Development Trend and Frontier of Stormwater Management (1980–2019): A Bibliometric Overview Based on CiteSpace
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Acquisition
2.2. Data Preprocessing
3. Research Method
3.1. Literature Overview
3.1.1. Distribution of Literature by Stage
3.1.2. Distribution of Literature by Country
3.1.3. Institutions, Discipline, and Author of the Literature
3.2. Analysis of the Literature Research Focus
3.2.1. Co-Citation Analysis of Literature
3.2.2. Citation Burst Analysis
3.2.3. Citation Clustering Analysis
3.3. Keyword Analysis
3.3.1. Keyword Connection Network
3.3.2. Time Zone Chart Analysis of Keywords
3.3.3. Keyword Burst
4. Summary of Stormwater Management
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dabrowska, J.; Dabek, P.B. Identifying Surface Runoff Pathways for Cost-Effective Mitigation of Pollutant Inputs to Drinking Water Reservoir. Water 2018, 10, 1300. [Google Scholar] [CrossRef]
- Fricke, I.; Goetz, R. Analysis of Sources and Sinks of Mercury in the Urban Water Cycle of Frankfurt am Main, Germany. Water 2015, 7, 6097–6116. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Li, S. Green Infrastructure Design for Stormwater Runoff and Water Quality: Empirical Evidence from Large Watershed-Scale Community Developments. Water 2013, 5, 2038–2057. [Google Scholar] [CrossRef]
- Qiu, Z. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Surburban Watershed Mnangement. Water 2013, 5, 280–291. [Google Scholar] [CrossRef]
- Liu, F.; Olesen, K.B.; Borregaard, A.R.; Vollertsen, J. Microplastics in urban and highway stormwater retention ponds. Water 2019, 11, 1466. [Google Scholar] [CrossRef]
- Rivers, E.N.; McMilan, S.K. Effects of Urban Stormwater Control Measures on Denitrification in Receiving Streams. Water 2018, 10, 1582. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Intergovernmental Panel on Climate Change. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Venkataramanan, V.; Packman, A.I.; Peters, D.R.; Lopez, D.; McCuskey, D.J.; McDonald, R.I.; Miller, W.M.; Young, S.L. A systematic review of the human health and social well-being outcomes of green infrastructure for stormwater and flood management. J. Environ. Manag. 2019, 246, 868–880. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. North Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Zhou, Q.; Leng, G.; Su, J. Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Sci. Total Environ. 2019, 658, 24–33. [Google Scholar] [CrossRef] [PubMed]
- 2018 Review of Disaster Events. The International Disaster Database. 2019. Available online: https://www.emdat.be/ (accessed on 27 July 2019).
- Zhou, Q. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Jha, A.K.; Bloch, R.; Jessica, L. Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century. J. Reg. Sci. 2012, 52, 885–887. [Google Scholar]
- Miller, J.D.; Hyeonijun, K. Assessing the impact of urbanization on storm runoff in a pen-Urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef]
- Roy, A.H.; Wenger, S.J. Impediments and solutions to sustainable, watershed-Scale urban stormwater management: Lessons from Australia and the United States. Environ. Manag. 2008, 42, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Burian, S.J.; Edwards, F.G. Global Solutions for Urban Drainage—Historical perspectives of urban drainage. In Proceedings of the American Society of Civil Engineers Ninth International Conference on Urban Drainage(9ICUD)-Lloyd Center Doubletree Hotel, Portland, OR, USA, 8–13 September 2002. [Google Scholar]
- Angelakis, A.N.; Koutsoyiannis, D.; Tchobanoglous, G. Urban wastewater and stormwater technologies in ancient Greece. Water Res. 2004, 39, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Qiao, M.; Wang, S. Enlightenment from ancient Chinese urban and rural stormwater management practices. Water Sci. Technol. 2013, 67, 1474–1480. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.R.; Keath, N.; Wong, T.H.F. Urban water management in cities: Historical, current and future regimes. Water Sci. Technol. 2009, 59, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, E.J.; Burby, R.J. Emerging state roles in urban stormwater management. Water Resour. Bull. 1987, 23, 443–453. [Google Scholar] [CrossRef]
- Baumgart-Getz, A.; Prokopy, L.S. Why farmers adopt best management practice in the United States: A meta-analysis of adoption literature. J. Environ. Manag. 2011, 96, 17–25. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pezzaniti, D.; Myers, B.; Cook, S.; Tjandraatmadja, G.; Chacko, P.; Chavoshi, S.; Kemp, D.; Leonard, R.; Koth, B.; et al. Water Sensitive Urban Design: An Investigation of Current Systems, Implementation Drivers, Community Perceptions and Potential to Supplement Urban Water Services. Water 2016, 8, 272. [Google Scholar] [CrossRef]
- Coutts, A.M.; Tapper, N.J.; Beringer, J.; Loughnan, M.; Demuzere, M. Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Prog. Phys. Geogr. 2013, 37, 2–28. [Google Scholar] [CrossRef]
- Liu, A.; Guan, Y. Selecting rainfall events for effective Water Sensitive Urban Design: A case study in Gold Coast City, Australia. Ecol. Eng. 2016, 92, 67–72. [Google Scholar] [CrossRef]
- Benedict, M.; Mcmahon, E.; Resour, J. Green infrastructure: Smart conservation for the 21st century. Renew. Resour. J. 2002, 20, 12–17. [Google Scholar]
- Mei, C.; Liu, J.; Wang, H.; Yang, Z.; Ding, X.; Shao, W. Integrated assessments of green infrastructure for flood mitigation to support robust decision-Making for sponge city construction in an urbanized watershed. Sci. Total Environ. 2018, 639, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Ossa-Moreno, J.; Smith, K.M.; Mijic, A. Economic analysis of wider benefits to facilitate SuDS uptake in London, UK. Sustain. Cities Soc. 2017, 28, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Haghighatafshar, S.; Yamanee-Nolin, M.; Larson, M. A physically based model for mesoscale SuDS—An alternative to large-Scale urban drainage simulations. J. Environ. Manag. 2019, 240, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Viavattene, C.; Ellis, J.B. The management of urban surface water flood risks: SUDS performance in flood reduction from extreme events. Water Sci. Technol. 2012, 67, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Zhang, Y.; Xiong, L. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Liu, D.S. China’s sponge cities to soak up rainwater. Nature 2016, 537, 307. [Google Scholar] [CrossRef]
- Backhaus, A.; Fryd, O. The aesthetic performance of urban landscape-Based stormwater management systems: A review of twenty projects in Northern Europe. J. Landsc. Archit. 2013, 8, 52–63. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Newman, J.P.; Dandy, G.C.; Maier, H.R. Multiobjective optimization of cluster-Scale urban water systems investigating alternative water sources and level of decentralization. Water Resour. Res. 2014, 50, 7915–7938. [Google Scholar] [CrossRef]
- Lashford, C.; Rubinato, M. SuDS & Sponge Cities: A Comparative Analysis of the Implementation of Pluvial Flood Management in the UK and China. Sustainability 2019, 11, 213. [Google Scholar] [Green Version]
- Li, H.; Ding, L.; Ren, M.; Li, C.; Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water 2017, 9, 594. [Google Scholar] [CrossRef]
- Sörensen, J.; Persson, A.; Sternudd, C. Re-Thinking Urban Flood Management—Time for a Regime Shift. Water 2016, 8, 332. [Google Scholar] [CrossRef]
- Kaushal, S.; Belt, K.T. The urban watershed continuum: Evolving spatial and temporal dimensions. Urban Ecosys. 2012, 15, 409–435. [Google Scholar] [CrossRef]
- Brown, R.R.; Farrelly, M.A. Delivering sustainable urban water management: A review of the hurdles we face. Water Sci. Technol. 2009, 59, 839–846. [Google Scholar] [CrossRef]
- Bos, J.J.; Brown, R.R. Realising sustainable urban water management: Can social theory help? Water Sci. Technol. 2012, 67, 109–116. [Google Scholar] [CrossRef]
- Keath, N.A.; Brown, R.R. Extreme events: Being prepared for the pitfalls with progressing sustainable urban water management. Water Sci. Technol. 2009, 59, 1271–1280. [Google Scholar] [CrossRef]
- Muller, N.A.; Marlow, D.R. Business model in the context of Sustainable Urban Water Management—A comparative assessment between two urban regions in Australia and Germany. Util. Policy 2016, 41, 148–159. [Google Scholar] [CrossRef]
- Belmeziti, A.; Cherqui, F.; Tourne, A.; Granger, D.; Werey, C.; Le Gauffre, P.; Chocat, B. Transitioning to sustainable urban water management systems: How to define expected service functions? Civ. Eng. Environ. Syst. 2015, 32, 316–334. [Google Scholar] [CrossRef]
- Meijerink, S.; Dicke, W. Shifts in the Public–Private Divide in Flood Management. Int. J. Water Resour. Dev. 2008, 24, 499–512. [Google Scholar] [CrossRef]
- Mees, H.; Crabbe, A.; Alexander, M. Coproducing flood risk management through citizen involvement: Insights from cross-Country comparison in Europe. Ecol. Soc. 2016, 21, 7. [Google Scholar] [CrossRef]
- Chester, E.T.; Robson, B.J. Anthropogenic refuges for freshwater biodiversity: Their ecological characteristics and management. Biol. Conserv. 2013, 166, 64–75. [Google Scholar] [CrossRef]
- Palmer, M.A.; Filoso, S.; Fanelli, R.M. From ecosystems to ecosystem services: Stream restoration as ecological engineering. Ecol. Eng. 2013, 65, 62–70. [Google Scholar] [CrossRef]
- Hale, R.; Coleman, R.; Pettigrove, V.; Swearer, S.E. REVIEW: Identifying, preventing and mitigating ecological traps to improve the management of urban aquatic ecosystems. J. Appl. Ecol. 2015, 52, 928–939. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y. A Comparative Study on the Theoretical Systems of Rainwater Management in Different Countries. Master’s Thesis, Tianjin University, Tianjin, China, 2017. [Google Scholar]
- Sujay, S.K.; William, H.M. Urban Evolution: The Role of Water. Water 2015, 7, 4063–4087. [Google Scholar]
- Shi, Y.; Liu, X. Research on the Literature of Green Building Based on the Web of Science: A Scientometric Analysis in CiteSpace (2002–2018). Sustainability 2019, 11, 3716. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Light, R.P.; Polley, D.E.; Borner, K. Open data and open code for big science of science studies. Scientometrics 2014, 101, 1535–1551. [Google Scholar] [CrossRef] [Green Version]
- Niazi, M.A. CiteSpace: A Practical Guide for Mapping Scientific Literature. Complex Adapt. Syst. Mod. 2016, 4, 23. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, C.; Shen, S.; Yang, S. Comparison of Complex Network Analysis Software: Citespace, SCI2 and Gephi. In Proceedings of the 2nd International Conference on Big Data Analysis(ICBDA), Beijing, China, 10–12 March 2017. [Google Scholar]
- Guo, Y.; Huang, Z.; Li, H. Bibliometric Analysis on Smart Cities Research. Sustainability 2019, 11, 3606. [Google Scholar] [CrossRef]
- Wang, L.; Xue, X. Exploring the Emerging Evolution Trends of Urban Resilience Research by Scientometric Analysis. Int. J. Environ. Res. Public Health 2018, 15, 2181. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Francisco, C.; Zeng, X. Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef]
- Li, X.; Du, J.; Long, H. A Comparative Study of Chinese and Foreign Green Development from the Perspective of Mapping Knowledge Domains. Suatainability 2018, 10, 4357. [Google Scholar] [CrossRef]
- Hong, R.; Xiang, C.; Liu, H.; Glowacz, A.; Pan, W. Visualizing the Knowledge Structure and Research Evolution of Infrared Detection Technology Studies. Information 2019, 10, 227. [Google Scholar] [CrossRef]
- Search Result on the WOS Website. Available online: http://apps.webofknowledge.com/Search.do?product=WOS&SID=8DFMI9NEmtcRp3Ncefi&search_mode=GeneralSearch&prID=8cae6954-5c12-4f3e-91d3-af7cb0228179 (accessed on 23 July 2019).
- Hamann, R.G.; Canter, B.D.E.; Maloney, F.E. Stormwater Runoff Control—A model ordinanve for meeting local water-Quality management needs. Nat. Resour. J. 1980, 20, 713–764. [Google Scholar]
- Cristan, R.; Aust, W.M. Effectiveness of forestry best management practices in the United States: Literature review. For. Ecol. Manag. 2016, 360, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Weatherbe, D.G.; Sherbin, I.G. Urban drainage control demonstration program of Canada Great-Lakes cleanup fund. Water Sci. Technol. 1993, 29, 455–462. [Google Scholar] [CrossRef]
- Wang, X.; Gao, J.X. Analysis of Corpus-Based Translation Practice on CiteSpace-Supported Foreign Language Teaching. In Proceedings of the Fifteenth Wuhan International Conference on E-Business, Wuhan, China, 26–28 May 2016. [Google Scholar]
- Small, H.; Boyack, K.W.; Klavans, R. Idetifying emerging topics by combining direct citation and co-citation. In Proceedings of the 14th International Society of Scientometrics and Informetrics Conference(ISSI), Vienna, Austria, 15–20 July 2013. [Google Scholar]
- Matthew, J.B.; Tim, D.F. Hydrologic shortcomings of conventional Urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar]
- Laurent, M.A.; Bernard, A.E. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar]
- Allen, P.D.; Hunt, W.F. Bioretention Technology: Overview of Current Practice and Future Needs. Engineering 2009, 135, 109–117. [Google Scholar]
- Chen, C.M. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Michael, J.P.; Meyer, J.L. Streams in the Urban Landscape. Annu. Rev. Ecol. Syst. 2001, 32, 33–365. [Google Scholar]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Laboratory Study of Biological Retention for Urban Stormwater Management. Water Environ. Res. 2001, 73, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Bang, K.W. Characterization of urban stormwater runoff. Water Res. 2000, 34, 1773–1780. [Google Scholar] [CrossRef]
- Herngren, L.; Goonetilleke, A. Understanding heavy meta and suspended solids relationships in urban stormwater using simulated rainfall. J. Environ. Manag. 2005, 76, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Booth, D.B.; Jackson, C.R. Urbanization of aquatic systems: Degradation thresholds, stormwater detection, and the limits of mitigation. J. Am. Water Resour. Assoc. 1997, 33, 1077–1090. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L.G. Hydrologic Restoration in the Urban Environment Using Green Roofs. Water 2010, 2, 140–154. [Google Scholar] [CrossRef]
- Karlsson, K.; Viklander, M.; Scholes, L. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks. J. Hazard. Mater. 2010, 178, 612–618. [Google Scholar] [CrossRef]
- Davies, C.M.; Bavor, H.J. The fate of stormwater-Associated bacteria in constructed wetland and water pollution control pond systems. J. Appl. Microbiol. 2000, 89, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Bian, B. Heavy metal contamination of road-Deposited sediments in a medium size city of China. Environ. Monit. Assess. 2008, 147, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.H.; Chan, F.T.S.; Zhu, F.W. A Visualization Review of Cloud Computing Algorithms in the Last Decade. Sustainability 2016, 8, 1008. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A. Restoring streams in an urbanizing world. Freshw. Biol. 2007, 52, 738–751. [Google Scholar] [CrossRef]
- Thomas, R.S. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs; Metropolitan Washington Council of Governments: Washington, DC, USA, 1987.
No. | Country | Counts | Year | Percentage | Sigma |
---|---|---|---|---|---|
1 | USA | 1418 | 1987 | 41.82% | 8.89 |
2 | AUSTRALIA | 396 | 1997 | 11.68% | 1 |
3 | CHINA | 262 | 2008 | 7.73% | 1 |
4 | CANADA | 253 | 1991 | 7.46% | 236.06 |
5 | ENGLAND | 118 | 2000 | 3.48% | 1 |
6 | SOUTH KOREA | 115 | 2005 | 3.39% | 1 |
7 | FRANCE | 100 | 1997 | 2.95% | 1 |
8 | GERMANY | 79 | 1997 | 2.33% | 3.94 |
9 | SWEDEN | 64 | 2001 | 1.89% | 1 |
10 | ITALY | 49 | 2009 | 1.45% | 1 |
Theme | Results |
---|---|
Year of study | (1) 10 (0.3%) documents from 1980 to 1989, (2) 150 (4.8%) documents from 1990 to 1999, (3) 600 (19.4%) documents from 2000 to 2009, and (4) 2320 (75.3%) documents from 2010 to 2019 |
Category | The top 10 categories are as follows: Environmental sciences and ecology (1803), environmental sciences (1628), water resources (1563), engineering (1357), environmental engineering (865), civil engineering (514), multidisciplinary geosciences (316), geology (316), ecology (279), and marine and freshwater biology (182). |
Active authors | (1) The distribution of researchers is scattered. (2) The top 10 authors who published the largest number of articles are as follows: Fletcher TD (57), Hunt WF (45), Deletic A (41), Marsalek J (33), Walsh CJ (29), Viklander M (27), Kim LH (24), Chang NB (23), Stenstrom MK (19), and Goonetilleke A (18). |
Active institution | The co-work relationship between institutions is not close. The top 10 institutions are as follows: Monash Univ (116), US EPA (83), Univ Melbourne (72), Univ Maryland (58), Univ Florida (53), N Carolina State Univ (38), Univ Calif Davis (36), Chinese Acad Sci (35), Univ Guelph (34), and Lulea Univ Technol (30). |
Journals | Important journals of stormwater management studies include Water SCIT (1484), Water RES (1266), JH (1184), J EM (952), Sci TE (948), J AMWRAS (877), Environ SCIT (795), Water RRES (765), Ecol ENG (752), and J EE (740). |
No. | Title | Journal | Authors | Year | Citations |
---|---|---|---|---|---|
1 | Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform | Landscape and Urban Planning | Matthew J. Burns, Tim D. Fletcher, Christopher J. Walsh, Anthony R. Ladson, Belinda E. Hatt | 2012 | 123 |
2 | Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research | Water, Air, and Soil Pollution | Laurent M. Ahiablame, Bernard A. Engel, Indrajeet Chaubey | 2012 | 100 |
3 | SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage | Urban Water Journal | Tim D. Fletcher, William Shuster, William F. Hunt, Richard Ashley, David Butler, Scott Arthur | 2015 | 100 |
4 | Bioretention Technology: Overview of Current Practice and Future Needs | Journal of Environmental Engineering | Allen P. Davis, William F. Hunt, Robert G. Traver, Michael Clar | 2009 | 98 |
5 | Green roof performance towards management of runoff water quantity and quality: A review | Ecological Engineering | Justyna Czemiel Berndtsson | 2010 | 84 |
6 | Impediments and Solutions to Sustainable, Watershed-scale Urban Stormwater Management: Lessons from Australia and the United States | Environmental Management | Allison H. Roy, Seth J. Wenger, Tim D. Fletcher, Christopher J. Walsh, Anthony R. Ladson, William D. Shuster, Hale W. Thurston, Rebekah R. Brown | 2008 | 84 |
7 | Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art | Advances in Water Resources | T.D. Fletcher, H. Andrieu, P. Hamel | 2013 | 77 |
8 | A watershed-scale design optimization model of BMPs for stormwater | Environmental Modelling and Software | Joong Gwang Lee, Ariamalar Selvakumar, Khalid Alvi, John Riverson, Jenny X. Zhen, Leslie Shoemaker, Fu-hsiung Lai | 2012 | 74 |
9 | Impacts of impervious surface on watershed hydrology: A review | Urban Water Journal | W. D. Shuster, J. Bonta, H. Thurston, E. Warnemuende, D. R. Smith | 2005 | 73 |
10 | Key issues for sustainable urban stormwater management | Water Research | A.E. Barbosa, J.N. Fernandes, L.M. David | 2012 | 70 |
No. | Keywords | Frequency | No. | Keywords | Frequency |
---|---|---|---|---|---|
1 | stormwater management | 632 | 26 | design | 138 |
2 | stormwater | 608 | 27 | removal | 138 |
3 | management | 571 | 28 | hydrology | 129 |
4 | runoff | 542 | 29 | phosphorus | 125 |
5 | water quality | 335 | 30 | catchment | 119 |
6 | system | 327 | 31 | nitrogen | 119 |
7 | water | 325 | 32 | retention | 113 |
8 | performance | 285 | 33 | green roof | 111 |
9 | quality | 277 | 34 | urban stormwater | 105 |
10 | urbanization | 267 | 35 | nutrient | 101 |
11 | impact | 250 | 36 | urban runoff | 89 |
12 | model | 222 | 37 | stream | 88 |
13 | best management practice | 191 | 38 | management practice | 83 |
14 | low-impact development | 184 | 39 | drainage | 82 |
15 | climate change | 178 | 40 | Stormwater management | 82 |
16 | sediment | 173 | 41 | area | 76 |
17 | land use | 170 | 42 | optimization | 73 |
18 | stormwater runoff | 162 | 43 | constructed wetland | 71 |
19 | heavy metal | 159 | 44 | city | 68 |
20 | bioretention | 152 | 45 | flow | 66 |
21 | infiltration | 146 | 46 | United States | 66 |
22 | pollution | 143 | 47 | stormwater management | 60 |
23 | green infrastructure | 141 | 48 | simulation | 60 |
24 | urban | 140 | 49 | metal | 60 |
25 | soil | 140 | 50 | restoration | 57 |
Initial Stage of Development (1980–1992) | Slow Development Stage (1993–2011) | Rapid Development Stage (2012–2019) | |
---|---|---|---|
Number of articles | 22 | 970 | 2088 |
Top 3 of the most active countries | 1. USA 2. Canada | 1. USA 2. Australia 3. Canada | 1. USA 2. Australia 3. China |
Top 3 of the most active institutions | 1. Monash Univ 2. Univ Florida 3. Univ Calif Los Angeles | 1. Monash Univ 2. Univ Melbourne 3. USEPA | |
Most influential literature | Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs | Streams in the urban landscape | Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform |
Top 5 of the most influential authors | 1. Roesner LA 2. Huber WC 3. Schueler T 4. Oberts GL | 1. USEPA 2. Marsalek J. 3. Sansalone J.J 4. Davis Allen P. 5. Novotny Vladimir | 1. Davis Allen P. 2. Dietz Michael E. 3. Walsh Christopher J. 4. Fletcher Tim D. 5. Rossman L.A. |
Top 20 keywords | Stormwater management | 1. Stormwater 2. Stormwater management 3. Runoff 4.Water equality 5. Management 6. Best management practice 7. Water 8. Sediment 9. Urbanization 10. System 11. Infiltration 12. Quality 13. Pollution 14. Phosphorus 15. Heavy metal 16. Model 17. Soil 18. Urban 19. Urban runoff 20. Impact | 1. Management 2. Stormwater management 3. Stormwater 4. Runoff 5. System 6. Performance 7. Water 8. Water quality 9. Quality 10. Impact 11. Urbanization 12. Model 13. Climate change 14. Low-impact development 15. Land use 16. Green infrastructure 17. Bioretention 18. Stormwater runoff 19. Design 20. Removal |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wu, X.; Zhang, J. Development Trend and Frontier of Stormwater Management (1980–2019): A Bibliometric Overview Based on CiteSpace. Water 2019, 11, 1908. https://doi.org/10.3390/w11091908
Wu J, Wu X, Zhang J. Development Trend and Frontier of Stormwater Management (1980–2019): A Bibliometric Overview Based on CiteSpace. Water. 2019; 11(9):1908. https://doi.org/10.3390/w11091908
Chicago/Turabian StyleWu, Jing, Xinyu Wu, and Jiawei Zhang. 2019. "Development Trend and Frontier of Stormwater Management (1980–2019): A Bibliometric Overview Based on CiteSpace" Water 11, no. 9: 1908. https://doi.org/10.3390/w11091908
APA StyleWu, J., Wu, X., & Zhang, J. (2019). Development Trend and Frontier of Stormwater Management (1980–2019): A Bibliometric Overview Based on CiteSpace. Water, 11(9), 1908. https://doi.org/10.3390/w11091908