Kahraman, C.; Otay, I.; Öztayşi, B.; Onar, S.C. An Integrated AHP & DEA Methodology with Neutrosophic Sets. In Fuzzy Multi-Criteria Decision-Making Using Neutrosophic Sets; Springer: Cham, Switzerland, 2019; pp. 623–645. [Google Scholar]
- Edalatpanah, S.A.; Smarandache, F. Data Envelopment Analysis for Simplified Neutrosophic Sets. Neutrosophic Sets Syst. 2019, 29, 215–226. [Google Scholar]
- Abdelfattah, W. Data envelopment analysis with neutrosophic inputs and outputs. Expert Syst. 2019, 36, e12453. [Google Scholar] [CrossRef]
- Robinson, A. Non-Standard Analysis; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Aristovnik, A. Measuring relative efficiency in health and education sector: The case of East European countries. Actual Probl. Econ. 2012, 136, 305–314. [Google Scholar]
- Barros, C.P.; de Menezes, A.G.; Vieira, J.C. Measurement of hospital efficiency, using a latent class stochastic frontier model. Appl. Econ. 2013, 45, 47–54. [Google Scholar] [CrossRef]
- Colombi, R.; Martini, G.; Vittadini, G. Determinants of transient and persistent hospital efficiency: The case of Italy. Health Econ. 2017, 26, 5–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryce, C.L.; Engberg, J.B.; Wholey, D.R. Comparing the agreement among alternative models in evaluating HMO efficiency. Health Serv. Res. 2000, 35, 509. [Google Scholar] [PubMed]
- Kalhor, R.; Amini, S.; Sokhanvar, M.; Lotfi, F.; Sharifi, M.; Kakemam, E. Factors affecting the technical efficiency of general hospitals in Iran: Data envelopment analysis. J. Egypt. Public Health Assoc. 2016, 91, 20–25. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Li, Y.; Chiu, Y.-H.; Lin, T.Y. A Two-stage Dynamic Undesirable Data Envelopment Analysis Model Focused on Media Reports and the Impact on Energy and Health Efficiency. Int. J. Environ. Res. Public Health 2019, 16, 1535. [Google Scholar] [CrossRef] [Green Version]
- Kohl, S.; Schoenfelder, J.; Fügener, A.; Brunner, J.O. The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals. Health Care Manag. Sci. 2019, 22, 245–286. [Google Scholar] [CrossRef]
- Ji, A.B.; Qiao, Y.; Liu, C. Fuzzy DEA-based classifier and its applications in healthcare management. Health Care Manag. Sci. 2019, 22, 560–568. [Google Scholar] [CrossRef]
- Dotoli, M.; Epicoco, N.; Falagario, M.; Sciancalepore, F. A cross-efficiency fuzzy data envelopment analysis technique for performance evaluation of decision making units under uncertainty. Comput. Ind. Eng. 2015, 79, 103–114. [Google Scholar] [CrossRef]
- Otay, İ.; Oztaysi, B.; Onar, S.C.; Kahraman, C. Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowl. Based Syst. 2017, 133, 90–106. [Google Scholar]
DMU | Inputs 1 Number of Doctors | Inputs 2 Number of Beds |
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | ||
11 | ||
12 | ||
13 |
DMU | Outputs 1 Days of Hospitalization (in Thousands) | Outputs 2 Patient Satisfaction (%) | Outputs 3 Number of Outpatients (in Thousands) |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 | |||
10 | |||
11 | |||
12 | |||
13 |
DMUs | Efficiency | Ranking |
---|---|---|
1 | 0.6673 | 9 |
2 | 0.8057 | 6 |
3 | 1.00 | 1 |
4 | 0.5950 | 10 |
5 | 0.8754 | 4 |
6 | 1.00 | 1 |
7 | 0.7024 | 7 |
8 | 1.00 | 1 |
9 | 0.9116 | 2 |
10 | 0.8751 | 3 |
11 | 1.00 | 1 |
12 | 0.8536 | 5 |
13 | 0.7587 | 8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Cai, L.; Edalatpanah, S.A.; Smarandache, F. Triangular Single Valued Neutrosophic Data Envelopment Analysis: Application to Hospital Performance Measurement. Symmetry 2020, 12, 588. https://doi.org/10.3390/sym12040588
Yang W, Cai L, Edalatpanah SA, Smarandache F. Triangular Single Valued Neutrosophic Data Envelopment Analysis: Application to Hospital Performance Measurement. Symmetry. 2020; 12(4):588. https://doi.org/10.3390/sym12040588
Chicago/Turabian StyleYang, Wei, Lulu Cai, Seyed Ahmad Edalatpanah, and Florentin Smarandache. 2020. "Triangular Single Valued Neutrosophic Data Envelopment Analysis: Application to Hospital Performance Measurement" Symmetry 12, no. 4: 588. https://doi.org/10.3390/sym12040588
APA StyleYang, W., Cai, L., Edalatpanah, S. A., & Smarandache, F. (2020). Triangular Single Valued Neutrosophic Data Envelopment Analysis: Application to Hospital Performance Measurement. Symmetry, 12(4), 588. https://doi.org/10.3390/sym12040588