Mieczkowski, C.; Cheng, A.; Fischmann, T.; Hsieh, M.; Baker, J.; Uchida, M.; Raghunathan, G.; Strickland, C.; Fayadat-Dilman, L.
Characterization and Modeling of Reversible Antibody Self-Association Provide Insights into Behavior, Prediction, and Correction. Antibodies 2021, 10, 8.
https://doi.org/10.3390/antib10010008
AMA Style
Mieczkowski C, Cheng A, Fischmann T, Hsieh M, Baker J, Uchida M, Raghunathan G, Strickland C, Fayadat-Dilman L.
Characterization and Modeling of Reversible Antibody Self-Association Provide Insights into Behavior, Prediction, and Correction. Antibodies. 2021; 10(1):8.
https://doi.org/10.3390/antib10010008
Chicago/Turabian Style
Mieczkowski, Carl, Alan Cheng, Thierry Fischmann, Mark Hsieh, Jeanne Baker, Makiko Uchida, Gopalan Raghunathan, Corey Strickland, and Laurence Fayadat-Dilman.
2021. "Characterization and Modeling of Reversible Antibody Self-Association Provide Insights into Behavior, Prediction, and Correction" Antibodies 10, no. 1: 8.
https://doi.org/10.3390/antib10010008
APA Style
Mieczkowski, C., Cheng, A., Fischmann, T., Hsieh, M., Baker, J., Uchida, M., Raghunathan, G., Strickland, C., & Fayadat-Dilman, L.
(2021). Characterization and Modeling of Reversible Antibody Self-Association Provide Insights into Behavior, Prediction, and Correction. Antibodies, 10(1), 8.
https://doi.org/10.3390/antib10010008