# Generation of Internal Gravity Waves Far from Moving Non-Local Source

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Formulation of the Problem and Integral Forms of Solutions

_{0}is the Bessel function of order zero [28,29]. Solutions (8)–(10) have the form:

## 3. Analytic Representations of Solutions

## 4. Numerical Results and Discussion

## 5. Summary and Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Lighthill, J. Waves in Fluids; Cambridge University Press: Cambridge, UK, 1978; p. 598. [Google Scholar]
- Miropolsky, Y.Z. Dynamics of Internal Gravity Waves in the Ocean; Shishkina, O., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; p. 406. [Google Scholar]
- Pedlosky, J. Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics; Springer: Berlin/Heidelberg, Germany, 2010; p. 260. [Google Scholar]
- Sutherland, B.R. Internal Gravity Waves; Cambridge University Press: Cambridge, UK, 2010; p. 394. [Google Scholar]
- Morozov, E.G. Oceanic Internal Tides: Observations, Analysis and Modeling; Springer: Berlin, Germany, 2018; p. 317. [Google Scholar]
- Tarakanov, R.Y.; Marchenko, A.V.; Velarde, M.G. (Eds.) Ocean in Motion; Springer: Berlin, Germany, 2018; p. 625. [Google Scholar]
- Mei, C.C.; Stiassnie, M.; Yue, D.K.-P. Theory and Applications of Ocean Surface Waves. Advanced Series of Ocean Engineering. V. 42; World Scientific Publishing: London, UK, 2017; 1500p. [Google Scholar]
- Bulatov, V.V.; Vladimirov, Y.V. Wave Dynamics of Stratified Mediums; Nauka Publishers: Moscow, Russia, 2012; p. 584. [Google Scholar]
- Bulatov, V.V.; Vladimirov, Y.V. A General Approach to Ocean Wave Dynamics Research: Modeling, Asymptotics, Measurements; OntoPrint Publishers: Moscow, Russia, 2012; p. 587. [Google Scholar]
- Voelker, G.S.; Myers, P.G.; Walter, M.; Sutherland, B.R. Generation of oceanic internal gravity waves by a cyclonic surface stress disturbance. Dyn. Atmos. Oceans
**2019**, 86, 116–133. [Google Scholar] [CrossRef] - Miles, J.W. Internal waves generated by a horizontally moving source. Geophys. Fluid Dyn.
**1971**, 40, 396–427. [Google Scholar] [CrossRef] - Gray, E.P. The structure of the internal Mach front generated by a point source moving in a stratified fluid. Phys. Fluids
**1983**, 26, 2919–2931. [Google Scholar] [CrossRef] - Källén, E. Surface effects of vertically propagation waves in a stratified fluid. J. Fluid Mech.
**1987**, 182, 111–125. [Google Scholar] [CrossRef] - Voisin, B. Lee waves from a sphere in a stratified flow. J. Fluid Mech.
**2007**, 574, 273–292. [Google Scholar] [CrossRef] [Green Version] - Abdilghanie, A.M.; Diamessis, P.J. The internal gravity wave field emitted by a stably stratified turbulent wake. J. Fluid Mech.
**2013**, 720, 104–139. [Google Scholar] [CrossRef] - Matyushin, P. Process of the Formation of Internal Waves Initiated by the Start of Motion of a Body in a Stratified Viscous Fluid. Fluid Dyn.
**2019**, 54, 374–388. [Google Scholar] [CrossRef] - Scase, M.; Dalziel, S.B. Internal wave fields generated by a translating body in a stratified fluid: An experimental comparison. J. Fluid Mech.
**2006**, 564, 305–329. [Google Scholar] [CrossRef] [Green Version] - Lecoanet, D.; Le Bars, M.; Burns, K.J.; Vasil, G.M.; Brown, B.P.; Quataert, E.; Oishi, J.S. Numerical simulations of internal wave generation by convection in water. Phys. Rev. E
**2015**, 91, 063016. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Haney, S.; Young, W.R. Radiation of internal waves from groups of surface gravity waves. J. Fluid Mech.
**2017**, 829, 280–303. [Google Scholar] [CrossRef] - Wang, H.; Chen, K.; You, Y. An investigation on internal waves generated by towed models under a strong halocline. Phys. Fluids
**2017**, 29, 065104. [Google Scholar] [CrossRef] - Wang, J.; Wang, S.; Chen, X.; Wang, W.; Xu, Y. Three-dimensional evolution of internal waves rejected from a submarine seamount. Phys. Fluids.
**2017**, 29, 106601. [Google Scholar] [CrossRef] - Svirkunov, P.N.; Kalashnik, M.V. Phase patterns of dispersive waves from moving localized sources. Phys. Usp.
**2014**, 57, 80–91. [Google Scholar] [CrossRef] - Sutherland, B.R. Excitation of superharmonics by internal modes in non-uniformly stratified fluid. J. Fluid Mech.
**2016**, 793, 335–352. [Google Scholar] [CrossRef] [Green Version] - Rees, T.; Lamb, K.G.; Poulin, F.J. Asymptotic Analysis of the Forced Internal Gravity Wave Equation. SIAM J. Appl. Math.
**2012**, 72, 1041–1060. [Google Scholar] [CrossRef] - Borovikov, V.A.; Bulatov, V.V.; Vladimirov, Y.V. Internal gravity waves excited by a body moving in a stratified fluid. Fluid Dyn. Res.
**1995**, 15, 325–336. [Google Scholar] [CrossRef] - Bulatov, V.V.; Vladimirov, Y.V.; Vladimirov, I.Y. Far fields of internal gravity waves from a source moving in the ocean with an arbitrary buoyancy frequency distribution. Russ. J. Earth Sci.
**2019**, 19, ES5003. [Google Scholar] [CrossRef] - Bulatov, V.V.; Vladimirov, Y.V. Unsteady regimes of internal gravity wave generation in the ocean. Russ. J. Earth Sci.
**2018**, 18, ES2004. [Google Scholar] [CrossRef] [Green Version] - Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions, 2nd ed.; Dover Publications: New York, NY, USA, 1992. [Google Scholar]
- Navrotsky, V.V.; Liapidevskii, V.Y.; Pavlova, E.P. Features of Internal Waves in a Shoaling Thermocline. Int. J. Geosci.
**2013**, 4, 871–879. [Google Scholar] [CrossRef] [Green Version] - Pannard, A.; Beisner, B.; Bird, D.F.; Braun, J.; Planas, D.; Bormans, M. Recurrent internal waves in a small lake: Potential ecological consequences for metalimnetic phytoplankton populations. Limnol. Oceanogr. Fluids Environ.
**2011**, 1, 91–109. [Google Scholar] [CrossRef] [Green Version]

**Figure 2.**Absolute values of velocity of internal gravity waves (IGW) at the bottom. The structure of the total wave field is determined by two components of the horizontal velocity; the vertical velocity component at the bottom is zero.

**Figure 3.**Absolute values of velocity of IGW at the bottom. At $\left|z\right|\le 2\pi /3$, the vertical component of the velocity becomes sufficient to make the main contribution to the total field.

**Figure 4.**Horizontal x-component of velocity. At large distances from the source ($y\ge 1$), the main contribution to the total wave field is related to the first 3–5 modes.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bulatov, V.; Vladimirov, Y.
Generation of Internal Gravity Waves Far from Moving Non-Local Source. *Symmetry* **2020**, *12*, 1899.
https://doi.org/10.3390/sym12111899

**AMA Style**

Bulatov V, Vladimirov Y.
Generation of Internal Gravity Waves Far from Moving Non-Local Source. *Symmetry*. 2020; 12(11):1899.
https://doi.org/10.3390/sym12111899

**Chicago/Turabian Style**

Bulatov, Vitaly, and Yury Vladimirov.
2020. "Generation of Internal Gravity Waves Far from Moving Non-Local Source" *Symmetry* 12, no. 11: 1899.
https://doi.org/10.3390/sym12111899