The Use of Stable Water Isotopes as Tracers in Soil Aquifer Treatment (SAT) and in Regional Water Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Program
2.2. Analytical Procedures
3. Results and Discussion
3.1. Isotopic Composition of the Shafdan System
3.2. Isotopic Composition of the Main Water Sources and of the National Water Carrier
3.3. Mixing Ratios in the National Water Carrier and in the Shafdan Plant
3.4. Mixing Ratios in the Aquifer (SAT Basin)
4. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SAT | Soil Aquifer Treatment |
NWC | National Water Carrier (of Israel) |
MBTP | Mechanical Biological Treatment Plant |
MR | Mixing Ratio |
SOG | Sea of Galilee |
MCM/year | Million Cubic Meter per year |
CBZ | Carbamazepine |
DSP | Desalination Plant |
References
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press/Lewis Publishers: Boca Raton, FL, USA, 1997; p. 328. [Google Scholar]
- Drever, J.I. The Geochemistry of Natural Waters, 1st ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1982; pp. 335–349. [Google Scholar]
- Gat, J.R.; Dansgaard, W. Stable isotope survey of the fresh water occurrences in Israel and the northern Jordan rift valley. J. Hydrol. 1972, 16, 177–211. [Google Scholar] [CrossRef]
- Williams, A.E. Stable isotopes tracers: Natural and anthropogenic recharge, Orange County, California. J. Hydrol. 1997, 201, 230–248. [Google Scholar] [CrossRef]
- Kass, A.; Gavrieli, I.; Yechieli, Y.; Vengosh, A.; Starinsky, A. The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: A case study from the Israeli Coastal Aquifer. J. Hydrol. 2005, 300, 314–331. [Google Scholar] [CrossRef]
- Kloppmann, W.; Van Houtte, E.; Picot, G.; Vandenbohede, A.; Lebbe, L.; Guerrot, C.; Millot, R.; Gaus, I.; Wintgens, T. Monitoring reverse osmosis treated wastewater recharge into a Coastal Aquifer by environmental isotopes (B, Li, O, H). Environ. Sci. Technol. 2008, 42, 8759–8765. [Google Scholar] [CrossRef] [PubMed]
- Alazard, M.; Boisson, A.; Marechal, J.C.; Perrin, J.; Dewandel, B.; Schwarz, T.; Pettenati, M.; Picot-Colbeaux, G.; Kloppman, W.; Ahmed, S. Investigation of recharge dynamics and flow paths in a fractured crystalline aquifer in semi-arid India using borehole logs: Implications for managed aquifer recharge. Hydrogeol. J. 2016, 24, 35–57. [Google Scholar] [CrossRef]
- Kloppmann, W.; Vengosh, A.; Guerrot, C.; Millot, R.; Pankratov, I. Isotope and ion selectivity in reverse osmosis desalination: Geochemical tracers for man-made freshwater. Environ. Sci. Technol. 2008, 42, 4723–4731. [Google Scholar] [CrossRef] [PubMed]
- Icekson-Tal, N.; Blanc, R. Wastewater treatment and groundwater recharge for reuse in agriculture: Dan Region reclamation project, Shafdan. In Artificial Recharge of Groundwater; Peters, J.H., Ed.; A.A. Balkama: Rotterdam, The Netherlands, 1998; pp. 99–103. [Google Scholar]
- Lin, C.; Eshel, G.; Roehl, K.E.; Negev, I.; Greenwald, D.; Shachar, Y.; Banin, A. Studies of P accumulation in soil/sediment profiles used for large-scale wastewater reclamation. Soil Use Manag. 2006, 22, 143–150. [Google Scholar] [CrossRef]
- Lin, C.; Eshel, G.; Negev, I.; Banin, A. Long-term accumulation and material balance of organic matter in the soil of an effluent infiltration basin. Geoderma 2008, 148, 35–42. [Google Scholar] [CrossRef]
- Oren, O.; Gavrieli, I.; Burg, A.; Guttman, J.; Lazar, B. Manganese mobilization and enrichment during soil aquifer treatment (SAT) of effluents, the Dan Region Sewage Reclamation Project (Shafdan), Israel. Environ. Sci. Technol. 2007, 41, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Cikurel, H.; Guttman, J.; Aharoni, A. Managed aquifer recharge for agricultural reuse in Shafdan, Israel. In Book Water Reclamation Technologies for Safe Managed Aquifer Recharge; Kazner, C., Wintgens, T., Dillon, P., Eds.; IWA Publishing: London, UK, 2012; pp. 83–102. [Google Scholar]
- Goren, O.; Burg, A.; Gavrieli, I.; Negev, I.; Guttman, J.; Kraitzer, T.; Kloppmann, W.; Lazar, B. Biogeochemical processes in infiltration basins and their impact on the recharging effluent, the soil aquifer treatment (SAT) system of the Shafdan plant, Israel. Appl. Geochem. 2014, 48, 58–69. [Google Scholar] [CrossRef]
- Elkayam, R.; Michail, M.; Mienis, O.; Kraitzer, T.; Tal, N.; Lev, O. Soil Aquifer Treatment as Disinfection Unit. J. Environ. Eng. 2015, 141. [Google Scholar] [CrossRef]
- Mor, R.; Michail, M.; Meron, N.; Kraitzer, T.; Elkayam, R.; Sherer, D.; Shoham, G. Groundwater Recharge with Municipal Effluent, Recharge Basins Soreq, Yavne 1, Yavne 2, Yavne 3 and Yavne 4; Annual Report; MEKOROT Water Co. Ltd.: Ramla, Israel, 2015. [Google Scholar]
- Elkayam, R.; Aharoni, A.; Vizel-Ohayon, D.; Sued, O.; Katz, Y.; Negev, I.; Shtrasler, L.; Cytryn, O.; Lev, O. Detaching the human connection in a Soil Aquifer Treatment (SAT) system for unlimited Effluent reuse. 2017; paper in preparation. [Google Scholar]
- Rona, M.; Gasser, G.; Negev, I.; Pankratov, I.; Elhanany, S.; Lev, O.; Gvirtzman, H. A 3-D hydrologic transport model of a water recharge system using carbamazepine and chloride as tracers. Water Resour. Res. 2014, 50, 4220–4241. [Google Scholar] [CrossRef]
- Gasser, G.; Rona, M.; Voloshenko, A.; Shelkov, R.; Tal, N.; Pankratov, I.; Elhanany, S.; Lev, O. Quantitative evaluation of tracers for quantification of wastewater continuation of potable water source. Environ. Sci. Technol. 2010, 44, 3919–3925. [Google Scholar] [CrossRef] [PubMed]
- Gasser, G.; Rona, M.; Voloshenko, A.; Shelkov, R.; Lev, O.; Elhanany, S.; Lange, F.T.; Scheurer, M.; Pankratov, I. Evaluation of micropollutant tracers. II. Carbamazepine tracer for wastewater contamination from a nearby water recharge system and from non-specific sources. Desalination 2011, 273, 398–404. [Google Scholar] [CrossRef]
- Negev, N.; Gasser, G.; Simhovitz, L.; Kraitzer, T.; Pankratov, I.; Elhanany, S.; Guttman, I.; Lev, O. The Use of Carbamazepine (CBZ) as a Tracer for a SAT System: Pilot Experiment in the Shafdan Plant; Summarizing Report MEKOROT, REP. 1647; Mekorot Water Co. Ltd.: Tel Aviv, Israel, 2015. (In Hebrew) [Google Scholar]
- Arye, G.; Dror, I.; Berkowitz, B. Fate and transport of carbamazepine in soil aquifer treatment (SAT) infiltration basin soils. Chemosphere 2010, 82, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Cary, L.; Casanova, J.; Gaaloul, N.; Guerrot, C. Combining boron isotopes and carbamazepine to trace sewage in salinized groundwater: A case study in Cap Bon, Tunisia. Appl. Geochem. 2013, 34, 126–139. [Google Scholar] [CrossRef]
- Dvory, N.Z.; Elad, M.; Scheuer, N.; Netzer, L.; Zurieli, A.; Livshitz, Y. Geological Cross-Sections and Base Maps of Sub-Aquifers in the Coastal Aquifer of Israel. Etgar Report No. ETHD140604; 2014. Available online: http://www.water.gov.il/HEBREW/PROFESSIONALINFOANDDATA/DATA-HIDROLOGEIME/Pages/atlas-beach.aspx (accessed on 4 December 2016). [Google Scholar]
- Goren, O.; Burg, A.; Gavrieli, I.; Negev, I.; Guttman, I.; Kraitzer, T.; Kloppmann, W.; Guerrot, C. Multi-Isotope Tracing of Groundwater Flow, Solute Transport and Redox Reactions in a Large Scale Water Reclamation System; French-Israeli Bi-Lateral Scientific Research, Final Report; Mekorot Water Co. Ltd.: Tel Aviv, Israel, 2011. [Google Scholar]
- Kloppmann, W.; Negev, I.; Guttman, J.; Guerrot, C.; Flehoc, C.; Pettenati, M.; Goren, O.; Burg, A. Man-made water cycles: Isotope tracing of desalinated seawater through water supply, sewage and groundwater. In Proceedings of the Goldschmidt Conference 2012, Montreal, QC, Canada, 24–29 June 2012.
- Epstein, S.; Mayeda, T. Variation of 18O content of waters from natural sources. Geochim. Cosmochim. Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- Oshumi, T.; Fujini, H. Isotope exchange technique for preparation of hydrogen gas in mass spectrometric D/H analysis of natural waters. Anal. Sci. 1986, 2, 489–490. [Google Scholar]
- Gat, J.R.; Shemesh, A.; Tziperman, E.; Hechi, A.; Georgopoulos, D.; Basturk, O. The stable isotope composition of waters of the eastern Mediterranean Sea. J. Geophys. Res. 1996, 101, 6441–6451. [Google Scholar] [CrossRef]
- Avisar, D. Salinization Processes and Aquifer Interconnections in the Southeastern Coastal Plain of ISRAEL. Ph.D. Thesis, Tel Aviv University, Tel Aviv, Israel, 2001. [Google Scholar]
- Schilman, B.; Teplyakov, N.; Gavrieli, I. Identification of Nitrate Contamination Sources in Groundwater Using Nitrogen and Oxygen Isotopes in Nitrate: Wadi Kelt-Jericho Area as a Case Study; REP. GSI/25/2004; GEO SUR ISR: Jerusalem, Israel, 2004. [Google Scholar]
- Siebert, S. Saisonale Chemische Variationen des See Genezareth, Seiner Zuflusse und deren Ursachen. Ph.D. Thesis, Freie Univeritat, Berlin, Germany, 2006. [Google Scholar]
- Yechieli, Y.; Kafri, U.; Sivan, O. The inter-relationship between coastal sub-aquifers and the Mediterranean Sea, deduced from radioactive isotopes analysis. Hydrogeol. J. 2009, 17, 265–274. [Google Scholar] [CrossRef]
- Burg, A.; Talhami, F. The Yarkon-Taninim Aquifer Monitoring Project; Chemical and Isotopic Compositions in New Monitoring Wells and Other Selected Wells, Sixth Year Report; REP. GSI July 2013; Geo SUR ISR: Jerusalem, Israel, 2013; p. 22. (In Hebrew) [Google Scholar]
- Stiller, M.; Rosenbaum, J.M.; Nishri, A. The origin of brines underlying Lake Kinneret. Chem. Geol. 2009, 262, 293–309. [Google Scholar] [CrossRef]
- Cappa, C.D.; Hendricks, M.B.; DePaolo, D.J.; Cohen, R.C. Isotopic fractionation of water during evaporation. J. Geophys. Res. 2003, 108, 13:1–13:10. [Google Scholar] [CrossRef]
- Ayalon, A.; Bar-Matthews, M.; Schilman, M. Rainfall Isotopic Characteristics at Various Sites in Israel and the Relationships with Unsaturaten Zone Water; REP. GSI/16/04; GEO SUR ISR: Jerusalem, Israel, 2004. [Google Scholar]
- Schiavo, M.A.; Hauser, S.; Povinec, P.P. Stable isotopes of water as a tool to study groundwater-seawater interaction in coastal south-eastern Sicily. J. Hydrol. 2009, 364, 40–49. [Google Scholar] [CrossRef]
Examined Effect | Campaign | Setup and Remarks |
---|---|---|
Seasonal effects on the isotopic composition of the recovered water (after SAT) | 2010–2011 | The first sampling campaign was divided into 2 parts: September 2010 (summer) and February 2011 (winter). The two sub-campaigns were conducted at the same wells or at hydro-geologically equivalent wells. |
Evaporation effects on the isotopic composition of the recharged effluents, during the recharge period | 2010–2011 |
|
The effect of the Sea of Galilee and the desalinated water on the isotopic composition of the Shafdan effluents (see Section 3.3) | 2010–2011, 2013 and 2014 |
|
Location | Location Type | Water Type | Sampling Date | Cl (mg/L) | CBZ (ng/L) | δ2H ‰ vs. SMOW | δ18O ‰ vs. SMOW | Notes |
---|---|---|---|---|---|---|---|---|
DSP-Hadera | Desalination plant | Freshwater | 23/02/2011 | 14 | NM 1 | 10.0 | 1.5 | |
DSP-Palmahim | Desalination plant | Freshwater | 22/02/2011 | 63 | NM | 9.7 | 1.5 | |
SYS-Lincoln | Local water system | Freshwater | 23/02/2011 | 39 | NM | 1.7 | −0.1 | |
SYS-Bar Ilan | Main water system | Freshwater | 23/02/2011 | 41 | NM | −1.8 | −0.8 | |
PS-6 | Plant outflow | Effluents | 14/09/2010 | 260 | NM | −4.1 | −1.4 | Samples were taken from PS-6 and from the recharge pond to study the effect of evaporation |
Soreq-1: 103/2 | Recharged pond | Effluents | 14/09/2010 | 260 | NM | −4.2 | −1.4 | |
PS-6 | Plant outflow | Effluents | 21/02/2011 | 223 | 837 | −8.2 | −2.0 | Sea of Galilee (SOG) is off |
PS-6 | Plant outflow | Effluents | 07/02/2013 | NM | NM | −2.1 | −1.6 | SOG is off |
PS-6 | Plant outflow | Effluents | 25/02/2014 | NM | NM | −5.6 | −2.4 | SOG and Hadera DSP are off |
PS-6 | Plant outflow | Effluents | 25/03/2014 | 209 | 1132 | −0.3 | −1.2 | |
Yavne-2: 5102 | Recharged pond | Effluents | 19/09/2010 | 280 | NM | −5.9 | −1.7 | Continuous flooding to study the effect of evaporation |
Yavne-2: 5102 | Recharged pond | Effluents | 20/09/2010 | 276 | NM | −5.5 | −1.5 | |
Shoreq T-1 | Observation Well | SAT | 08/05/2014 | 134 | 2 | −20.4 | −4.7 | |
Shoreq T-2 | Observation Well | SAT | 08/05/2014 | 128 | 36 | −10.8 | −2.8 | |
Shoreq T-27/1 | Observation Well | SAT | 10/07/2014 | 272 | 684 | −9.1 | −2.3 | |
Shoreq T-5 | Observation Well | SAT | 10/07/2014 | 89 | 74 | −12.7 | −3.2 | |
Shoreq T-61 | Observation Well | SAT | 26/03/2014 | 268 | 1010 | −2.7 | −1.1 | |
Shoreq T-62/1 | Observation Well | SAT | 26/03/2014 | 201 | 1166 | −0.5 | −0.9 | |
Shoreq T-71d | Observation Well | SAT | 26/03/2014 | 88 | 20 | −15.0 | −3.8 | |
Shoreq T-71s | Observation Well | SAT | 26/03/2014 | 197 | 188 | −7.5 | −2.6 | |
Soreq t-1a | Observation Well | SAT | 30/04/2013 | NM | NM | −19.4 | −5.0 | |
Soreq t-2a | Observation Well | SAT | 30/04/2013 | NM | NM | −20.0 | −5.0 | |
Soreq t-3 | Observation Well | SAT | 30/04/2013 | NM | NM | −20.3 | −5.0 | |
Soreq T-61 | Observation Well | SAT | 21/02/2011 | 250 | 1030 | −7.3 | −1.8 | |
Dan 1 | Recovery Well | SAT | 08/05/2014 | 290 | 1900 | −10.1 | −3.1 | |
Dan 14a | Recovery Well | SAT | 08/05/2014 | 163 | 446 | −12.2 | −3.5 | |
Dan 21a | Recovery Well | SAT | 25/03/2014 | 153 | 380 | −13.5 | −3.6 | |
Dan 25 | Recovery Well | SAT | 25/03/2014 | 248 | 1096 | −11.1 | −3.1 | |
Dan 2a | Recovery Well | SAT | 25/03/2014 | 152 | 482 | −12.3 | −3.4 | |
Dan 33 | Recovery Well | SAT | 25/03/2014 | 258 | 1158 | −2.8 | −1.4 | |
Dan 5 | Recovery Well | SAT | 25/03/2014 | 264 | 1236 | −5.2 | −1.9 | |
Dan 6 | Recovery Well | SAT | 25/03/2014 | 260 | 1236 | −4.8 | −2.0 | |
Dan 7 | Recovery Well | SAT | 25/03/2014 | 209 | 650 | −10.4 | −2.8 | |
Dan 8 | Recovery Well | SAT | 25/03/2014 | 246 | 860 | −7.7 | −2.3 | |
Dan-16a | Recovery Well | SAT | 21/02/2011 | 277 | 870 | −12.2 | −2.7 | |
Dan-17a | Recovery Well | SAT | 14/09/2010 | 240 | NM | −14.1 | −3.4 | |
Dan-17a | Recovery Well | SAT | 21/02/2011 | 246 | 1296 | −14.1 | −3.1 | |
Dan-24 | Recovery Well | SAT | 14/09/2010 | 289 | NM | −12.3 | −3.0 | |
Dan-24 | Recovery Well | SAT | 21/02/2011 | 291 | 1337 | −12.6 | −2.8 | |
Dan-2a | Recovery Well | SAT | 14/09/2010 | 164 | NM | −15.4 | −3.6 | |
Dan-2a | Recovery Well | SAT | 21/02/2011 | 160 | 299 | −15.2 | −3.5 | |
Dan-32 | Recovery Well | SAT | 14/09/2010 | 280 | NM | −10.1 | −2.6 | |
Dan-32 | Recovery Well | SAT | 21/02/2011 | 278 | 1174 | −10.2 | −2.3 | |
Dan-5 | Recovery Well | SAT | 21/02/2011 | 284 | 1061 | −12.5 | −2.9 | |
Dan-6 | Recovery Well | SAT | 14/09/2010 | 279 | NM | −12.9 | −3.0 | |
Dan-6 | Recovery Well | SAT | 21/02/2011 | 277 | 1210 | −12.2 | −2.8 | |
Dan-7 | Recovery Well | SAT | 21/02/2011 | 228 | 1000 | −13.3 | −3.2 | |
NH Rishon 10 | Recovery Well | SAT | 25/03/2014 | 66 | 353 | −16.0 | −4.1 | |
NH Rishon 7 | Recovery Well | SAT | 25/03/2014 | 86 | 44 | −15.4 | −3.7 | |
NH Rishon-10 | Recovery Well | SAT | 21/02/2011 | 62 | 314 | −21.3 | −4.6 | |
Rishon 5 | Recovery Well | SAT | 25/03/2014 | 86 | 140 | −17.4 | −4.1 | |
Rishon-5 | Recovery Well | SAT | 14/09/2010 | 123 | NM | −16.4 | −3.8 | |
Rishon-5 | Recovery Well | SAT | 21/02/2011 | 114 | 72 | −17.8 | −3.8 |
Water Source | Cl (mg/L) | CBZ (ng/L) | δ2H ‰ vs. SMOW | δ18O ‰ vs. SMOW | ||||
---|---|---|---|---|---|---|---|---|
Average | Stdev (n) | Average | Stdev (n) | Average | Stdev (n) | Average | Stdev (n) | |
Coastal Aquifer (Cl < 200) | 101 | 54 (27) | 3 1 | - | −18.6 | 2.53 (27) | −4.62 | 0.33 (27) |
Coastal Aquifer (Cl > 200) | 458 | 240 (33) | −17.8 | 2.19 (31) | −4.09 | 0.37 (33) | ||
Coastal Aquifer (general) | 297 | 250 (58) | −18.2 | 2.42 (58) | −4.33 | 0.42 (60) | ||
Mountain aquifer | 198 2 | 187 (36) | NM | - | −22.1 | 2.80 (42) | −5.36 | 0.37 (43) |
Sea of Galilee | 261 | 18 | NM | - | 0.88 | 2.97 (13) | −0.37 | 0.44 (13) |
Mediteranean Sea 3 | 38 | 35 (2) | NM | - | 8.90 | 1.74 (13) | 1.74 | 0.19 (13) |
Shafdan effluents, 2010–2011 | 265 | 28 (103) | 1071 | 230 (8) | −4.93 | 0.89 (4) | −1.52 | 0.10 (4) |
Shafdan effluents, 2014 | 218 | 27 (53) | −1.20 | 1.30 (2) | −1.39 | 0.23 (2) |
Water Source | System | Volumes (MCM/Day) at Sampling Date | ||||
---|---|---|---|---|---|---|
14 September 2010 | 21 February 2011 | 07 February 2013 | 25 February 2014 | 25 March 2014 | ||
Coastal Aquifer | National Water Carrier (Mekorot) 1 | 0.247 | 0.074 | 0.046 | 0.048 | 0.077 |
Mountain Aquifer | 0.650 | 0.367 | 0.112 | 0.253 | 0.183 | |
Lake Kinneret (SOG) | 0.472 | 0.000 | 0.000 | 0.000 | 0.000 | |
Palmahim DSP | 0.108 | 0.089 | 0.178 | 0.165 | 0.169 | |
Hadera DSP | 0.273 | 0.276 | 0.374 | 0.000 | 0.316 | |
Soreq DSP | - | - | - | 0.010 | 0.313 | |
Sum in NWC | 1.75 | 0.81 | 0.71 | 0.48 | 1.06 | |
Purchased by municipalities | 0.31 | 0.25 | 0.27 | 0.27 | 0.30 | |
Coastal aquifer | Private wells (municipalities) 2 | 0.115 | 0.087 | 0.088 | 0.088 | 0.095 |
Mountain aquifer | 0.019 | 0.019 | 0.021 | 0.021 | 0.022 | |
Sum | 0.13 | 0.11 | 0.11 | 0.11 | 0.12 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negev, I.; Guttman, J.; Kloppmann, W. The Use of Stable Water Isotopes as Tracers in Soil Aquifer Treatment (SAT) and in Regional Water Systems. Water 2017, 9, 73. https://doi.org/10.3390/w9020073
Negev I, Guttman J, Kloppmann W. The Use of Stable Water Isotopes as Tracers in Soil Aquifer Treatment (SAT) and in Regional Water Systems. Water. 2017; 9(2):73. https://doi.org/10.3390/w9020073
Chicago/Turabian StyleNegev, Ido, Joseph Guttman, and Wolfram Kloppmann. 2017. "The Use of Stable Water Isotopes as Tracers in Soil Aquifer Treatment (SAT) and in Regional Water Systems" Water 9, no. 2: 73. https://doi.org/10.3390/w9020073
APA StyleNegev, I., Guttman, J., & Kloppmann, W. (2017). The Use of Stable Water Isotopes as Tracers in Soil Aquifer Treatment (SAT) and in Regional Water Systems. Water, 9(2), 73. https://doi.org/10.3390/w9020073