Sorption of Selenium(IV) and Selenium(VI) onto Iron Oxide/Hydroxide-Based Carbon Materials: Activated Carbon and Carbon Foam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of the Carbon Materials
2.3. Batch Adsorption Experiments
2.4. Adsorption Kinetics and Isotherms
3. Results and Discussion
3.1. Characteristics of the Carbon Supports
3.2. Effect of Iron Composition
3.3. Effect of Adsorbent Dosage, pH and Initial Concentration
3.4. Kinetics of Adsorption
3.5. Adsorption Isotherms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lenz, M.; Lens, P.N.L. The Essential Toxin: The Changing Perception of Selenium in Environmental Sciences. Sci. Total Environ. 2009, 407, 3620–3633. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Ungureanu, G.; Boaventura, R.; Botelho, C. Selenium Contaminated Waters: An Overview of Analytical Methods, Treatment Options and Recent Advances in Sorption Methods. Sci. Total Environ. 2015, 521–522, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Hawrylak-Nowak, B.; Matraszek, R.; Pogorzelec, M. The Dual Effects of Two Inorganic Selenium Forms on the Growth, Selected Physiological Parameters and Macronutrients Accumulation in Cucumber Plants. Acta Physiol. Plant. 2015, 37, 41. [Google Scholar] [CrossRef]
- Wu, L. Review of 15 Years of Research on Ecotoxicology and Remediation of Land Contaminated by Agricultural Drainage Sediment Rich in Selenium. Ecotoxicol. Environ. Saf. 2004, 57, 257–269. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xiang, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Huang, H.; Shang, C.; Luo, L.; Gao, J.; Tang, L. Selenium Contamination, Consequences and Remediation Techniques in Water and Soils: A Review. Environ. Res. 2018, 164, 288–301. [Google Scholar] [CrossRef]
- Lemly, A.D. Aquatic Selenium Pollution Is a Global Environmental Safety Issue. Ecotoxicol. Environ. Saf. 2004, 59, 44–56. [Google Scholar] [CrossRef]
- Fordyce, F.M. Selenium Deficiency and Toxicity in the Environment. In Essentials of Medical Geology: Revised Edition; Springer: Dordrecht, The Netherlands, 2013; pp. 375–416. [Google Scholar] [CrossRef]
- Muscatello, J.R.; Janz, D.M. Selenium Accumulation in Aquatic Biota Downstream of a Uranium Mining and Milling Operation. Sci. Total Environ. 2009, 407, 1318–1325. [Google Scholar] [CrossRef]
- Griffith, M.B.; Norton, S.B.; Alexander, L.C.; Pollard, A.I.; LeDuc, S.D. The Effects of Mountaintop Mines and Valley Fills on the Physicochemical Quality of Stream Ecosystems in the Central Appalachians: A Review. Sci. Total Environ. 2012, 417–418, 1–12. [Google Scholar] [CrossRef]
- Wellen, C.C.; Shatilla, N.J.; Carey, S.K. Regional Scale Selenium Loading Associated with Surface Coal Mining, Elk Valley, British Columbia, Canada. Sci. Total Environ. 2015, 532, 791–802. [Google Scholar] [CrossRef]
- Lichtfouse, E.; Morin-Crini, N.; Bradu, C.; Boussouga, Y.-A.; Aliaskari, M.; Schäfer, A.I.; Das, S.; Wilson, L.D.; Ike, M.; Inoue, D.; et al. Technologies to Remove Selenium from Water and Wastewater. In Emerging Contaminants Vol. 2: Remediation; Springer International Publishing: Cham, Switzerland, 2021; Volume 2, pp. 207–304. [Google Scholar] [CrossRef]
- Okonji, S.O.; Achari, G.; Pernitsky, D. Environmental Impacts of Selenium Contamination: A Review on Current-Issues and Remediation Strategies in an Aqueous System. Water 2021, 13, 1473. [Google Scholar] [CrossRef]
- Stefaniak, J.; Dutta, A.; Verbinnen, B.; Shakya, M.; Rene, E.R. Selenium Removal from Mining and Process Wastewater: A Systematic Review of Available Technologies. J. Water Supply Res. Technol. 2018, 67, 903–918. [Google Scholar] [CrossRef]
- Lichtfouse, E.; Morin-Crini, N.; Bradu, C.; Boussouga, Y.A.; Aliaskari, M.; Schäfer, A.I.; Das, S.; Wilson, L.D.; Ike, M.; Inoue, D.; et al. Methods for Selenium Removal from Contaminated Waters: A Review. Environ. Chem. Lett. 2022, 20, 2019–2041. [Google Scholar] [CrossRef]
- Okonji, S.O.; Dominic, J.A.; Pernitsky, D.; Achari, G. Removal and Recovery of Selenium Species from Wastewater: Adsorption Kinetics and Co-Precipitation Mechanisms. J. Water Process Eng. 2020, 38, 101666. [Google Scholar] [CrossRef]
- Howarth, A.J.; Katz, M.J.; Wang, T.C.; Platero-Prats, A.E.; Chapman, K.W.; Hupp, J.T.; Farha, O.K. High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal-Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 7488–7494. [Google Scholar] [CrossRef] [PubMed]
- Zoroufchi Benis, K.; McPhedran, K.N.; Soltan, J. Selenium Removal from Water Using Adsorbents: A Critical Review. J. Hazard. Mater. 2022, 424, 127603. [Google Scholar] [CrossRef]
- Hanada, K.; Watanabe, S.; Inagawa, A.; Uehara, N. Sulfated Steelmaking Slags as Se(IV) Adsorbents: Effects of Preparation Conditions on Adsorption Performance. ISIJ Int. 2021, 61, 506–512. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, C.E.; González-Acevedo, Z.I.; Olguín, M.T.; Frías-Palos, H. Adsorption and Desorption of Selenium by Two Non-Living Biomasses of Aquatic Weeds at Dynamic Conditions. Clean Technol. Environ. Policy 2016, 18, 33–44. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, S.C.; Guan, Y. Efficient Removal of Selenate in Water by Cationic Poly(Allyltrimethylammonium) Grafted Chitosan and Biochar Composite. Environ. Res. 2021, 194, 110667. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, J.; Liu, Q.; Zeng, H. Water-Dispersible Magnetic Nanoparticle–Graphene Oxide Composites for Selenium Removal. Carbon N. Y. 2014, 77, 710–721. [Google Scholar] [CrossRef]
- Bandara, P.C.; Perez, J.V.D.; Nadres, E.T.; Nannapaneni, R.G.; Krakowiak, K.J.; Rodrigues, D.F. Graphene Oxide Nanocomposite Hydrogel Beads for Removal of Selenium in Contaminated Water. ACS Appl. Polym. Mater. 2019, 1, 2668–2679. [Google Scholar] [CrossRef]
- Zhang, N.; Gang, D.D.; McDonald, L.; Lin, L.S. Background Electrolytes and PH Effects on Selenate Adsorption Using Iron-Impregnated Granular Activated Carbon and Surface Binding Mechanisms. Chemosphere 2018, 195, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Lin, L.S.; Gang, D. Adsorptive Selenite Removal from Water Using Iron-Coated GAC Adsorbents. Water Res. 2008, 42, 3809–3816. [Google Scholar] [CrossRef] [PubMed]
- Ying, A.; Evans, S.F.; Tsouris, C.; Parans Paranthaman, M. Magnetic Sorbent for the Removal of Selenium(IV) from Simulated Industrial Wastewaters: Determination of Column Kinetic Parameters. Water 2020, 12, 1234. [Google Scholar] [CrossRef]
- Halalsheh, N.; Alshboul, O.; Shehadeh, A.; Al Mamlook, R.E.; Al-Othman, A.; Tawalbeh, M.; Saeed Almuflih, A.; Papelis, C. Breakthrough Curves Prediction of Selenite Adsorption on Chemically Modified Zeolite Using Boosted Decision Tree Algorithms for Water Treatment Applications. Water 2022, 14, 2519. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, K.; Mo, Y.; Yang, B.; Vincent, T.; Faur, C.; Guibal, E. Selenium(VI) and Copper(II) Adsorption Using Polyethyleneimine-Based Resins: Effect of Glutaraldehyde Crosslinking and Storage Condition. J. Hazard. Mater. 2020, 386, 121637. [Google Scholar] [CrossRef]
- Wei, J.; Shen, B.; Ye, G.; Wen, X.; Song, Y.; Wang, J.; Meng, X. Selenium and Arsenic Removal from Water Using Amine Sorbent, Competitive Adsorption and Regeneration. Environ. Pollut. 2021, 274, 115866. [Google Scholar] [CrossRef] [PubMed]
- Dobrzyńska, J. Amine- and Thiol-Functionalized SBA-15: Potential Materials for As(V), Cr(VI) and Se(VI) Removal from Water. Comparative Study. J. Water Process Eng. 2021, 40, 101942. [Google Scholar] [CrossRef]
- Rovira, M.; Giménez, J.; Martínez, M.; Martínez-Lladó, X.; de Pablo, J.; Martí, V.; Duro, L. Sorption of Selenium(IV) and Selenium(VI) onto Natural Iron Oxides: Goethite and Hematite. J. Hazard. Mater. 2008, 150, 279–284. [Google Scholar] [CrossRef]
- Das, S.; Jim Hendry, M.; Essilfie-Dughan, J. Adsorption of Selenate onto Ferrihydrite, Goethite, and Lepidocrocite under Neutral PH Conditions. Appl. Geochem. 2013, 28, 185–193. [Google Scholar] [CrossRef]
- Peak, D.; Sparks, D.L. Mechanisms of Selenate Adsorption on Iron Oxides and Hydroxides. Environ. Sci. Technol. 2002, 36, 1460–1466. [Google Scholar] [CrossRef]
- Wei, X.; Bhojappa, S.; Lin, L.S.; Viadero, R.C. Performance of Nano-Magnetite for Removal of Selenium from Aqueous Solutions. Environ. Eng. Sci. 2012, 29, 526–532. [Google Scholar] [CrossRef]
- Jordan, N.; Marmier, N.; Lomenech, C.; Giffaut, E.; Ehrhardt, J.J. Competition between Selenium (IV) and Silicic Acid on the Hematite Surface. Chemosphere 2009, 75, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Jordan, N.; Ritter, A.; Foerstendorf, H.; Scheinost, A.C.; Weiß, S.; Heim, K.; Grenzer, J.; Mücklich, A.; Reuther, H. Adsorption Mechanism of Selenium(VI) onto Maghemite. Geochim. Cosmochim. Acta 2013, 103, 63–75. [Google Scholar] [CrossRef]
- Martínez, M.; Giménez, J.; De Pablo, J.; Rovira, M.; Duro, L. Sorption of Selenium(IV) and Selenium(VI) onto Magnetite. Appl. Surf. Sci. 2006, 252, 3767–3773. [Google Scholar] [CrossRef]
- Su, C.; Suarez, D.L. Selenate and Selenite Sorption on Iron Oxides An Infrared and Electrophoretic Study. Soil Sci. Soc. Am. J. 2000, 64, 101–111. [Google Scholar] [CrossRef]
- Fernández-Pérez, A.; Rodríguez-Casado, V.; Valdés-Solís, T.; Marbán, G. A New Continuous Flow-through Structured Reactor for the Photodegradation of Aqueous Contaminants. J. Environ. Chem. Eng. 2018, 6, 4070–4077. [Google Scholar] [CrossRef]
- Witczak, A.; Pokorska-Niewiada, K.; Tomza-Marciniak, A.; Witczak, G.; Cybulski, J.; Aftyka, A. The Problem of Selenium for Human Health—Removal of Selenium from Water and Wastewater. Water 2023, 15, 2230. [Google Scholar] [CrossRef]
- Sahoo, T.R.; Prelot, B. Adsorption Processes for the Removal of Contaminants from Wastewater: The Perspective Role of Nanomaterials and Nanotechnology. In Nanomaterials for the Detection and Removal of Wastewater Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–222. [Google Scholar] [CrossRef]
- Jadhav, A.S.; Ramteke, P.; Singh, S.K.; Labhasetwar, N.K. Sustainable Selenium Remediation from Water Using Aluminium–Iron Mixed Oxide: Batch and Column Adsorption Studies. J. Water Process Eng. 2022, 48, 102824. [Google Scholar] [CrossRef]
- Hotová, G.; Slovák, V.; Soares, O.S.G.P.; Figueiredo, J.L.; Pereira, M.F.R. Oxygen Surface Groups Analysis of Carbonaceous Samples Pyrolysed at Low Temperature. Carbon N. Y. 2018, 134, 255–263. [Google Scholar] [CrossRef]
- García, R.; Rodríguez, E.; Díez, M.A.; Arenillas, A.; Villanueva, S.F.; Rey-Raap, N.; Cuesta, C.; López-Antón, M.A.; Martínez-Tarazona, M.R. Synthesis of Micro- and Mesoporous Carbon Foams with Nanodispersed Metals for Adsorption and Catalysis Applications. Materials 2023, 16, 1336. [Google Scholar] [CrossRef]
- Sandy, T. Review of Available Technologies for the Removal of Selenium from Water. Final. Rep. Prep. North Am. Met. Counc. 2010, 2010, 48–60. [Google Scholar]
- Pashai Gatabi, M.; Milani Moghaddam, H.; Ghorbani, M. Point of Zero Charge of Maghemite Decorated Multiwalled Carbon Nanotubes Fabricated by Chemical Precipitation Method. J. Mol. Liq. 2016, 216, 117–125. [Google Scholar] [CrossRef]
- Börsig, N.; Scheinost, A.C.; Schild, D.; Neumann, T. Mechanisms of Selenium Removal by Partially Oxidized Magnetite Nanoparticles for Wastewater Remediation. Appl. Geochem. 2021, 132, 105062. [Google Scholar] [CrossRef]
- Missana, T.; Alonso, U.; Scheinost, A.C.; Granizo, N.; García-Gutiérrez, M. Selenite Retention by Nanocrystalline Magnetite: Role of Adsorption, Reduction and Dissolution/Co-Precipitation Processes. Geochim. Cosmochim. Acta 2009, 73, 6205–6217. [Google Scholar] [CrossRef]
- Hayashi, H.; Kanie, K.; Shinoda, K.; Muramatsu, A.; Suzuki, S.; Sasaki, H. PH-Dependence of Selenate Removal from Liquid Phase by Reductive Fe(II)–Fe(III) Hydroxysulfate Compound, Green Rust. Chemosphere 2009, 76, 638–643. [Google Scholar] [CrossRef]
- Reait, P.; Simon, L.; Génin, J.M.R. Reduction of SeO42- Anions and Anoxic Formation of Iron(II)–Iron(III) Hydroxy-Selenate Green Rust. Environ. Sci. Technol. 2000, 34, 819–825. [Google Scholar] [CrossRef]
- Onoguchi, A.; Granata, G.; Haraguchi, D.; Hayashi, H.; Tokoro, C. Kinetics and Mechanism of Selenate and Selenite Removal in Solution by Green Rust-Sulfate. R. Soc. Open Sci. 2019, 6, 182147. [Google Scholar] [CrossRef]
AC | SFox | |
---|---|---|
SBET (m2 g−1) | 1183 | 214 |
Vt (cm3 g−1) | 0.53 | 0.13 |
Vmicro (cm3 g−1) | 0.45 | 0.09 |
Vmeso (cm3 g−1) | 0.08 | 0.04 |
C (%) | 84.7 | 88.4 |
H (%) | 0.69 | 1.15 |
N (%) | 0.20 | 0.16 |
S (%) | 0.22 | - |
O (%) | 14.2 | 10.3 |
Pseudo-First Order | ||||||
---|---|---|---|---|---|---|
Se(IV) | Se(VI) | |||||
pH 4 | pH 7 | pH 9 | pH 4 | pH 7 | pH 9 | |
R2 | 0.8303 | 0.9737 | 0.9838 | 0.8039 | 0.9969 | 0.9922 |
qe (µg g−1) | 19.81 | 19.98 | 18.97 | 18.11 | 20.60 | 18.18 |
k1 (min−1) | 0.1542 | 3.41 × 10−3 | 3.21 × 10−3 | 0.1542 | 2.64 × 10−3 | 3.13 × 10−3 |
Pseudo-Second Order | ||||||
Se(IV) | Se(VI) | |||||
pH 4 | pH 7 | pH 9 | pH 4 | pH 7 | pH 9 | |
R2 | 0.9940 | 0.9917 | 0.9926 | 0.9943 | 0.9949 | 0.9943 |
qe (µg g−1) | 22.48 | 21.45 | 20.51 | 20.86 | 22.63 | 19.67 |
k2 (g µg−1 min−1) | 3.20 × 10−4 | 2.36 × 10−4 | 2.22 × 10−4 | 3.00 × 10−4 | 1.56 × 10−4 | 2.25 × 10−4 |
Langmuir | ||
---|---|---|
Se(IV) | Se(VI) | |
R2 | 0.9966 | 0.9972 |
Qm (µg g−1) | 27.96 | 36.42 |
KL (L g−1) | 4.25 × 10−2 | 3.01 × 10−2 |
Freundlich | ||
Se(IV) | Se(VI) | |
R2 | 0.9806 | 0.9859 |
n | 1.79 | 1.96 |
1/n | 0.56 | 0.63 |
KF | 2.287 | 1.964 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Toyos, L.; Rodríguez, E.; García, R.; Martínez-Tarazona, M.R.; López-Antón, M.A. Sorption of Selenium(IV) and Selenium(VI) onto Iron Oxide/Hydroxide-Based Carbon Materials: Activated Carbon and Carbon Foam. Water 2023, 15, 3499. https://doi.org/10.3390/w15193499
López-Toyos L, Rodríguez E, García R, Martínez-Tarazona MR, López-Antón MA. Sorption of Selenium(IV) and Selenium(VI) onto Iron Oxide/Hydroxide-Based Carbon Materials: Activated Carbon and Carbon Foam. Water. 2023; 15(19):3499. https://doi.org/10.3390/w15193499
Chicago/Turabian StyleLópez-Toyos, Lucia, Elena Rodríguez, Roberto García, Maria Rosa Martínez-Tarazona, and Maria Antonia López-Antón. 2023. "Sorption of Selenium(IV) and Selenium(VI) onto Iron Oxide/Hydroxide-Based Carbon Materials: Activated Carbon and Carbon Foam" Water 15, no. 19: 3499. https://doi.org/10.3390/w15193499
APA StyleLópez-Toyos, L., Rodríguez, E., García, R., Martínez-Tarazona, M. R., & López-Antón, M. A. (2023). Sorption of Selenium(IV) and Selenium(VI) onto Iron Oxide/Hydroxide-Based Carbon Materials: Activated Carbon and Carbon Foam. Water, 15(19), 3499. https://doi.org/10.3390/w15193499