Response of Hydrodynamic Characteristics to Tillage-Induced Microtopography of Rill Erosion Processes under Heavy Rainfalls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Experimental Design
2.3. Digital Elevation Model Generation
2.4. Collection of Runoff and Sediment Yield
2.5. Data Calculation and Analysis
- (1)
- Soil roughness
- (2)
- Fractal analysis of microtopography
- (3)
- Semivariogram analysis
- (4)
- Rill flow hydraulic and hydrodynamic parameters
3. Results and Discussion
3.1. Microtopography Dynamics during Rill Erosive Stages
3.2. Changes in Flow Hydraulics during Rill Erosive Stages
3.3. Response of Hydrodynamic Characteristics to Soil Surface Microtopography
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.S.; Huang, C.H.; Wu, F.Q. Effect of microrelief on water erosion and their changes during rainfall. Earth Surf. Proc. Landf. 2016, 41, 579–586. [Google Scholar] [CrossRef]
- Luo, J.; Zheng, Z.C.; Li, T.X.; He, S.Q. Spatial heterogeneity of microtopography and its influence on the flow convergence of slopes under different rainfall patterns. J. Hydrol. 2017, 545, 88–99. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, G.; Sun, X.; Wang, J. Hydraulic characteristic of overland flow under different vegetation coverage. Adv. Water Sci. 2014, 25, 825–834, (In Chinese with English Abstract). [Google Scholar]
- Luo, J.; Zheng, Z.; Li, T.; He, S. Assessing the impacts of microtopography on soil erosion under simulated rainfall, using a multifractal approach. Hydrol. Process. 2018, 32, 2543–2556. [Google Scholar] [CrossRef]
- Vermang, J.; Norton, L.D.; Huang, C.; Cornelis, W.M.; Da Silva, A.M.; Gabriels, D. Characterization of soil surface roughness effects on runoff and soil erosion rates under simulated rainfall. Soil Sci. Soc. Am. J. 2015, 79, 903–916. [Google Scholar] [CrossRef]
- Gómez, J.A.; Nearing, M.A. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment. Catena 2005, 59, 253–266. [Google Scholar] [CrossRef]
- Magunda, M.K.; Larson, W.E.; Linden, D.R.; Nater, E.A. Changes in microrelief and their effects on infiltration and erosion during simulated rainfall. Soil Technol. 1997, 10, 57–67. [Google Scholar] [CrossRef]
- Huang, C.H.; Bradford, J.M. Applications of a laser scanner to quantify soil microtopography. Soil Sci. Soc. Am. J. 1992, 56, 14–21. [Google Scholar] [CrossRef]
- Dalla Rosa, J.; Cooper, M.; Darboux, F.; Medeiros, J.C. Soil roughness evolution in different tillage systems under simulated rainfall using a semivariogram-based index. Soil Tillage Res. 2012, 124, 226–232. [Google Scholar] [CrossRef]
- Vázquez, E.V.; Vieira, S.R.; De Maria, I.C.; González, A.P. Fractal dimension and geostatistical parameters for soil microrelief as a function of cumulative precipitation. Sci. Agric. 2010, 67, 78–83. [Google Scholar] [CrossRef]
- Moreno, R.G.; Alvarez, M.D.; Requejo, A.S.; Delfa, J.V.; Tarquis, A.M. Multiscaling analysis of soil roughness variability. Geoderma 2010, 160, 22–30. [Google Scholar] [CrossRef]
- Manninen, A.T. Multiscale surface roughness description for scattering modelling of bare soil. Physica A 2003, 319, 535–551. [Google Scholar] [CrossRef]
- Roisin, C.J. A multifractal approach for assessing the structural state of tilled soils. Soil Sci. Soc. Am. J. 2007, 71, 15–25. [Google Scholar] [CrossRef]
- Kimaro, D.N.; Poesen, J.; Msanya, B.M.; Deckers, J.A. Magnitude of soil erosion on the northern slope of the Uluguru Mountains, Tanzania: Interrill and rill erosion. Catena 2008, 75, 38–44. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V.; Palmeri, V.; Pampalone, V. Measuring rill erosion using structure from motion: A plot experiment. Catena 2017, 156, 383–392. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, H.; Wen, Z.; Guo, M.; Zhao, J.; Cao, X.; Zheng, C. The dynamic process of slope rill erosion analyzed with a digital close range photogrammetry observation system under laboratory conditions. Geomorphology 2020, 350, 106893. [Google Scholar] [CrossRef]
- Kou, P.; Xu, Q.; Yunus, A.P.; Dong, X.; Zhong, Y.; Chen, L.; Jin, Z. Rill development and its change rate: A field experiment under constant rainfall intensity. Catena 2021, 199, 105112. [Google Scholar] [CrossRef]
- Carollo, F.G.; Di Stefano, C.; Ferro, V.; Pampalone, V. Measuring rill erosion at plot scale by a drone-based technology. Hydrol. Process. 2015, 29, 3802–3811. [Google Scholar] [CrossRef]
- Wu, S.; Chen, L.; Wang, N.; Yu, M.; Assouline, S. Modeling rainfall-runoff and soil erosion processes on hillslopes with complex rill network planform. Water Resour. Res. 2018, 54, 10–117. [Google Scholar] [CrossRef]
- Berger, C.; Schulze, M.; Rieke-Zapp, D.; Schlunegger, F. Rill development and soil erosion: A laboratory study of slope and rainfall intensity. Earth Surf. Proc. Landf. 2010, 35, 1456–1467. [Google Scholar] [CrossRef]
- Gómez, J.A.; Darboux, F.; Nearing, M.A. Development and evolution of rill networks under simulated rainfall. Water Resour. Res. 2003, 39, 1148. [Google Scholar] [CrossRef]
- Zhang, L.T.; Gao, Z.L.; Yang, S.W.; Li, Y.H.; Tian, H.W. Dynamic processes of soil erosion by runoff on engineered landforms derived from expressway construction: A case study of typical steep spoil heap. Catena 2015, 128, 108–121. [Google Scholar] [CrossRef]
- Luo, J.; Zheng, Z.; Li, T.; He, S. Spatial variation of microtopography and its effect on temporal evolution of soil erosion during different erosive stages. Catena 2020, 190, 104515. [Google Scholar] [CrossRef]
- Nearing, M.A.; Norton, L.D.; Bulgakov, D.A.; Larionov, G.A.; West, L.T.; Dontsova, K.M. Hydraulics and erosion in eroding rills. Water Resour. Res. 1997, 33, 865–876. [Google Scholar] [CrossRef]
- An, J.; Zheng, F.; Lu, J.; Li, G. Investigating the role of raindrop impact on hydrodynamic mechanism of soil erosion under simulated rainfall conditions. Soil Sci. 2012, 177, 517–526. [Google Scholar] [CrossRef]
- McIsaac, G.F.; Mitchell, J.K.; Hummel, J.W.; Elliot, W.J. An evaluation of unit stream power theory for estimating soil detachment and sediment discharge from tilled soils. Trans. ASABE 1992, 35, 535–544. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, Z.H.; Liu, B.Y.; Zeng, X.Q.; Fu, S.H.; Lu, B.J. Nitrogen enrichment in runoff sediments as affected by soil texture in Beijing mountain area. Environ. Monit. Assess. 2014, 186, 971–978. [Google Scholar] [CrossRef] [PubMed]
- da Rocha Junior, P.R.; Bhattarai, R.; Alves Fernandes, R.B.; Kalita, P.K.; Vaz Andrade, F. Soil surface roughness under tillage practices and its consequences for water and sediment losses. J. Soil Sci. Plant Nutr. 2016, 16, 1065–1074. [Google Scholar] [CrossRef]
- Zhao, L.; Hou, R.; Wu, F. Effect of tillage on soil erosion before and after rill development. Land Degrad. Dev. 2018, 29, 2506–2513. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; USDA/NRCS: Washington, DC, USA, 2010. [Google Scholar]
- Yan, D.C.; Wang, Y.F.; Wen, A.B.; Shi, Z.L.; Long, Y. Configuration evolvement of rill development on purple slopeland. J. Mt. Sci. 2011, 29, 469–473. [Google Scholar]
- He, J.; Li, X.; Jia, L.; Gong, H.; Cai, Q. Experimental study of rill evolution processes and relationships between runoff and erosion on clay loam and loess. Soil Sci. Soc. Am. J. 2014, 78, 1716–1725. [Google Scholar] [CrossRef]
- Kuipers, H. A reliefmeter for soil cultivation studies. Neth. J. Agric. Sci. 1957, 5, 255–262. [Google Scholar] [CrossRef]
- Ferreiro, J.P.; Vázquez, E.V. Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability. Geoderma 2010, 160, 64–73. [Google Scholar] [CrossRef]
- Torre, I.G.; Losada, J.C.; Heck, R.J.; Tarquis, A.M. Multifractal analysis of 3D images of tillage soil. Geoderma 2018, 311, 167–174. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, F.; Wilson, G.V. Flow hydraulics in an ephemeral gully system under different slope gradients, rainfall intensities and inflow conditions. Catena 2021, 203, 105359. [Google Scholar] [CrossRef]
- Pan, C.; Shangguan, Z.; Lei, T. Influences of grass and moss on runoff and sediment yield on sloped loess surfaces under simulated rainfall. Hydrol. Process. 2006, 20, 3815–3824. [Google Scholar] [CrossRef]
- Li, T.; Liang, C.; Zhang, Y.; Zhao, P. Comparison and validation of the ratio of Manning coefficient to flow depth for soil erosion prediction using published data with different external impacts. J. Soils Sediments 2017, 17, 1682–1695. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, F.; Qin, C.; Wu, H.; Wilson, G.V. Impact of cornstalk buffer strip on hillslope soil erosion and its hydrodynamic understanding. Catena 2017, 149, 417–425. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, G.; Wang, H.; Zhang, B.; Wang, X. Land surface roughness affected by vegetation restoration age and types on the Loess Plateau of China. Geoderma 2020, 366, 114240. [Google Scholar] [CrossRef]
- Bullard, J.E.; Ockelford, A.; Strong, C.L.; Aubault, H. Impact of multi-day rainfall events on surface roughness and physical crusting of very fine soils. Geoderma 2018, 313, 181–192. [Google Scholar] [CrossRef]
- Vidal Vázquez, E.; Miranda, J.G.V.; Paz-Ferreiro, J. A multifractal approach to characterize cumulative rainfall and tillage effects on soil surface micro-topography and to predict depression storage. Biogeosciences 2010, 7, 2989–3004. [Google Scholar] [CrossRef]
- He, S.; Qin, F.; Zheng, Z.; Li, T. Changes of soil microrelief and its effect on soil erosion under different rainfall patterns in a laboratory experiment. Catena 2018, 162, 203–215. [Google Scholar] [CrossRef]
- Zhang, P.; Yao, W.; Tang, H.; Wei, G.; Wang, L. Laboratory investigations of rill dynamics on soils of the Loess Plateau of China. Geomorphology 2010, 293, 201–210. [Google Scholar] [CrossRef]
- Mirzaee, S.; Ghorbani-Dashtaki, S. Deriving and evaluating hydraulics and detachment models of rill erosion for some calcareous soils. Catena 2018, 164, 107–115. [Google Scholar] [CrossRef]
- Luo, J.; Zheng, Z.C.; He, S.Q.; Ding, W.F. Multi-temporal spatial modelling to assess runoff and sediment dynamics under different microtopographic patterns. Geoderma 2023, 436, 116539. [Google Scholar] [CrossRef]
- Luo, J.; Zheng, Z.C.; Li, T.X.; He, S.Q.; Tarolli, P. Impact of tillage-induced microtopography on hydrological-sediment connectivity and its hydrodynamic understanding. Catena 2023, 228, 107168. [Google Scholar] [CrossRef]
- Reichert, J.M.; Norton, L.D. Rill and interrill erodibility and sediment characteristics of clayey Australian Vertosols and a Ferrosol. Soil Res. 2013, 51, 1–9. [Google Scholar] [CrossRef]
- Jafarpoor, A.; Sadeghi, S.H.; Darki, B.Z.; Homaee, M. Changes in morphologic, hydraulic, and hydrodynamic properties of rill erosion due to surface inoculation of endemic soil cyanobacteria. Catena 2022, 208, 105782. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Shen, N.; Chen, H. Modeling soil detachment capacity by rill flow using hydraulic parameters. J. Hydrol. 2016, 535, 473–479. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, G.; Liu, P.; Zheng, F.; Zhang, J.; Hu, F. Response of soil detachment rate to the hydraulic parameters of concentrated flow on steep loessial slopes on the Loess Plateau of China. Hydrol. Process. 2017, 31, 2613–2621. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, N.; Shi, M.; Zhai, Y.; Wu, F. The effects of tillage induced surface roughness, slope and discharge rate on soil detachment by concentrated flow: An experimental study. Hydrol. Process. 2021, 35, e14261. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, H.; Yao, W.; Zhang, N.; Xizhi, L.V. Experimental investigation of morphological characteristics of rill evolution on loess slope. Catena 2016, 137, 536–544. [Google Scholar] [CrossRef]
- Zheng, Z.C.; Qin, F.; Li, T.X. Changes in soil surface microrelief of purple soil under different slope gradients and its effects on soil erosion. Trans. CSAE 2015, 31, 168–175. [Google Scholar]
- Tian, P.; Xu, X.; Pan, C.; Hsu, K.; Yang, T. Impacts of rainfall and inflow on rill formation and erosion processes on steep hillslopes. J. Hydrol. 2017, 548, 24–39. [Google Scholar] [CrossRef]
SR | ΔD | Re | Fr | f | τ | ω | φ | E | |
---|---|---|---|---|---|---|---|---|---|
SR | 1 | ||||||||
ΔD | 0.931 ** | 1 | |||||||
Re | 0.478 | 0.647 | 1 | ||||||
Fr | 0.343 | 0.198 | 0.345 | 1 | |||||
f | −0.512 | −0.323 | −0.351 | −0.448 | 1 | ||||
τ | 0.859 ** | 0.896 ** | 0.461 | 0.326 | −0.428 | 1 | |||
ω | 0.818 ** | 0.912 ** | 0.549 | 0.297 | −0.363 | 0.964 ** | 1 | ||
φ | 0.886 ** | 0.929 ** | 0.564 | 0.428 | −0.496 | 0.953 ** | 0.970 ** | 1 | |
E | 0.858 ** | 0.897 ** | 0.465 | 0.322 | −0.424 | 0.966 ** | 0.966 ** | 0.953 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Luo, J.; Zheng, Z.; Ding, W.; Liu, J. Response of Hydrodynamic Characteristics to Tillage-Induced Microtopography of Rill Erosion Processes under Heavy Rainfalls. Land 2024, 13, 685. https://doi.org/10.3390/land13050685
He S, Luo J, Zheng Z, Ding W, Liu J. Response of Hydrodynamic Characteristics to Tillage-Induced Microtopography of Rill Erosion Processes under Heavy Rainfalls. Land. 2024; 13(5):685. https://doi.org/10.3390/land13050685
Chicago/Turabian StyleHe, Shuqin, Jian Luo, Zicheng Zheng, Wenfeng Ding, and Jigen Liu. 2024. "Response of Hydrodynamic Characteristics to Tillage-Induced Microtopography of Rill Erosion Processes under Heavy Rainfalls" Land 13, no. 5: 685. https://doi.org/10.3390/land13050685
APA StyleHe, S., Luo, J., Zheng, Z., Ding, W., & Liu, J. (2024). Response of Hydrodynamic Characteristics to Tillage-Induced Microtopography of Rill Erosion Processes under Heavy Rainfalls. Land, 13(5), 685. https://doi.org/10.3390/land13050685