Analytical Approximations of Dispersion Relations for Internal Gravity Waves Equation with Shear Flows
Abstract
1. Introduction
2. Statement of the Problem
3. Basic Properties of Dispersion Curves
4. Analytical Approximation of Dispersion Relations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Miropolsky, Y.Z. Dynamics of Internal Gravity Waves in the Ocea; Shishkina, O., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; p. 406. [Google Scholar]
- Pedlosky, J. Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics; Springer: Berlin/Heidelberg, Germany, 2010; p. 260. [Google Scholar]
- Sutherland, B.R. Internal Gravity Waves; Cambridge University Press: Cambridge, UK, 2010; p. 394. [Google Scholar]
- Morozov, E.G. Oceanic Internal Tides: Observations, Analysis and Modeling; Springer: Berlin/Heidelberg, Germany, 2018; p. 317. [Google Scholar]
- Tarakanov, R.Y.; Marchenko, A.V.; Velarde, M.G. (Eds.) Ocean in Motion; Springer: Berlin/Heidelberg, Germany, 2018; p. 625. [Google Scholar]
- Mei, C.C.; Stiassnie, M.; Yue, D.K.-P. Theory and Applications of Ocean Surface Waves: Advanced Series of Ocean Engineering. V.42; World Scientific Publishing: London, UK, 2017; p. 1500. [Google Scholar]
- Fabrikant, A.L.; Stepanyants, Y.A. Propagation of Waves in Shear Flows; World Scientific Publishing: London, UK, 1998; p. 304. [Google Scholar]
- Bulatov, V.V.; Vladimirov, Y.V. Wave Dynamics of Stratified Mediums; Nauka Publishers: Moscow, Russia, 2012; p. 584. [Google Scholar]
- Bulatov, V.V.; Vladimirov, Y.V. A General Approach to Ocean Wave Dynamics Research: Modeling, Asymptotics, Measurements; OntoPrint Publishers: Moscow, Russia, 2012; p. 587. [Google Scholar]
- Fraternale, F.; Domenicale, L.; Staffilan, G.; Tordella, D. Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space. Phys. Rev. 2018, 97, 063102. [Google Scholar] [CrossRef] [PubMed]
- Bouruet-Aubertot, P.I.; Thorpe, S.A. Numerical experiments of internal gravity waves an accelerating shear flow. Dyn. Atmos. Oceans 1999, 29, 41–63. [Google Scholar] [CrossRef]
- Frey, D.I.; Novigatsky, A.N.; Kravchishina, M.D.; Morozov, E.G. Water structure and currents in the Bear Island Trough in July–August 2017. Russ. J. Earth Sci. 2017, 17, ES3003. [Google Scholar] [CrossRef][Green Version]
- Morozov, E.G.; Paka, V.T.; Bakhanov, V.V. Strong internal tides in the Kara Gates Strait. Geophys. Res. Lett. 2008, 35, L16603. [Google Scholar] [CrossRef]
- Tarakanov, R.Y.; Morozov, E.G.; Frey, D.I. Hydraulic continuation of the abyssal flow from the Vema Channel in the Southwestern part of the Brazil Basin. J. Geophys. Res. Oceans 2020, 125, e2020JC016232. [Google Scholar] [CrossRef]
- Khimchenko, E.E.; Frey, D.I.; Morozov, E.G. Tidal internal waves in the Bransfield Strait, Antarctica. Russ. J. Earth Sci. 2020, 20, ES2006. [Google Scholar] [CrossRef]
- Bulatov, V.V.; Vladimirov, Y.V. Dynamics of internal gravity waves in the ocean with shear flows. Russ. J. Earth Sci. 2020, 20, ES4004. [Google Scholar] [CrossRef]
- Bulatov, V.V.; Vladimirov, Y.V. Internal gravity waves in the ocean with multidirectional shear flows. Atmos. Ocean. Phys. 2020, 56, 85–91. [Google Scholar] [CrossRef]
- Broutman, D.; Rottman, J. A simplied Fourier method for computing the internal wave field generated by an oscillating source in a horizontally moving, depth-dependent background. Phys. Fluids 2004, 16, 3682. [Google Scholar] [CrossRef]
- Svirkunov, P.N.; Kalashnik, M.V. Phase patterns of dispersive waves from moving localized sources. Phys. Uspekhi 2014, 57, 80–91. [Google Scholar] [CrossRef]
- Voelker, G.S.; Myers, P.G.; Walter, M.; Sutherland, B.R. Generation of oceanic internal gravity waves by a cyclonic surface stress disturbance. Dyn. Atmos. Oceans 2019, 86, 116–133. [Google Scholar] [CrossRef]
- Miles, J.W. On the stability of heterogeneous shear flow. J. Fluid Mech. 1961, 10, 495–509. [Google Scholar] [CrossRef]
- Howard, L.N. Note of the paper of John W. Miles. J. Fluid Mech. 1961, 10, 509–512. [Google Scholar] [CrossRef]
- Gavrileva, A.A.; Gubarev, Y.G.; Lebedev, M.P. The Miles theorem and the first boundary value problem for the Taylor–Goldstein equation. J. Appl. Ind. Math. 2019, 13, 460–471. [Google Scholar] [CrossRef]
- Hirota, M.; Morrison, P.J. Stability boundaries and sufficient stability conditions for stably stratified, monotonic shear flows. Phys. Lett. A 2016, 380, 1856–1860. [Google Scholar] [CrossRef]
- Churilov, S. On the stability analysis of sharply stratified shear flows. Ocean Dyn. 2018, 68, 867–884. [Google Scholar] [CrossRef]
- Carpenter, J.R.; Balmforth, N.J.; Lawrence, G.A. Identifying unstable modes in stratified shear layers. Phys. Fluids 2010, 22, 054104. [Google Scholar] [CrossRef]
- Watson, G.N. A Treatise on the Theory of Bessel Functions (Reprint of the 2nd ed.); Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions (Reprint of the 1972 ed.); Dover Publications: New York, NY, USA, 1992. [Google Scholar]
- Stoker, J.J. Water Waves: The Mathematical Theory with Applications; Interscience Publishers: New York, NY, USA, 1957. [Google Scholar]
- Whitham, G.B. Linear and Nonlinear Waves; J. Wiley and Sons: New York, NY, USA, 1974. [Google Scholar]
- Kravtsov, Y.; Orlov, Y. Caustics, Catastrophes and Wave Fields; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Bulatov, V.V.; Vladimirov, Y.V. Asymptotical analysis of internal gravity wave dynamics in stratified medium. Appl. Math. Sci. 2014, 8, 217–240. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulatov, V.; Vladimirov, Y. Analytical Approximations of Dispersion Relations for Internal Gravity Waves Equation with Shear Flows. Symmetry 2020, 12, 1865. https://doi.org/10.3390/sym12111865
Bulatov V, Vladimirov Y. Analytical Approximations of Dispersion Relations for Internal Gravity Waves Equation with Shear Flows. Symmetry. 2020; 12(11):1865. https://doi.org/10.3390/sym12111865
Chicago/Turabian StyleBulatov, Vitaly, and Yury Vladimirov. 2020. "Analytical Approximations of Dispersion Relations for Internal Gravity Waves Equation with Shear Flows" Symmetry 12, no. 11: 1865. https://doi.org/10.3390/sym12111865
APA StyleBulatov, V., & Vladimirov, Y. (2020). Analytical Approximations of Dispersion Relations for Internal Gravity Waves Equation with Shear Flows. Symmetry, 12(11), 1865. https://doi.org/10.3390/sym12111865