Next Article in Journal
A Comprehensive Multi-Scenario Routing Algorithm Based on Fuzzy Control Theory in Opportunistic Social Network
Next Article in Special Issue
A Novel Dynamic Multi-Criteria Decision Making Method Based on Generalized Dynamic Interval-Valued Neutrosophic Set
Previous Article in Journal
Chiral Dualism as an Instrument of Hierarchical Structure Formation in Molecular Biology
Previous Article in Special Issue
The Generalized Neutrosophic Cubic Aggregation Operators and Their Application to Multi-Expert Decision-Making Method
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Triangular Single Valued Neutrosophic Data Envelopment Analysis: Application to Hospital Performance Measurement

1
STATE GRID Quzhou Power Supply Company, Quzhou University, Quzhou 324000, China
2
Department of Electrical Automation, Quzhou University, Quzhou 324000, China
3
Department of Applied Mathematics, Quzhou University, Quzhou 324000, China
4
Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA
*
Author to whom correspondence should be addressed.
Symmetry 2020, 12(4), 588; https://doi.org/10.3390/sym12040588
Submission received: 22 February 2020 / Revised: 16 March 2020 / Accepted: 18 March 2020 / Published: 8 April 2020

Abstract

:
The foremost broadly utilized strategy for the valuation of the overall performance of a set of identical decision-making units (DMUs) that use analogous sources to yield related outputs is data envelopment analysis (DEA). However, the witnessed values of the symmetry or asymmetry of different types of information in real-world applications are sometimes inaccurate, ambiguous, inadequate, and inconsistent, so overlooking these conditions may lead to erroneous decision-making. Neutrosophic set theory can handle these occasions of data and makes an imitation of the decision-making procedure with the aid of thinking about all perspectives of the decision. In this paper, we introduce a model of DEA in the context of neutrosophic sets and sketch an innovative process to solve it. Furthermore, we deal with the problem of healthcare system evaluation with inconsistent, indeterminate, and incomplete information using the new model. The triangular single-valued neutrosophic numbers are also employed to deal with the mentioned data, and the proposed method is utilized in the assessment of 13 hospitals of Tehran University of Medical Sciences of Iran. The results exhibit the usefulness of the suggested approach and point out that the model has practical outcomes for decision-makers.

1. Introduction

As a strong analytical tool for benchmarking and efficiency evaluation, DEA (data envelopment analysis) is a technique for evaluating the relation efficiency of decision-making units (DMUs), developed initially by Charens et al. [1] on a printed paper named the Charnes, Cooper, and Rhodes (CCR) model. They extended the nonparametric method introduced by Farrell [2] to gauge DMUs with multiple inputs and outputs. The Banker, Charnes, and Cooper (BCC) model is an extension of the previous model under the assumption of variable returns-to-scale (VRS) [3]. With this technique, managers can obtain the relative efficiency of a set of DMUs. In time, many theoretical and empirical studies have applied DEA to several fields of science and engineering, such as healthcare, agriculture, banking supply chains, and financial services, among others. For more details, the reader is referred to the studies of [4,5,6,7,8,9,10,11,12,13,14].
Conventional DEA models require crisp information that may not be permanently accessible in real-world applications. Nevertheless, in numerous cases, data are unstable, uncertain, and complicated; therefore, they cannot be accurately measured. Zadeh [15] first proposed the theory of fuzzy sets (FSs) against certain logic. After this work, many researchers studied this topic; details of some approaches can be observed in [16,17,18,19,20]. Several researchers also proposed some models of DEA under a fuzzy environment [21,22,23,24,25].
However, Zadeh’s fuzzy sets consider only the membership function and cannot deal with other parameters of vagueness. To overcome this lack of information, Atanassov [26] introduced an extension of FSs called intuitionistic fuzzy sets (IFSs). There are also several models of DEA with intuitionistic fuzzy data: see [27,28,29,30].
Although the theory of IFSs can handle incomplete information for various real-world issues, it cannot address all types of uncertainty such as inconsistent and indeterminate evidence. Therefore, Smarandache [31,32] established the neutrosophic set (NS) as a robust overall framework that generalizes classical and all kinds of fuzzy sets (FSs and IFSs).
NSs can accommodate indeterminate, ambiguous, and conflicting information where the indeterminacy is clearly quantified, and define three kinds of membership function independently.
In the past years, some versions of NSs such as interval neutrosophic sets [33,34], bipolar neutrosophic sets [35,36], single-valued neutrosophic sets [37,38,39], and neutrosophic linguistic sets [40] have been presented. In addition, in the field of neutrosophic sets, logic, measure, probability, statistics, pre-calculus and calculus, and their applications in multiple areas have been extended: see [41,42,43,44].
In real circumstances, some data in DEA may be uncertain, indeterminate, and inconsistent, and considering truth, falsity, and indeterminacy membership functions for each input/output of DMUs in the neutrosophic sets help decision-makers to obtain a better interpretation of information. In addition, by using the NS in DEA, analysts can better set their acceptance, indeterminacy, and rejection degrees regarding each datum. Moreover, with NSs, we can obtain a better depiction of reality through seeing all features of the decision-making procedure. Therefore, the NS can embrace imprecise, vague, incomplete, and inconsistent evidence powerfully and efficiently. Although there are several approaches to solve various problems under neutrosophic environments, there are not many studies that have dealt with DEA under NSs.
The utilization of neutrosophic logic in DEA can be traced to Edalatpanah [45]. Kahraman et al. [46] proposed a hybrid algorithm based on a neutrosophic analytic hierarchy process (AHP) and DEA for bringing a solution to the efficiency of private universities. Edalatpanah and Smarandache [47], based on some operators and natural logarithms, proposed an input-oriented DEA model with simplified neutrosophic numbers. Abdelfattah [48], by converting a neutrosophic DEA into an interval DEA, developed a new DEA model under neutrosophic numbers. Although these approaches are interesting, some restrictions exist. One of them is that these methods have high running times, mainly when we have many inputs and outputs. Furthermore, the main flaw of [48] is the existence of several production frontiers in the steps of efficiency measure, and this leads to the lack of comparability between efficiencies.
Therefore, in this paper, we design an innovative simple model of DEA in which all inputs and outputs are triangular single-valued neutrosophic numbers (TSVNNs), and establish a new efficient strategy to solve it. Furthermore, we use the suggested technique for the performance assessment of 13 hospitals of Tehran University of Medical Sciences (TUMS) of Iran.
The paper unfolds as follows: some basic knowledge, concepts, and arithmetic operations on NSs and TSVNNs are discussed in Section 2. In Section 3, some concepts of DEA and the CCR model are reviewed. In Section 4, we establish the mentioned model of DEA under the neutrosophic environment and propose a method to solve it. In Section 5, the suggested model is utilized for a case study of TUMS. Lastly, conclusions and future directions are presented in Section 6.

2. Preliminaries

In this section, we discuss some basic definitions related to neutrosophic sets and single-valued neutrosophic numbers, respectively.
Smarandache put forward an indeterminacy degree of membership as an independent component in his papers [31,32], and since the principle of excluded middle cannot be applied to new logic, he combines non-standard analysis with three-valued logic, set theory, probability theory, and philosophy. As a result, neutrosophic means “neutral thinking knowledge.” Given this meaning and the use of the term neutral, along with the components of truth (membership) and falsity (non-membership), its distinction is marked by fuzzy sets and intuitionistic fuzzy sets. Here, it is appropriate to give a brief explanation of the non-standard analysis.
In the early 1960s, Robinson developed non-standard analysis as a form of analysis and a branch of logic in which infinitesimals are precisely defined [49]. Formally, x   is called an infinitesimal number if and only if for any non-null positive integer n we have | x | 1 n . Let ε > 0 be an infinitesimal number; then, the extended real number set is an extension of the set of real numbers that contains the classes of infinite numbers and the infinitesimal numbers. If we consider non-standard finite numbers 1 + = 1 + ε and 0 = 0 ε , where   0   and   1 are the standard parts and   ε   is the non-standard part, then   ] 0 , 1 + [ is a non-standard unit interval. It is clear that   0 ,   1 , as well as the non-standard infinitesimal numbers that are less than zero and infinitesimal numbers that are more than one belong to this non-standard unit interval. Now, let us define a neutrosophic set:
Definition 1
([31,32,41]) (neutrosophic set). A neutrosophic set in universal U is defined by three membership functions for the truth, indeterminacy, and falsity of x in the real non-standard ] 0 , 1 + [ , where the summation of them belongs to [0, 3].
Definition 2
([34]). If the three membership functions of a NS are singleton in the real standard [0, 1], then a single-valued neutrosophic set (SVNS)   ψ   is denoted by:
ψ = { ( x ,   τ ψ ( x ) ,   ι ψ ( x ) ,   ν ψ ( x ) ) | x U } ,
which satisfies the following condition:
0 τ ψ ( x ) + ι ψ ( x ) + ν ψ ( x ) 3 .
Definition 3
([38]). A TSVNN A = ( a l , a m , a u ) , ( b l , b m , b u ) , ( c l , c m , c u )   is a particular single-valued neutrosophic number (SVNN) whose τ A (x), ι A (x), and ν A (x) are presented as follows:
τ A ( x ) = { ( x a l ) ( a m a l )       a l x < a m , 1                         x = a m , ( a u x ) ( a u a m )       a m < x a u , 0                         o t h e r w i s e . , ι A ( x ) = { ( b m x ) ( b m b l )       b l x < b m , 0                         x = b m , ( x b m ) ( b u b m )       b m < x b u , 1                         o t h e r w i s e . , ν A ( x ) = { ( c m x ) ( c m c l )       c l x < c m , 0                         c = c m , ( x c m ) ( c u c m )       c m < x c u , 1                         o t h e r w i s e . ,
Definition 4
([38]). Let A = ( a l , a m , a u ) , ( b l , b m , b u ) , ( c l , c m , c u ) and B = ( d l , d m , d u ) , ( e l , e m , e u ) , ( f l , f m , f u ) be two TSVNNs, where their elements are in [ L 1 , U 1 ] . Then, Equations (1) to (3) are true:
( i ) A B = ( m i n ( a l + d l , U 1 ) , m i n ( a m + d m , U 1 ) , m i n ( a u + d u , U 1 ) ;     ( m i n ( b l + e l , U 1 ) , m i n ( b m + e m , U 1 ) , m i n ( b u + e u , U 1 ) ;     ( m i n ( c l + f l , U 1 ) , m i n ( c m + f m , U 1 ) , m i n ( c u + f u , U 1 ) ,
( i i ) A = ( a u , a m , a l ) , ( b u , b m , b l ) , ( c u , c m , c l ) ,
( i i i ) λ A = ( λ a l , λ a m , λ a u ) , ( λ b l , λ b m , λ b u ) , ( λ c l , λ c m , λ c u ) , λ > 0 .
Definition 5
([38]). Consider A = ( a l , a m , a u ) , ( b l , b m , b u ) , ( c l , c m , c u ) as a TSVNN. Then, the ranking function of A can be defined with Equation (4):
ξ ( A ) = ( a l + b l + c l ) + 2 ( a m + b m + c m ) + ( a u + b u + c u ) 12
Definition 6
([20]). Suppose P   and   Q   are two TSVNNs, then:
(i) 
P Q if and only if ξ ( P ) ξ ( Q ) ,
(ii) 
P < Q if and only if ξ ( P ) < ξ ( Q ) .

3. Data Envelopment Analysis

Let a set of n DMUs, with each DMUj ( j = 1 , 2 , , n ) using m   inputs p i j ( i = 1 , 2 , , m ) produce s outputs   q r j ( r = 1 , 2 , , s ) . If DMUo is under consideration, then the input-oriented CCR multiplier model for the relative efficiency is computed on the basis of Equation (5) [1]:
θ o * = m a x r = 1 s v r q r o i = 1 m u i p i o
s.t:
r = 1 s v r q r j i = 1 m u i p i j 1 , j = 1 , 2 , , n v r , u i 0 r = 1 , , s , i = 1 , , m .
where v r and u i are the related weights. The above nonlinear programming may be converted as Equation (6) to simplify the computation:
θ o * = m a x r = 1 s v r q r o
s.t:
i = 1 m u i p i o = 1 r = 1 s v r q r j i = 1 m u i p i j 0 , j = 1 , 2 , , n v r , u i 0 r = 1 , , s , i = 1 , , m .
The DMUo is efficient if θ o * = 1 ; otherwise, it is inefficient.

4. Neutrosophic Data Envelopment Analysis

Like every other model, DEA has been the subject of evolution. One of the critical improvements in this field is related to circumstances where the information of DMUs is characterized and measured beneath conditions of uncertainty and indeterminacy. Indeed, one of the traditional DEA models’ assumptions is their crispness of inputs and outputs.
However, it seems questionable to assume the data and observations are crisp in situations where uncertainty and indeterminacy are inevitable features of a real environment. In addition, most management decisions are not made based on known calculations, and there is a lot of uncertainty, indeterminacy, and ambiguity in decision-making problems. The DEA under a neutrosophic environment is more advantageous than a crisp DEA because a decision-maker, in the preparation of the problem, is not obliged to make a subtle formulation. Furthermore, because of a lack of comprehensive knowledge and evidence, precise mathematics are not sufficient to model a complex system. Therefore, the approach based on neutrosophic logic seems fit for such problems [31,32]. In this section, we establish DEA under a neutrosophic environment.
Consider the input and output for the j th DMU as follows:
p i j = p a i i j , p b i i j , p c i i j = [ p a 1 i j , p a 2 i j , p a 3 i j ] , [ p b 1 i j , p b 2 i j , p b 3 i j ] , [ p c 1 i j , p c 2 i j , p c 3 i j ] ,
q r j = q a i r j , q b i r j , q c i r j = [ q a 1 r j , q a 2 r j , q a 3 r j ] , [ q b 1 r j , q b 2 r j , q b 3 r j ] , [ q c 1 r j , q c 2 r j , q c 3 r j ] ,
which are TSVNNs. Then, the triangular single-valued neutrosophic CCR model called TSVNN-CCR is defined as follows:
θ o * = m a x r = 1 s v r q r o
s.t:
i = 1 m u i p i o = 1 r = 1 s v r q r j i = 1 m u i p i j 0 , j = 1 , 2 , , n v r , u i 0 r = 1 , , s , i = 1 , , m .
Next, to solve Model (7), we propose the following algorithm:
Algorithm 1. The solution of TSVNN-CCR Model
Step 1. Construct the problem based on Model (8).
Step 2. Using Definition 3 (ii, iii), transform the TSVNN-CCR model of Step 1 into Model (8):
θ o * = m a x r = 1 s [ v r q a 1 r o , v r q a 2 r o , v r q a 3 r o ] , [ v r q b 1 r o , v r q b 2 r o , v r q b 3 r o ] , [ v r q c 1 r o , v r q c 2 r o , v r q c 3 r o ] (8)
s.t:
i = 1 m [ u i p a 1 i o , u i p a 2 i o , u i p a 3 i o ] , [ u i p b 1 i o , u i p b 2 i o , u i p b 3 i o ] , [ u i p c 1 i o , u i p c 2 i o , u i p c 3 i o ] = 1
r = 1 s [ v r q a 1 r j , v r q a 2 r j , v r q a 3 r j ] , [ v r q b 1 r j , v r q b 2 r j , v r q b 3 r j ] , [ v r q c 1 r j , v r q c 2 r j , v r q c 3 r j ]
i = 1 m [ u i p a 3 i j , u i p a 2 i j , u i p a 1 i j ] , [ u i p b 3 i j , u i p b 2 i j , u i p b 1 i j ] , [ u i p c 3 i j , u i p c 2 i j , u i p c 1 i j ] 0 ,
v r , u i 0 r = 1 , , s , i = 1 , , m .
Step 3. Transform Model (8) into the following model:
θ o * = m a x ( r = 1 s v r q a 1 r o , r = 1 s v r q a 2 r o , r = 1 s v r q a 3 r o ) , ( r = 1 s v r q b 1 r o , r = 1 s v r q b 2 r o , r = 1 s v r q b 3 r o ) , ( r = 1 s v r q c 1 r o , r = 1 s v r q c 2 r o , r = 1 s v r q c 3 r o ) (9)
s.t:
( i = 1 m u i p a 1 i o , i = 1 m u i p a 2 i o , i = 1 m u i p a 3 i o ) , ( i = 1 m u i p b 1 i o , i = 1 m u i p b 2 i o , i = 1 m u i p b 3 i o ) , ( i = 1 m u i p c 1 i o , i = 1 m u i p c 2 i o , i = 1 m u i p c 3 i o ) = 1
( r = 1 s v r q a 1 r j i = 1 m u i p a 3 i j , r = 1 s v r q a 2 r j i = 1 m u i p a 2 i j , r = 1 s v r q a 3 r j i = 1 m u i p a 1 i j ) ,
( r = 1 s v r q b 1 r j i = 1 m u i p b 3 i j , r = 1 s v r q b 2 r j i = 1 m u i p b 2 i j , r = 1 s v r q b 3 r j i = 1 m u i p b 1 i j ) ,
( r = 1 s v r q c 1 r j i = 1 m u i p c 3 i j , r = 1 s v r q c 2 r j i = 1 m u i p c 2 i j , r = 1 s v r q c 3 r j i = 1 m u i p c 1 i j ) 0 ,
v r , u i 0 r = 1 , , s , i = 1 , , m .
Step 4. Based on Definitions 4–5, convert TSVNN-CCR Model (9) into crisp Model (10):
θ o * ξ ( θ o * ) = m a x r = 1 s ξ ( [ v r q a 1 r o , v r q a 2 r o , v r q a 3 r o ] , [ v r q b 1 r o , v r q b 2 r o , v r q b 3 r o ] , [ v r q c 1 r o , v r q c 2 r o , v r q c 3 r o ] ) (10)
s.t:
i = 1 m ξ ( [ u i p a 1 i o , u i p a 2 i o , u i p a 3 i o ] , [ u i p b 1 i o , u i p b 2 i o , u i p b 3 i o ] , [ u i p c 1 i o , u i p c 2 i o , u i p c 3 i o ] ) = 1
r = 1 s ξ ( [ v r q a 1 r j , v r q a 2 r j , v r q a 3 r j ] , [ v r q b 1 r j , v r q b 2 r j , v r q b 3 r j ] , [ v r q c 1 r j , v r q c 2 r j , v r q c 3 r j ] )

i = 1 m ξ ( [ u i p a 3 i i , u i p a 2 i j , u i p a 1 i j ] , [ u i p b 3 i j , u i p b 2 i j , u i p b 1 i j ] , [ u i p c 3 i j , u i p c 2 i j , u i p c 1 i j ] ) 0 ,
v r , u i 0 r = 1 , , s , i = 1 , , m .
Step 5. Run Model (10) and get the optimal efficiency of each DMU.

5. Numerical Experiment

In this section, a case study of a DEA problem under a neutrosophic environment is used to reveal the validity and usefulness of the proposed model.

Case Study: The Efficiency of the Hospitals of TUMS

Performance assessments in healthcare frameworks are a noteworthy worry of policymakers so that reforms to improve performance in the health sector are on the policy agenda of numerous national governments and worldwide agencies. In the related literature, various methods such as least squares and simple ratio analysis have been applied to assess the performance of healthcare systems (see for instance: [50,51,52]). Nonetheless, due to the applicability of DEA in the solution of problems with multiple inputs and outputs, it is most commonly used in healthcare systems [53]. The utilizations of DEA in the healthcare sector can be found in several works of literature, including for crisp data [54,55,56], fuzzy data [57,58], and intuitionistic fuzzy data [59]. To the best of our knowledge, none of these current works assessed the efficiency of healthcare organizations with neutrosophic sets. Therefore, to assess the efficiency of the mentioned systems under a neutrosophic environment, we used the proposed model to evaluate 13 hospitals of TUMS. It is worth emphasizing that due to privacy policies, the names of these hospitals are not shared. Furthermore, for the selection of the most suitable and acceptable items of the healthcare system, which are commonly used for measuring efficiency in the literature, we considered two inputs, namely the number of doctors and number of beds, and three outputs, namely the total yearly days of hospitalization of all patients, number of outpatient department visits, and overall patient satisfaction.
For each hospital, we gathered the related data from the medical records unit of the hospitals, Center of Statistics of the University of Medical Sciences, the reliable library, online resources, and the judgments of some experts. After collecting data, we found that the information was sometimes inconsistent, indeterminate, and incomplete. The investigation revealed that several reforms by the mentioned hospitals and other issues have led to considerable uncertainty and indeterminacy about the data. As a result, we identified them as triangular single-valued neutrosophic numbers (TSVNNs). For example, for “Patient Satisfaction,” we collected data in terms of “satisfaction,” “dissatisfaction,” and “abstention,” and for each term, the related data was expressed by a triangular fuzzy number. In addition, each triangular fuzzy number was constructed based on min, average, and max. All data were expressed by using TSVNNs, and can be found in Table 1 and Table 2.
Next, we used Algorithm 1 to solve the performance valuation problem. For example, Algorithm 1 for DMU1 can be used as follows:
First, we construct a DEA model with the mentioned TSVNNs:
m a x   θ ˜ 1 [ 121.13 ,   139.24 ,   140.04 ] , [ 138.64 ,   139.14 ,   139.81 ] , [ 139.14 ,   140.02 ,   141.17 ] v 1 [ 38 , 41 ,   45 ] , [ 38 ,   40 ,   43 ] , [ 41 ,   44 ,   49 ] v 2 [ 104.23 ,   114.04 ,   278.51 ] , [ 102.37 ,   109.15 ,   235.72 ] , [ 104.81 ,   275.25 ,   279.88 ] v 3
s.t:
[ 404 ,   540 ,   674 ] , [ 350 ,   440 ,   560 ] , [ 420 ,   645 , 700 ] u 1 [ 520 ,   530 ,   535 ] , [ 520 ,   525 ,   530 ] , [ 532 ,   534 ,   540 ] u 2 = 1 ,
( [ 121.13 ,   139.24 ,   140.04 ] , [ 138.64 ,   139.14 ,   139.81 ] , [ 139.14 ,   140.02 ,   141.17 ] v 1 [ 38 , 41 ,   45 ] , [ 38 ,   40 ,   43 ] , [ 41 ,   44 ,   49 ] v 2 [ 104.23 ,   114.04 ,   278.51 ] , [ 102.37 , 109.15 ,   235.72 ] , [ 104.81 , 275.25 ,   279.88 ] v 3 ) ( [ 404 ,   540 ,   674 ] , [ 350 ,   440 ,   560 ] , [ 420 ,   645 , 700 ] u 1 [ 520 ,   530 ,   535 ] , [ 520 ,   525 ,   530 ] , [ 532 ,   534 ,   540 ] u 2 ) 0 ,
( [ 31.54 ,   34.93 ,   38.89 ] , [ 31.54 ,   34.15 ,   38.27 ] , [ 34.86 ,   38.15 ,   39.83 ] v 1 [ 40 ,   44 ,   47 ] ,   [ 35 ,   52 ,   45 ] , [ 41 ,   46 ,   50 ] v 2 [ 34.54 ,   36.98 ,   54.82   ] , [ 36.45 ,   36.80 ,   41.57 ] , [ 47.61 ,   54.25 ,   55.35 ] > v 3 ) ( < [ 109 ,   126 ,   172 ] ,   [ 112 ,   115 ,   127 ] ,   [ 115 ,   168 , 190 ] u 1 [ 177 , 180 ,   188 ] ,   [ 173 , 175 , 179 ] ,   [ 185 , 189 , 195 ] u 2 ) 0 ,
( [ 81.62 , 82.07 , 85.51 ] , [ 81.41 , 81.94 , 83.35 ] , [ 81.78 ,   85.49 , 88.16 ] v 1 [ 18 , 20 ,   29 ] ,   [ 19 , 21 , 23 ] , [ 28 , 30 , 35 ] v 2 [ 157.75 ,   177.57 ,   264.52   ] , [ 157.75 , 176.68 ,   250.75 ] , [ 180.29 ,   263.98 ,   272.16 ] v 3 ) ( [ 139 , 145 , 158 ] ,   [ 139 , 140 , 147 ] ,   [ 146 , 155 , 167 ] u 1 [ 208 , 214 , 218 ] ,   [ 195 , 209 , 215 ] ,   [ 210 , 217 , 230 ] u 2 ) 0 ,
( [ 19.54 ,   20.41 ,   20.59 ] , [ 20.15 ,   20.25 ,   20.32 ] , [ 20.54 ,   20.58 ,   20.70 ] v 1 [ 18 ,   21 ,   25 ] ,   [ 15 ,   19 ,   23 ] , [ 20 ,   24 ,   30 ] v 2 [ 32.89 ,   35.56 ,   87.74   ] , [ 35.25 ,   35.50 ,   35.61 ] , [ 87.50 ,   87.94 ,   88.30 ] v 3 ) ( [ 86 ,   93 , 151 ] ,   [ 83 ,   85 ,   87 ] ,   [ 89 ,   138 ,   160 ] u 1 [ 114 ,   116 ,   118 ] ,   [ 114 ,   115 ,   117 ] ,   [ 116 ,   118 ,   125 ] u 2 ) 0 ,
( [ 23.89 , 24.60 , 26.09 ] , [ 23.56 , 23.60 , 23.68 ] , [ 25.97 , 26.35 , 26.72 ] v 1 [ 30 , 36 , 41 ] ,   [ 34 , 35 , 37 ] , [ 35 , 40 , 57 ] v 2 [ 63.23 ,   69.58 ,   120.73   ] , [ 63 ,   65.17 ,   94.93 ] , [ 64.47 ,   118.75 ,   124.75   ] v 3 ) ( [ 84 ,   93 ,   143 ] ,   [ 84 ,   89 ,   120 ] ,   [ 90 ,   140 ,   155 ] u 1 [ 110 ,   117 , 121 ] ,   [ 105 ,   112 , 120 ] ,   [ 113 ,   119 ,   128 ] u 2 ) 0 ,
( [ 21.33 ,   21.49 ,   23.31 ] , [ 20.94 ,   24.25 ,   22.68   ] , [ 21.38 ,   23.14 ,   23.94   ] v 1 [ 50 ,   55 ,   60 ] ,   [ 50 ,   53 ,   57 ] , [ 56 ,   59 ,   70 ] v 2 [ 72.84 ,   82.84 ,   94.18   ] , [ 82.15 ,   82.68 ,   84.89   ] , [ 85.75 ,   93.50 ,   97.18   ] v 3 ) ( [ 101 ,   113 ,   170 ] , [ 110 ,   112 ,   115 ] ,   [ 112 ,   120 ,   177 ] u 1 [ 101 , 107 ,   111 ] ,   [ 95 ,   100 ,   104 ] , [ 108 ,   112 ,   115 ] u 2 ) 0 ,
( [ 145.77 , 148.28 , 169.01 ] , [ 145.77 , 147.16 , 168.31 ] , [ 150.69 , 168.95 , 175.18 ] v 1 [ 40 , 44 , 46 ] ,   [ 42 , 43 , 45 ] , [ 43 ,   44 , 55 ] v 2 [ 147.59 ,   150.37 , 227.12   ] , [ 147.30 ,   147.45 , 148 .   25 ] , [ 218.24 , 224.61 , 229.63 ] v 3 ) ( [ 561 , 694 ,   864 ] ,   [ 510 , 640 , 750 ] ,   [ 582 , 857 , 930 ] u 1 [ 492 , 495 , 508 ] , [ 492 , 494 , 500   ] , [ 493 , 506 , 520 ] u 2 ) 0 , ( [ 11.56 ,   11.74 ,   12.96 ] , [ 11.42 ,   11.61 ,   11.98 ] , [ 11.58 ,   12.64 ,   13.16 ] v 1 [ 60 ,   75 , 80 ] ,   [ 55 , 60 , 62 ] , [ 78 , 83 , 85 ] v 2 [ 189.37 ,   202.08 ,   284.99   ] , [ 189.37 ,   200.52 ,   281.63 ] , [ 270.16 ,   284.55 ,   289.12 ] v 3 ) ( [ 123 ,   179 ,   199 ] , [ 122 ,   125 ,   130 ] ,   [ 195 ,   200 ,   205 ] u 1 [ 66 ,   68 ,   73 ] , [ 63 ,   67 ,   69 ] , [ 68 ,   7 0 ,   78 ] u 2 ) 0 ,
( [ 57.55 , 62.67 , 63.03 ] , [ 62.15 ,   62.50 ,   62.93 ] , [ 62.50 , 62.97 , 63.61 ] v 1 [ 32 , 35 , 38 ] ,   [ 32 , 33 , 35 ] , [ 34 , 36 , 45 ] v 2 [ 14.63 , 14.85 ,   29.40 ] , [ 14.70 , 14.75 , 15.25 ] , [ 24.75 , 28.36 , 32.64 ] v 3 ) ( [ 101 , 153 , 155 ] ,   [ 140 , 145 , 150 ] ,   [ 145 , 149 , 167 ] u 1 [ 192 , 195 , 198 ] , [ 185 , 193 , 197 ] , [ 194 , 196 , 205 ] u 2 ) 0 ,
( [ 73.21 ,   76.03 ,   81.90   ] , [ 75.76 , 76.05 , 76.25 ] , [ 81.67 , 82.27 , 82.64 ] v 1 [ 22 , 25 , 40 ] ,   [ 20 , 24 , 27 ] , [ 23 , 25 , 29 ] v 2 [ 96.77 , 97.27 , 110.39 ] , [ 96.77 , 96.89 , 105.14 ] , [ 99.76 , 108.62 , 115.27 ] v 3 ) ( [ 147 , 164 , 170 ] ,   [ 147 , 160 , 167 ] ,   [ 165 , 169 , 180 ] u 1 [ 333 ,   340 , 357 ] , [ 335 , 338 , 350 ] , [ 338 , 347 , 364 ] u 2 ) 0 ,
( [ 22.90 , 27.71 , 35.56 ] , [ 22.90 ,   26.45 ,   31.28 ] , [ 27.92 , 34.62 , 39.41 ] v 1 [ 20 ,   23 , 26 ] ,   [ 21 , 22 , 24 ] , [ 22 ,   25 , 30 ] v 2 [ 171.53 , 182.46 , 384.99   ] , [ 171.12 , 178.65 , 210.34 ] , [ 175.59 , 270.65 , 400.12 ] v 3 ) ( [ 130 , 158 , 192 ] ,   [ 110 , 144 , 173 ] ,   [ 146 , 177 , 205 ] u 1 [ 96 , 100 , 114 ] , [ 97 , 99 , 103 ] , [ 99 , 110 , 129 ] u 2 ) 0 ,
( [ 58.41 ,   59.12 ,   60.61 ] , [ 58.08 ,   58.12 ,   58.20 ] , [ 60.49 ,   60.87 ,   61.24   ] v 1 [ 25 ,   31 , 37 ] ,   [ 29 , 30 , 32 ] , [ 30 ,   3 5 , 52 ] v 2 [ 59.87 ,   66.22 ,   117.37   ] , [ 59.64 ,   61.81 ,   91.57 ] , [ 61.11 ,   115.39 ,   121.39   ] v 3 ) ( [ 128 ,   137 ,   187 ] ,   [ 128 ,   133 ,   164 ] ,   [ 134 ,   184 ,   199 ] u 1 [ 213 ,   220 ,   224 ] , [ 208 ,   215 ,   223 ] , [ 216 ,   222 ,   231 ] u 2 ) 0 ,
( [ 66.97 ,   67.68 ,   69.17 ] , [ 66.64 ,   66.68 ,   66.76 ] , [ 69.05 ,   69.43 ,   69.80 ] v 1 [ 20 ,   27 , 31 ] ,   [ 23 , 26 , 28 ] , [ 24 ,   30 , 46 ] v 2 [ 96.97 ,   103.32 ,   154.47   ] , [ 96.74 ,   98.91 ,   128.67 ] , [ 98.21 ,   152.49 ,   158.50   ] v 3 ) ( [ 151 , 160 , 210 ] ,   [ 151 , 156 , 187 ] ,   [ 157 , 207 ,   222 ] u 1 [ 320 , 327 , 331 ] , [ 315 , 322 , 330 ] , [ 323 , 329 , 338 ] u 2 ) 0 ,
v r , u i 0 , r = 1 , 2 , 3 , i = 1 , 2 .
Finally, based on Definition 4, we convert the above model to the following model:
m a x   θ ˜ 1 138.0608 v 1 + 42 v 2 + 175.2 v 3  
s.t:
529.8333 u 1 + 529.5833 u 2 = 1 , 138.0608 v 1 + 42 v 2 + 175.2 v 3   529.8333 u 1   529.5833 u 2 0 , 35.7792 v 1 + 43.5 v 2 + 43.8667 v 3   146.9167 u 1   182.0833 u 2 0 , 83.4025 v 1 + 24.5 v 2 + 209.9733 v 3   148 u 1   213 u 2 0 , 20.36 v 1 + 21.5833 v 2 + 57.1075 v 3   104.3333 u 1   116.8333 u 2 0 , 24.9175 v 1 + 38 v 2 + 86.5092 v 3   110 u 1   116 . 0833 u 2 0 , 22.6117 v 1 + 56.4167 v 2 + 86.2525 v 3   122.9167 u 1   106 u 2 0 , 156.9592 v 1 + 44.4167 v 2 + 180.2492 v 3   714.9167 u 1   499.5833 u 2 0 , 12.0533 v 1 + 71.3333 v 2 + 239.9117 v 3   165.1667 u 1   68.9167 u 2 0 , 62.3375 v 1 + 35.3333 v 2 + 20.6075 v 3   146 u 1   194.9167 u 2 0 , 78.3442 v 1 + 25.75 v 2 + 102.4717 v 3   163.5 u 1   343.9167 u 2 0 , 29.7942 v 1 + 23.5833 v 2 + 231.4342 v 3   159.5 u 1   104.6667 u 2 0 , 59.4375 v 1 + 33.0833 v 2 + 83.1492 v 3   154 u 1   219.0833 u 2 0 , 67.9975 v 1 + 28.1667 v 2 + 120.25 v 3   177 u 1   326.0833 u 2 0 , v r , u i 0 , r = 1 , 2 , 3 , i = 1 , 2 .
After computations with Lingo, we obtained θ 1 * = 0.6673 for DMU1. Similarly, for the other DMUs, we reported the results in Table 3. From these results, we can see that DMUs 3, 6, 8, and 11 are efficient and others are inefficient.
To authenticate the suggested efficiencies, these efficiencies were compared with the efficiencies obtained by the crisp CCR (Model (6)), and are given in Figure 1. In this figure, the efficiencies of DMUs are found to be smaller for TSVNN-CCR compared to crisp CCR.
It is interesting that DMU 12 is efficient in crisp DEA, but it is inefficient with an efficiency score of 0.8536 using TSVNN-CCR. Therefore, TSVNN-CCR is more realistic than crisp CCR. In addition, crisp CCR and TSVNN-CCR may give the same efficiencies for certain data. However, the crisp CCR model does not deal with the uncertain, indeterminate, and incongruous information. Therefore, TSVNN-CCR is more realistic than crisp CCR.

6. Conclusions and Future Work

In this paper, a new approach for data envelopment analysis was proposed in that indeterminacy, uncertainty, vagueness, inconsistent, and incompleteness of data were shown by neutrosophic sets. Furthermore, the sorting of DMUs in DEA has been presented, and using a de-neutrosophication technique, a ranking order has been extracted. The efficiency scores of the proposed model have a similar meaning and interpretation with the conventional CCR model. Finally, the application of the proposed model was examined in a real-world case study of 13 hospitals of TUMS. The new model is appropriate in situations where some inputs or outputs do not have an exact quantitative value, and the proposed approach has produced promising results from computing efficiency and performance aspects.
The proposed study had some barriers: first, the indeterminacy, uncertainty, and ambiguity in the present report was limited to triangular single-valued neutrosophic numbers, but the other forms of NSs such as bipolar NSs and interval-valued neutrosophic numbers can also be used to indicate variables characterizing the neutrosophic core in global problems. Second, the presented model was investigated under a constant returns-to-scale (CRS), but the suggested method can also be extended under a VRS assumption, so we plan to extend this model to the VRS. Moreover, although the arithmetic operations, model, and results presented here demonstrate the effectiveness of our methodology, it could also be considered in other types of DEA models such as network DEA and its applications to banks, supplier selection, tax offices, police stations, schools, and universities. While developing data envelopment analysis, models based on bipolar and interval-valued neutrosophic data is another area for further studies. As for future research, we intend to study these problems.

Author Contributions

The authors contributed equally to writing this article. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by Quzhou University.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations: List of Acronyms

DEAData Envelopment Analysis
DMUDecision-Making Units
CCR modelCharnes, Cooper, Rhodes model
BCC modelBanker, Charnes, Cooper model
CRSConstant Returns-to-Scale
VRSVariable Returns-to-Scale
AHPAnalytic Hierarchy Process
TUMSTehran University of Medical Sciences
FSFuzzy Set
IFSIntuitionistic Fuzzy Set
NSNeutrosophic Set
SVNSSingle-Valued Neutrosophic Set
TSVNNTriangular Single-Valued Neutrosophic number

References

  1. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
  2. Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [Google Scholar] [CrossRef]
  3. Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
  4. Sahoo, B.K.; Tone, K. Decomposing capacity utilization in data envelopment analysis: An application to banks in India. Eur. J. Oper. Res. 2009, 195, 575–594. [Google Scholar] [CrossRef]
  5. Lee, Y.J.; Joo, S.J.; Park, H.G. An application of data envelopment analysis for Korean banks with negative data. Benchmarking Int. J. 2017, 24, 1052–1067. [Google Scholar] [CrossRef]
  6. Jiang, H.; He, Y. Applying Data Envelopment Analysis in Measuring the Efficiency of Chinese Listed Banks in the Context of Macroprudential Framework. Mathematics 2018, 6, 184. [Google Scholar] [CrossRef] [Green Version]
  7. Karasakal, E.; Aker, P. A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem. Omega 2017, 73, 79–92. [Google Scholar]
  8. Lacko, R.; Hajduová, Z.; Gábor, V. Data Envelopment Analysis of Selected Specialized Health Centres and Possibilities of its Application in the Terms of Slovak Republic Health Care System. J. Health Manag. 2017, 19, 144–158. [Google Scholar] [CrossRef]
  9. Ertay, T.; Ruan, D.; Tuzkaya, U.R. Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems. Inf. Sci. 2006, 176, 237–262. [Google Scholar] [CrossRef]
  10. Düzakın, E.; Düzakın, H. Measuring the performance of manufacturing firms with super slacks based model of data envelopment analysis: An application of 500 major industrial enterprises in Turkey. Eur. J. Oper. Res. 2007, 182, 1412–1432. [Google Scholar] [CrossRef]
  11. Jahanshahloo, G.R.; Lotfi, F.H.; Valami, H.B. Malmquist productivity index with interval and fuzzy data, an application of Data envelopment analysis. Int. Math. Forum 2006, 1, 1607–1623. [Google Scholar] [CrossRef] [Green Version]
  12. Shafiee, M.; Lotfi, F.H.; Saleh, H. Supply chain performance evaluation with data envelopment analysis and balanced scorecard approach. Appl. Math. Model. 2014, 38, 5092–5112. [Google Scholar] [CrossRef]
  13. Soheilirad, S.; Govindan, K.; Mardani, A.; Zavadskas, E.K.; Nilashi, M.; Zakuan, N. Application of data envelopment analysis models in supply chain management: A systematic review and meta-analysis. Ann. Oper. Res. 2018, 271, 915–969. [Google Scholar] [CrossRef]
  14. Krmac, E.; Djordjević, B. A New DEA Model for Evaluation of Supply Chains: A Case of Selection and Evaluation of Environmental Efficiency of Suppliers. Symmetry 2019, 11, 565. [Google Scholar] [CrossRef] [Green Version]
  15. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
  16. Hsu, T.; Tsai, Y.; Wu, H. The preference analysis for tourist choice of destination: A case study of Taiwan. Tour. Manag. 2009, 30, 288–297. [Google Scholar] [CrossRef]
  17. Finol, J.; Guo, Y.K.; Jing, X.D. A rule based fuzzy model for the prediction of petrophysical rock parameters. J. Pet. Sci. Eng. 2001, 29, 97–113. [Google Scholar] [CrossRef]
  18. Najafi, H.S.; Edalatpanah, S.A. An improved model for iterative algorithms in fuzzy linear systems. Comput. Math. Modeling 2013, 24, 443–451. [Google Scholar] [CrossRef]
  19. Hosseinzadeh, A.; Edalatpanah, S.A. A new approach for solving fully fuzzy linear programming by using the lexicography method. Adv. Fuzzy Syst. 2016. [Google Scholar] [CrossRef] [Green Version]
  20. Das, S.K.; Edalatpanah, S.A.; Mandal, T. A proposed model for solving fuzzy linear fractional programming problem: Numerical Point of View. J. Comput. Sci. 2018, 25, 367–375. [Google Scholar] [CrossRef]
  21. Hatami-Marbini, A.; Emrouznejad, A.; Tavana, M. A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making. Eur. J. Oper. Res. 2011, 214, 457–472. [Google Scholar] [CrossRef]
  22. Emrouznejad, A.; Tavana, M.; Hatami-Marbini, A. The state of the art in fuzzy data envelopment analysis. In Performance Measurement with Fuzzy Data Envelopment Analysis; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–45. [Google Scholar]
  23. Emrouznejad, A.; Yang, G.L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 2018, 61, 4–8. [Google Scholar] [CrossRef]
  24. Yen, B.T.; Chiou, Y.C. Dynamic fuzzy data envelopment analysis models: Case of bus transport performance assessment. RAIRO-Oper. Res. 2019, 53, 991–1005. [Google Scholar] [CrossRef]
  25. Lotfi, F.H.; Ebrahimnejad, A.; Vaez-Ghasemi, M.; Moghaddas, Z. Data Envelopment Analysis with R; Springer: Cham, Switzerland, 2020. [Google Scholar]
  26. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
  27. Rouyendegh, B.D. The DEA and intuitionistic fuzzy TOPSIS approach to departments’ performances: A pilot study. J. Appl. Math. 2011, 1–16. [Google Scholar] [CrossRef]
  28. Puri, J.; Yadav, S.P. Intuitionistic fuzzy data envelopment analysis: An application to the banking sector in India. Expert Syst. Appl. 2015, 42, 4982–4998. [Google Scholar] [CrossRef]
  29. Edalatpanah, S.A. A data envelopment analysis model with triangular intuitionistic fuzzy numbers. Int. J. Data Envel. Anal. 2019, 7, 47–58. [Google Scholar]
  30. Arya, A.; Yadav, S.P. Development of intuitionistic fuzzy data envelopment analysis models and intuitionistic fuzzy input–output targets. Soft Comput. 2019, 23, 8975–8993. [Google Scholar] [CrossRef]
  31. Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, MA, USA, 1999. [Google Scholar]
  32. Smarandache, F. A unifying field in logics: Neutrosophic logic. In Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, 3rd ed.; American Research Press: Rehoboth, MA, USA, 2003. [Google Scholar]
  33. Broumi, S.; Smarandache, F. Correlation coefficient of interval neutrosophic set. Appl. Mech. Mater. 2013, 436, 511–517. [Google Scholar] [CrossRef] [Green Version]
  34. Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [Google Scholar] [CrossRef]
  35. Broumi, S.; Smarandache, F.; Talea, M.; Bakali, A. An introduction to bipolar single valued neutrosophic graph theory. Appl. Mech. Mater. 2016, 841, 184–191. [Google Scholar] [CrossRef] [Green Version]
  36. Wang, L.; Zhang, H.Y.; Wang, J.Q. Frank Choquet Bonferroni mean operators of bipolar neutrosophic sets and their application to multi-criteria decision-making problems. Int. J. Fuzzy Syst. 2018, 20, 13–28. [Google Scholar] [CrossRef]
  37. Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]
  38. Chakraborty, A.; Mondal, S.P.; Ahmadian, A.; Senu, N.; Alam, S.; Salahshour, S. Different Forms of Triangular Neutrosophic Numbers, De-Neutrosophication Techniques, and their Applications. Symmetry 2018, 10, 327. [Google Scholar] [CrossRef] [Green Version]
  39. Garg, H. New Logarithmic operational laws and their applications to multiattribute decision making for single-valued neutrosophic numbers. Cogn. Syst. Res. 2018, 52, 931–946. [Google Scholar] [CrossRef] [Green Version]
  40. Garg, H. Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to multiple-attribute group decision-making. J. Ambient Intell. Hum. Comput. 2018, 9, 1975–1997. [Google Scholar] [CrossRef]
  41. Smarandache, F. About Nonstandard Neutrosophic Logic: Answers to Imamura’s “Note on the Definition of Neutrosophic Logic”; Infinite Study: Coimbatore, India, 2019. [Google Scholar]
  42. Garg, H. Algorithms for possibility linguistic single-valued neutrosophic decision-making based on COPRAS and aggregation operators with new information measures. Measurement 2019, 138, 278–290. [Google Scholar] [CrossRef] [Green Version]
  43. Kumar, R.; Edalatpanah, S.A.; Jha, S.; Broumi, S.; Dey, A. Neutrosophic shortest path problem. Neutrosophic Sets Syst. 2018, 23, 5–15. [Google Scholar]
  44. Edalatpanah, S.A. Nonlinear approach for neutrosophic linear programming. J. Appl. Res. Ind. Eng. 2019, 6, 367–373. [Google Scholar]
  45. Edalatpanah, S.A. Neutrosophic perspective on DEA. J. Appl. Res. Ind. Eng. 2018, 5, 339–345. [Google Scholar]
  46. Kahraman, C.; Otay, I.; Öztayşi, B.; Onar, S.C. An Integrated AHP & DEA Methodology with Neutrosophic Sets. In Fuzzy Multi-Criteria Decision-Making Using Neutrosophic Sets; Springer: Cham, Switzerland, 2019; pp. 623–645. [Google Scholar]
  47. Edalatpanah, S.A.; Smarandache, F. Data Envelopment Analysis for Simplified Neutrosophic Sets. Neutrosophic Sets Syst. 2019, 29, 215–226. [Google Scholar]
  48. Abdelfattah, W. Data envelopment analysis with neutrosophic inputs and outputs. Expert Syst. 2019, 36, e12453. [Google Scholar] [CrossRef]
  49. Robinson, A. Non-Standard Analysis; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
  50. Aristovnik, A. Measuring relative efficiency in health and education sector: The case of East European countries. Actual Probl. Econ. 2012, 136, 305–314. [Google Scholar]
  51. Barros, C.P.; de Menezes, A.G.; Vieira, J.C. Measurement of hospital efficiency, using a latent class stochastic frontier model. Appl. Econ. 2013, 45, 47–54. [Google Scholar] [CrossRef]
  52. Colombi, R.; Martini, G.; Vittadini, G. Determinants of transient and persistent hospital efficiency: The case of Italy. Health Econ. 2017, 26, 5–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Bryce, C.L.; Engberg, J.B.; Wholey, D.R. Comparing the agreement among alternative models in evaluating HMO efficiency. Health Serv. Res. 2000, 35, 509. [Google Scholar] [PubMed]
  54. Kalhor, R.; Amini, S.; Sokhanvar, M.; Lotfi, F.; Sharifi, M.; Kakemam, E. Factors affecting the technical efficiency of general hospitals in Iran: Data envelopment analysis. J. Egypt. Public Health Assoc. 2016, 91, 20–25. [Google Scholar] [CrossRef]
  55. Chen, H.; Liu, J.; Li, Y.; Chiu, Y.-H.; Lin, T.Y. A Two-stage Dynamic Undesirable Data Envelopment Analysis Model Focused on Media Reports and the Impact on Energy and Health Efficiency. Int. J. Environ. Res. Public Health 2019, 16, 1535. [Google Scholar] [CrossRef] [Green Version]
  56. Kohl, S.; Schoenfelder, J.; Fügener, A.; Brunner, J.O. The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals. Health Care Manag. Sci. 2019, 22, 245–286. [Google Scholar] [CrossRef]
  57. Ji, A.B.; Qiao, Y.; Liu, C. Fuzzy DEA-based classifier and its applications in healthcare management. Health Care Manag. Sci. 2019, 22, 560–568. [Google Scholar] [CrossRef]
  58. Dotoli, M.; Epicoco, N.; Falagario, M.; Sciancalepore, F. A cross-efficiency fuzzy data envelopment analysis technique for performance evaluation of decision making units under uncertainty. Comput. Ind. Eng. 2015, 79, 103–114. [Google Scholar] [CrossRef]
  59. Otay, İ.; Oztaysi, B.; Onar, S.C.; Kahraman, C. Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowl. Based Syst. 2017, 133, 90–106. [Google Scholar]
Figure 1. Comparison of suggested and crisp models.
Figure 1. Comparison of suggested and crisp models.
Symmetry 12 00588 g001
Table 1. Input information of the nominee hospitals.
Table 1. Input information of the nominee hospitals.
DMUInputs 1
Number of Doctors
Inputs 2
Number of Beds
1 [ 404 ,   540 ,   674 ] , [ 350 ,   440 ,   560 ] ,   [ 420 ,   645 , 700 ] [ 520 ,   530 ,   535 ] , [ 520 ,   525 ,   530 ] ,   [ 532 ,   534 ,   540 ]
2 [ 119 ,   136 ,   182 ] , [ 122 ,   125 ,   137 ] ,   [ 125 ,   178 , 200 ] [ 177 , 180 ,   188 ] , [ 173 ,   175 ,   179 ] ,   [ 185 ,   189 ,   195 ]
3 [ 139 ,   145 ,   158 ] , [ 139 ,   140 ,   147 ] ,   [ 146 ,   155 ,   167 ] [ 208 ,   214 ,   218 ] , [ 195 ,   209 ,   215 ] ,   [ 210 ,   217 ,   230 ]
4 [ 86 ,   93 , 151 ] , [ 83 ,   85 ,   87 ] ,   [ 89 ,   138 ,   160 ] [ 114 ,   116 ,   118 ] , [ 114 ,   115 ,   117 ] ,   [ 116 ,   118 ,   125 ]
5 [ 84 ,   93 ,   143 ] , [ 84 ,   89 ,   120 ] ,   [ 90 ,   140 ,   155 ] [ 110 ,   117 , 121 ] , [ 105 ,   112 , 120 ] ,   [ 113 ,   119 ,   128 ]
6 [ 101 ,   113 ,   170 ] , [ 110 ,   112 ,   115 ] ,   [ 112 ,   120 ,   177 ] [ 101 , 107 ,   111 ] , [ 95 ,   100 ,   104 ] ,   [ 108 ,   112 ,   115 ]
7 [ 561 ,   694 ,   864 ] , [ 510 ,   640 ,   750 ] ,   [ 582 ,   857 ,   930 ] [ 492 ,   495 ,   508 ] , [ 492 ,   494 ,   500   ] ,   [ 493 ,   506 ,   520 ]
8 [ 123 ,   179 ,   199 ] , [ 122 ,   125 ,   130 ] ,   [ 195 ,   200 ,   205 ] [ 66 ,   68 ,   73 ] , [ 63 ,   67 ,   69 ] ,   [ 68 ,   70 ,   78 ]
9 [ 101 ,   153 ,   155 ] , [ 140 , 145 ,   150 ] ,   [ 145 ,   149 ,   167 ] [ 192 , 195 ,   198 ] , [ 185 ,   193 ,   197 ] ,   [ 194 ,   196 ,   205 ]
10 [ 147 ,   164 ,   170 ] , [ 147 ,   160 ,   167 ] ,   [ 165 ,   169 ,   180 ] [ 333 ,   340 ,   357 ] , [ 335 ,   338 ,   350 ] ,   [ 338 ,   347 , 364 ]
11 [ 130 ,   158 ,   192 ] , [ 110 ,   144 ,   173 ] ,   [ 146 ,   177 , 205 ] [ 96 ,   100 , 114 ] , [ 97 ,   99 , 103 ] ,   [ 99 ,   110 ,   129 ]
12 [ 128 ,   137 ,   187 ] , [ 128 ,   133 ,   164 ] ,   [ 134 ,   184 ,   199 ] [ 213 ,   220 ,   224 ] , [ 208 ,   215 ,   223 ] ,   [ 216 ,   222 ,   231 ]
13 [ 151 , 160 , 210 ] , [ 151 , 156 , 187 ] ,   [ 157 , 207 ,   222 ] [ 320 , 327 , 331 ] , [ 315 , 322 , 330 ] ,   [ 323 , 329 , 338 ]
Table 2. Output information of the nominee hospitals.
Table 2. Output information of the nominee hospitals.
DMUOutputs 1
Days of Hospitalization
(in Thousands)
Outputs 2
Patient Satisfaction (%)
Outputs 3
Number of Outpatients
(in Thousands)
1 [ 121.13 ,   139.24 ,   140.04 ] ,
[ 138.64 ,   139.14 ,   139.81 ] ,
[ 139.14 ,   140.02 ,   141.17 ]
[ 38 , 41 ,   45 ] ,
[ 38 ,   40 ,   43 ] ,
[ 41 ,   44 ,   49 ]
[ 104.23 ,   114.04 ,   278.51 ] ,
[ 102.37 ,   109.15 ,   235.72 ] ,
[ 104.81 ,   275.25 ,   279.88 ]
2 [ 31.54 ,   34.93 ,   38.89 ] ,
[ 31.54 ,   34.15 ,   38.27 ] ,
[ 34.86 ,   38.15 ,   39.83 ]
[ 40 ,   44 ,   47 ] ,
[ 35 ,   42 ,   45 ] ,
[ 41 ,   46 ,   50 ]
[ 34.54 ,   36.98 ,   54.82   ] ,
[ 36.45 ,   36.80 ,   41.57 ] ,
[ 47.61 ,   54.25 ,   55.35 ]
3 [ 81.62 ,   82.07 ,   85.51 ] ,
[ 81.41 ,   81.94 ,   83.35 ] ,
[ 81.78 ,   85.49 ,   88.16 ]
[ 18 , 20 , 29 ] ,
[ 19 , 21 , 23 ] ,
[ 28 , 30 , 35 ]
[ 157.75 ,   177.57 ,   264.52   ] ,
[ 157.75 , 176.68 ,   250.75 ] ,
[ 180.29 ,   263.98 ,   272.16 ]
4 [ 19.54 ,   20.41 ,   20.59 ] ,
[ 20.15 ,   20.25 ,   20.32 ] ,
[ 20.54 ,   20.58 ,   20.70 ]
[ 18 ,   21 ,   25 ] ,
[ 15 ,   19 ,   23 ] ,
[ 20 ,   24 ,   30 ]
[ 32.89 ,   35.56 ,   87.74   ] ,
[ 35.25 ,   35.50 ,   35.61 ] ,
[ 87.50 ,   87.94 ,   88.30 ]
5 [ 23.89 ,   24.60 ,   26.09 ] ,
[ 23.56 ,   23.60 ,   23.68 ] ,
[ 25.97 ,   26.35 ,   26.72   ]
[ 30 ,   36 , 41 ] ,
[ 34 , 35 ,   37 ] ,
[ 35 ,   40 ,   57 ]
[ 63.23 ,   69.58 ,   120.73   ] ,
[ 63 ,   65.17 ,   94.93 ] ,
[ 64.47 ,   118.75 ,   124.75   ]
6 [ 21.33 ,   21.49 ,   23.31 ] ,
[ 20.94 ,   24.25 ,   22.68   ] ,
[ 21.38 ,   23.14 ,   23.94   ]
[ 50 ,   55 ,   60 ] ,
[ 50 ,   53 ,   57 ] ,
[ 56 ,   59 ,   70 ]
[ 72.84 ,   82.84 ,   94.18   ] ,
[ 82.15 ,   82.68 ,   84.89   ] ,
[ 85.75 ,   93.50 ,   97.18   ]
7 [ 145.77 ,   148.28 ,   169.01 ] ,
[ 145.77 ,   147.16 ,   168.31 ] ,
[ 150.69 ,   168.95 ,   175.18 ]
[ 40 ,   44 ,   46 ] ,
[ 42 ,   43 , 45 ] ,
[ 43 ,   44 , 55 ]
[ 147.59 ,   150.37 ,   227.12   ] ,
[ 147.30 ,   147.45 ,   148.25 ] ,
[ 218.24 ,   224.61 ,   229.63 ]
8 [ 11.56 ,   11.74 ,   12.96 ] ,
[ 11.42 ,   11.61 ,   11.98 ] ,
[ 11.58 ,   12.64 ,   13.16 ]
[ 60 ,   75 , 80 ] ,
[ 55 , 60 , 62 ] ,
[ 78 , 83 , 85 ]
[ 189.37 ,   202.08 ,   284.99   ] ,
[ 189.37 ,   200.52 ,   281.63 ] ,
[ 270.16 ,   284.55 ,   289.12 ]
9 [ 57.55 ,   62.67 ,   63.03   ] ,
[ 62.15 ,   62.50 ,   62.93   ] ,
[ 62.50 ,   62.97 ,   63.61 ]
[ 32 ,   35 , 38 ] ,
[ 32 ,   33 ,   35 ] ,
[ 34 ,   36 ,   45 ]
[ 14.63 ,   14.85 ,   29.40   ] ,
[ 14.70 ,   14.75 ,   15.25   ] ,
[ 24.75 ,   28.36 ,   32.64   ]
10 [ 73.21 ,   76.03 ,   81.90   ] ,
[ 75.76 ,   76.05 ,   76.25 ] ,
[ 81.67 ,   82.27 ,   82.64 ]
[ 22 ,   25 ,   40 ] ,
[ 20 ,   24 ,   27 ] ,
[ 23 ,   25 ,   29 ]
[ 96.77 ,   97.27 ,   110.39   ] ,
[ 96.77 ,   96.89 ,   105.14 ] ,
[ 99.76 ,   108.62 ,   115.27 ]
11 [ 22.90 ,   27.71 ,   35.56   ] ,
[ 22.90 ,   26.45 ,   31.28 ] ,
[ 27.92 ,   34.62 ,   39.41 ]
[ 20 ,   23 ,   26 ] ,
[ 21 , 22 ,   24 ] ,
[ 22 ,   25 , 30 ]
[ 171.53 ,   182.46 ,   384.99   ] ,
[ 171.12 ,   178.65 ,   210.34 ] ,
[ 175.59 ,   270.65 ,   400.12 ]
12 [ 58.41 ,   59.12 ,   60.61 ] ,
[ 58.08 ,   58.12 ,   58.20 ] ,
[ 60.49 ,   60.87 ,   61.24   ]
[ 25 ,   31 , 37 ] ,
[ 29 ,   30 ,   32 ] ,
[ 30 ,   35 ,   52 ]
[ 59.87 ,   66.22 ,   117.37   ] ,
[ 59.64 ,   61.81 ,   91.57 ] ,
[ 61.11 ,   115.39 ,   121.39   ]
13 [ 66.97 ,   67.68 ,   69.17 ] ,
[ 66.64 ,   66.68 ,   66.76 ] ,
[ 69.05 ,   69.43 ,   69.80 ]
[ 20 ,   27 ,   31 ] ,
[ 23 ,   26 ,   28 ] ,
[ 24 ,   30 ,   46 ]
[ 96.97 ,   103.32 ,   154.47   ] ,
[ 96.74 ,   98.91 ,   128.67 ] ,
[ 98.21 ,   152.49 ,   158.50   ]
Table 3. The efficiencies of the decision-making units (DMUs) by the triangular single-valued neutrosophic number-Charnes, Cooper, and Rhodes (TSVNN-CCR) model.
Table 3. The efficiencies of the decision-making units (DMUs) by the triangular single-valued neutrosophic number-Charnes, Cooper, and Rhodes (TSVNN-CCR) model.
DMUsEfficiencyRanking
10.66739
20.80576
31.001
40.595010
50.87544
61.001
70.70247
81.001
90.91162
100.87513
111.001
120.85365
130.75878

Share and Cite

MDPI and ACS Style

Yang, W.; Cai, L.; Edalatpanah, S.A.; Smarandache, F. Triangular Single Valued Neutrosophic Data Envelopment Analysis: Application to Hospital Performance Measurement. Symmetry 2020, 12, 588. https://doi.org/10.3390/sym12040588

AMA Style

Yang W, Cai L, Edalatpanah SA, Smarandache F. Triangular Single Valued Neutrosophic Data Envelopment Analysis: Application to Hospital Performance Measurement. Symmetry. 2020; 12(4):588. https://doi.org/10.3390/sym12040588

Chicago/Turabian Style

Yang, Wei, Lulu Cai, Seyed Ahmad Edalatpanah, and Florentin Smarandache. 2020. "Triangular Single Valued Neutrosophic Data Envelopment Analysis: Application to Hospital Performance Measurement" Symmetry 12, no. 4: 588. https://doi.org/10.3390/sym12040588

APA Style

Yang, W., Cai, L., Edalatpanah, S. A., & Smarandache, F. (2020). Triangular Single Valued Neutrosophic Data Envelopment Analysis: Application to Hospital Performance Measurement. Symmetry, 12(4), 588. https://doi.org/10.3390/sym12040588

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop