Coupled Model Validation and Characterization on Rainfall-Driven Runoff and Non-Point Source Pollution Processes in an Urban Watershed System
Abstract
1. Introduction
2. Methodology
2.1. Study Area and Data
2.2. Model Coupling Framework
2.3. Surface Runoff Generation and Pollutant Transport Within the Watershed
2.4. Refined Characterization of Hydrology, Hydrodynamics, and Water Quality in the Main Channel
2.5. Calibration and Validation
3. Results and Discussion
3.1. Model Calibration and Validation
3.2. Rainfall-Driven Runoff and Pollutant Generation Transfer Processes in a Specific Rainfall Event
3.2.1. Surface Runoff Generation Transfer Within the Watershed
3.2.2. NPS Pollutant Transport and Dispersion in the Watershed and Main Channel
3.3. Assessment on Hydrologic and NPS Pollution Impacts Under More Rainfall Intensity Conditions
4. Management Implications and Decision Support
4.1. Risk-Based Spatial Prioritization Framework
4.2. Event-Responsive Management Protocols
4.3. Targeted Measures for Industrial Districts
4.4. Adaptive Infrastructure Design Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, O.; Wang, S.; Ran, J.; Huang, S.; Zhang, X.; Duan, J.; Zhang, L.; Xia, Y.; Reis, S.; Xu, J.; et al. Managing urban development could halve nitrogen pollution in China. Nat. Commun. 2024, 15, 401. [Google Scholar] [CrossRef]
- Wang, H.; Guan, Y.; Hu, M.; Hou, Z.; Ping, Y.; Zhang, Z.; Zhang, Q.; Shang, F.; Lin, K.; Feng, C. Enhancing pollution management in watersheds: A critical review of total maximum daily load (TMDL) implementation. Environ. Res. 2025, 264, 120394. [Google Scholar] [CrossRef]
- Rossman, L.; Storm Water Management Model User’s Manual Version 5.2. 2022. Available online: https://www.epa.gov/water-research/storm-water-management-model-swmm (accessed on 1 July 2025).
- Yan, X.; Xia, Y.Q.; Ti, C.P.; Shan, J.; Wu, Y.H.; Yan, X.Y. Thirty years of experience in water pollution control in Taihu Lake: A review. Sci. Total Environ. 2024, 914, 12. [Google Scholar] [CrossRef]
- Crasti, L. Decontamination of Urban Run-Off: Importance and Methods. In Balanced Urban Development: Options and Strategies for Liveable Cities; Maheshwari, B., Thoradeniya, B., Singh, V.P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 85–107. [Google Scholar]
- Shang, F.Z.; Tang, S.J.; Wang, H.T.; Yang, R.Y.; Hou, Z.Q.; Ping, Y.; Zhang, Z.Z.; Chen, H.Y.; Yu, Y.E.; Goonetilleke, A.; et al. Assessing the effectiveness of non-point source pollution models in data-limited urban areas. J. Hydrol. 2025, 661, 133636. [Google Scholar] [CrossRef]
- Gomes, M.N., Jr.; do Lago, C.A.F.; Rápalo, L.M.C.; Oliveira, P.T.S.; Giacomoni, M.H.; Mendiondo, E.M. HydroPol2D-Distributed hydrodynamic and water quality model: Challenges and opportunities in poorly-gauged catchments. J. Hydrol. 2023, 625, 18. [Google Scholar] [CrossRef]
- Ding, Y.K.; Song, Z.X.; Hu, Y.; Zhang, S.Y.; Zhang, M.J.; Zhang, W.Q.; Xiao, S.R. A review on curbing non-point source pollution in watershed-the answer lies at the root. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, F.; Liu, L.; Chen, M.; Sun, D.; Nan, J. How do urban rainfall-runoff pollution control technologies develop in China? A systematic review based on bibliometric analysis and literature summary. Sci. Total Environ. 2021, 789, 148045. [Google Scholar] [CrossRef] [PubMed]
- Bisht, D.S.; Chatterjee, C.; Kalakoti, S.; Upadhyay, P.; Sahoo, M.; Panda, A. Modeling urban floods and drainage using SWMM and MIKE URBAN: A case study. Nat. Hazards 2016, 84, 749–776. [Google Scholar] [CrossRef]
- Wood-Ponce, R.; Diab, G.; Liu, Z.Y.; Blanchette, R.; Hathaway, J.; Khojandi, A. Developing data-driven learning models to predict urban stormwater runoff volume. Urban Water J. 2024, 21, 549–564. [Google Scholar] [CrossRef]
- Castro-Olivares, A.; Des, M.; Decastro, M.; Pereira, H.; Picado, A.; Dias, J.M.; Gómez-Gesteira, M. Coupled Hydrodynamic and Biogeochemical Modeling in the Galician Rías Baixas (NW Iberian Peninsula) Using Delft3D: Model Validation and Performance. J. Mar. Sci. Eng. 2024, 12, 22. [Google Scholar] [CrossRef]
- Ayyappan, K.; Thiruvenkatasamy, K.; Balu, R.; Devendrapandi, G.; Kadaikunnan, S.; Ayyamperumal, R. Numerical model study on stability of a micro-tidal inlet at Muttukadu along the east coast of Bay of Bengal. Environ. Res. 2024, 248, 13. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Roy, M.B.; Roy, P.K. Evaluating the performance of MIKE NAM model on rainfall-runoff in lower Gangetic floodplain, West Bengal, India. Model. Earth Syst. Environ. 2022, 8, 4001–4017. [Google Scholar] [CrossRef]
- Noor, S.S.M.; Saad, N.A.; Akhir, M.F.M.; Rahim, M.S.A. QUAL2K water quality model: A comprehensive review of its applications, and limitations. Environ. Modell. Softw. 2025, 184, 16. [Google Scholar] [CrossRef]
- Prakash, C.; Ahirwar, A.; Lohani, A.K.; Singh, H.P. Comparative analysis of HEC-HMS and SWAT hydrological models for simulating the streamflow in sub-humid tropical region in India. Environ. Sci. Pollut. Res. Int. 2024, 31, 41182–41196. [Google Scholar] [CrossRef]
- Swilla, L.; Katambara, Z.; Lingwanda, M. Calibration and verification of a hydrological SWMM model for the ungauged Kinyerezi River catchment in Dar es Salaam, Tanzania. Model. Earth Syst. Environ. 2024, 10, 2803–2818. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Gui, H.J. Comparative assessment of pollution control measures for urban water bodies in urban small catchment by SWMM. Front. Environ. Sci. 2024, 12, 16. [Google Scholar] [CrossRef]
- Zheng, Y.Z.; Wang, X.L.; Li, S.M.; Dong, G.Y.; Wang, Q.H.; Chen, Y.T.; Xue, S.H. Numerical simulation model of water quality evolution in urban rivers considering adsorption-desorption process of nitrogen and phosphorus in sediments. J. Hydrol. 2024, 636, 14. [Google Scholar] [CrossRef]
- Luo, Z.B.; Zhang, W.T.; Wang, Y.T.; Wang, T.W.; Liu, G.L.; Huang, W. Spatial optimization of ecological ditches for non-point source pollutants under urban growth scenarios. Environ. Monit. Assess. 2023, 195, 22. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Li, S.; Cui, C.H.; Yang, S.S.; Ding, J.; Wang, G.Y.; Bai, S.W.; Zhao, L.; Cao, G.L.; Ren, N.Q. Runoff control simulation and comprehensive benefit evaluation of low-impact development strategies in a typical cold climate area. Environ. Res. 2022, 206, 12. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.N.; Hui, M.; Qu, H.Z. Design of a 3D Platform for the Evaluation of Water Quality in Urban Rivers Based on a Digital Twin Model. Water 2024, 16, 17. [Google Scholar] [CrossRef]
- Pang, J.F.; Luo, W.; Yao, Z.Y.; Chen, J.; Dong, C.Y.; Lin, K.R. Water Quality Prediction in Urban Waterways Based on Wavelet Packet Denoising and LSTM. Water Resour. Manag. 2024, 38, 2399–2420. [Google Scholar] [CrossRef]
- Kacikoc, M.; Dadaser-Celik, F.; Beyhan, M. Modelling Hydrodynamics and Water Quality in a Brackish Water Lake Under Scarce Data Availability-A Case Study at the Bafa Lake, Türkiye. Water Air Soil Pollut. 2025, 236, 29. [Google Scholar] [CrossRef]
- APHA. Standard Methods For the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Feng, C.; Liang, Z.; Liao, X.; Lin, K.; Zhai, Y.; Liu, G.; Malpei, F.; Hu, A. Microbial Dynamics on Different Microplastics in Coastal Urban Aquatic Ecosystems: The Critical Roles of Extracellular Polymeric Substances. Environ. Sci. Technol. 2025, 59, 10554–10566. [Google Scholar] [CrossRef]
- Hasan Tanim, A.; Goharian, E. Developing a hybrid modeling and multivariate analysis framework for storm surge and runoff interactions in urban coastal flooding. J. Hydrol. 2020, 595, 125670. [Google Scholar] [CrossRef]
- Liu, C.S.; Hu, C.H.; Zhao, C.C.; Sun, Y.; Xie, T.N.; Wang, H.L. Research on Urban Storm Flood Simulation by Coupling K-means Machine Learning Algorithm and GIS Spatial Analysis Technology into SWMM Model. Water Resour. Manag. 2024, 38, 2059–2078. [Google Scholar] [CrossRef]
- Zhuang, Q.R.; Li, M.R.; Lu, Z.M. Assessing runoff control of low impact development in Hong Kong’s dense community with reliable SWMM setup and calibration. J. Environ. Manag. 2023, 345, 118599. [Google Scholar] [CrossRef]
- Horton, R.E. Analysis of runoff-plat experiments with varying infiltration-capacity. Eos Trans. Am. Geophys. Union 1939, 20, 693–711. [Google Scholar] [CrossRef]
- Saint-Venant. Theorie du mouvement non-permanent des eaux avec application aux crues des rivers et a l’introduntion des Marees dans leur lit. Acad. Sci. Comptes Redus 1871, 73, 148–154. [Google Scholar]
- Golosov, V.; Konoplev, A.; Wakiyama, Y.; Ivanov, M.; Komissarov, M. Erosion and Redeposition of Sediments and Sediment-Associated Radiocesium on River Floodplains (the Niida River Basin and the Abukuma River as an Example). In Behavior of Radionuclides in the Environment III: Fukushima; Nanba, K., Konoplev, A., Wada, T., Eds.; Springer: Singapore, 2022; pp. 97–133. [Google Scholar]
- Zhang, X.Q.; Qiao, W.B.; Huang, J.F.; Li, H.Y.; Wang, X. Impact and analysis of urban water system connectivity project on regional water environment based on Storm Water Management Model (SWMM). J. Clean. Prod. 2023, 423, 138840. [Google Scholar] [CrossRef]
- Von Sperling, M.; de Paoli, A.C. First-order COD decay coefficients associated with different hydraulic models applied to planted and unplanted horizontal subsurface-flow constructed wetlands. Ecol. Eng. 2013, 57, 205–209. [Google Scholar] [CrossRef]
- Li, J.K.; Zhang, B.; Mu, C.; Chen, L. Simulation of the hydrological and environmental effects of a sponge city based on MIKE FLOOD. Environ. Earth Sci. 2018, 77, 32. [Google Scholar] [CrossRef]
- Xu, Z.X.; Yin, H.L.; Yao, Y.J. Prediction of Water Quality of Huangpu River Using a Tidal River Network Model. Environ. Eng. Sci. 2008, 25, 1463–1475. [Google Scholar] [CrossRef]
- Navier, C. Memoire sur les lois du Mouvement des Fluides. Mem. Acad. R. Sci. Inst. Fr. 1823, 73, 389–440. [Google Scholar]
- Melsen, L.A.; Puy, A.; Torfs, P.; Saltelli, A. The rise of the Nash-Sutcliffe efficiency in hydrology. Hydrol. Sci. J. 2025, 70, 1248–1259. [Google Scholar] [CrossRef]
- Yang, Z.X.; Liu, J.H.; Feng, Y.C.; Wang, J.; Wang, H.; Li, C.H. An intelligent SWMM calibration method and identification of urban runoff generation patterns. Front. Environ. Sci. 2025, 13, 13. [Google Scholar] [CrossRef]
- Fan, J.; Liu, B.Y.; Lei, T.J.; Sun, Y.; Ma, Y.J.; Guo, R.; Chen, D.; Zhou, K.; Li, S.S.; Gao, X. Exploring how economic level drives urban flood risk. Nat. Commun. 2025, 16, 12. [Google Scholar] [CrossRef]










| Parameter | Range of Values | Calibrated Value |
|---|---|---|
| N-Impervious | 0.005–0.050 | 0.01 |
| N-Pervious | 0.01–0.80 | 0.018 |
| Destore-Impervious (mm) | 0–3 | 2.5 |
| Destore-Pervious (mm) | 2–10 | 8 |
| Conduit roughness | 0.009–0.025 | 0.01 |
| Maximum infiltration rate (mm/h) | 10–120 | 75 |
| Minimum infiltration rate (mm/h) | 0–10 | 2 |
| Decay constant (h−1) | 10–100 | 20 |
| Drying time (day) | 2–7 | 7 |
| Industrial Area | Residential Area | Greenland | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Buildup | Washoff | Buildup | Washoff | Buildup | Washoff | |||||||
| Max. Buildup C1 (kg/ha) | Rate Constant C2 (day−1) | Coefficient C3 | Exponent C4 | Max. Buildup C1 (kg/ha) | Rate Constant C2 (day−1) | Coefficient C3 | Exponent C4 | Max. Buildup C1 (kg/ha) | Rate Constant C2 (day−1) | Coefficient C3 | Exponent C4 | |
| COD | 50 | 0.5 | 0.016 | 2 | 30 | 0.4 | 0.008 | 1.8 | 15 | 0.2 | 0.006 | 1.6 |
| TP | 0.5 | 0.4 | 0.004 | 1.8 | 0.3 | 0.2 | 0.002 | 1.4 | 0.4 | 0.2 | 0.0015 | 1.6 |
| NH3-N | 12 | 0.2 | 0.008 | 1.8 | 10.2 | 0.13 | 0.005 | 1.8 | 6 | 0.2 | 0.001 | 1.6 |
| TN | 14 | 0.4 | 0.016 | 2 | 11 | 0.2 | 0.008 | 2 | 7 | 0.2 | 0.008 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yuan, G.; Ping, Y.; Wei, P.; Shang, F.; Luo, W.; Hou, Z.; Lin, K.; Zhang, Z.; Feng, C. Coupled Model Validation and Characterization on Rainfall-Driven Runoff and Non-Point Source Pollution Processes in an Urban Watershed System. Water 2025, 17, 3049. https://doi.org/10.3390/w17213049
Wang H, Yuan G, Ping Y, Wei P, Shang F, Luo W, Hou Z, Lin K, Zhang Z, Feng C. Coupled Model Validation and Characterization on Rainfall-Driven Runoff and Non-Point Source Pollution Processes in an Urban Watershed System. Water. 2025; 17(21):3049. https://doi.org/10.3390/w17213049
Chicago/Turabian StyleWang, Hantao, Genyu Yuan, Yang Ping, Peng Wei, Fangze Shang, Wei Luo, Zhiqiang Hou, Kairong Lin, Zhenzhou Zhang, and Cuijie Feng. 2025. "Coupled Model Validation and Characterization on Rainfall-Driven Runoff and Non-Point Source Pollution Processes in an Urban Watershed System" Water 17, no. 21: 3049. https://doi.org/10.3390/w17213049
APA StyleWang, H., Yuan, G., Ping, Y., Wei, P., Shang, F., Luo, W., Hou, Z., Lin, K., Zhang, Z., & Feng, C. (2025). Coupled Model Validation and Characterization on Rainfall-Driven Runoff and Non-Point Source Pollution Processes in an Urban Watershed System. Water, 17(21), 3049. https://doi.org/10.3390/w17213049

