Source Apportionment of PM2.5 in Guangzhou Based on an Approach of Combining Positive Matrix Factorization with the Bayesian Mixing Model and Radiocarbon
Abstract
:1. Introduction
2. Materials Methods
2.1. Sample Collection
2.2. Chemical Composition Analysis
2.3. Source Apportionment and Performance Assessment
2.3.1. Source Apportionment Methods
2.3.2. Source Apportionment Assessment
2.3.3. Sources Contribution of PM2.5 and OC after Subdivision of Secondary Aerosol
2.3.4. Air Mass Back Trajectories and Potential Source Contribution Function Analysis
3. Results and Discussion
3.1. General Characterization of PM2.5 and Chemical Compositions
3.2. Source Apportionment Results
3.3. Performance Assessment of Source Apportionment Results
3.4. PSCF Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, J.; Zhang, L.; Cao, J.; Zhong, L.; Chen, D.; Yang, Y.; Chen, D.; Chen, L.; Zhang, Z.; Wu, Y.; et al. Source apportionment of PM2.5 at urban and suburban areas of the Pearl River Delta region, south China—With emphasis on ship emissions. Sci. Total Environ. 2017, 574, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Zong, Z.; Wang, X.; Tian, C.; Chen, Y.; Qu, L.; Ji, L.; Zhi, G.; Li, J.; Zhang, G. Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: Insight into the contribution of biomass burning. Atmos. Chem. Phys. 2016, 16, 11249–11265. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Wang, G.; Zhang, R.; Zhang, L.; Song, Y.; Wu, B.; Li, X.; An, K.; Chu, J. Characterization and Source Apportionment of PM2.5 in an Urban Environment in Beijing. Aerosol Air Qual. Res. 2013, 13, 574–583. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Dai, W.; Wang, X.; Cui, M.; Su, H.; Xie, S.; Zhang, Y. Identifying dominant sources of respirable suspended particulates in Guangzhou, China. Environ. Eng. Sci. 2008, 25, 959–968. [Google Scholar] [CrossRef]
- Ni, T.; Han, B.; Bai, Z. Source Apportionment of PM10 in Four Cities of Northeastern China. Aerosol Air Qual. Res. 2012, 12, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zheng, M.; Cai, J.; Yan, C.Q.; Hu, Y.; Wang, X.; Wang, S.; Zhang, Y. Comparison and overview of PM2.5 source apportionment methods (in Chinese). Chin. Sci. Bull. 2015, 60, 109–121. [Google Scholar] [CrossRef]
- Hopke, P.K. Review of receptor modeling methods for source apportionment. J. Air Waste Manage. Assoc. 2016, 66, 237–259. [Google Scholar] [CrossRef]
- Mooibroek, D.; Schaap, M.; Weijers, E.P.; Hoogerbrugge, R. Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmos. Environ. 2011, 45, 4180–4191. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, L.; Li, J.; Ying, Q.; Zhang, H.; Liu, X.; Liao, H.; Li, N.; Liu, Z.; Mao, Y.; et al. Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017. Environ. Int. 2018, 115, 343–357. [Google Scholar] [CrossRef]
- Huang, X.; Yun, H.; Gong, Z.; Li, X.; He, L.; Zhang, Y.; Hu, M. Source apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China. Sci. China Earth Sci. 2013, 57, 1352–1362. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, J.; Wang, S.; He, K.; Zheng, M. Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. Sci. Total Environ. 2017, 586, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Zong, Z.; Wang, X.; Tian, C.; Chen, Y.; Fang, Y.; Zhang, F.; Li, C.; Sun, J.; Li, J.; Zhang, G. First Assessment of NOx Sources at a Regional Background Site in North China Using Isotopic Analysis Linked with Modeling. Environ. Sci. Technol. 2017, 51, 5923–5931. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.B.; Yu, J.Z.; Lau, A.K.H.; Louie, P.K.K.; Fung, J.C.H. Application of positive matrix factorization in estimating aerosol secondary organic carbon in Hong Kong and its relationship with secondary sulfate. Atmos. Chem. Phys. 2006, 6, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Li, J.; Zhang, G.; Zotter, P.; Huang, R.J.; Tang, J.H.; Wacker, L.; Prevot, A.S.; Szidat, S. Radiocarbon-based source apportionment of carbonaceous aerosols at a regional background site on Hainan Island, South China. Environ. Sci. Technol. 2014, 48, 2651–2659. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, J.; Zhang, Y.; Liu, D.; Ding, P.; Shen, C.; Shen, K.; He, Q.; Ding, X.; Wang, X.; et al. Source apportionment using radiocarbon and organic tracers for PM2.5 carbonaceous aerosols in Guangzhou, South China: Contrasting local- and regional-scale haze events. Environ. Sci. Technol. 2014, 48, 12002–12011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Chen, Y.; Huang, Y.; Lin, C.; Li, Z.; Fung, J.C.H.; Lau, A.K.H. Differences in concentration and source apportionment of PM2.5 between 2006 and 2015 over the PRD region in southern China. Sci. Total Environ. 2019, 673, 708–718. [Google Scholar] [CrossRef]
- Wang, X.; Bi, X.; Sheng, G.; Fu, J. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environ. Monit. Assess. 2006, 119, 425–439. [Google Scholar] [CrossRef]
- Wang, J.; Ho, S.S.H.; Ma, S.; Cao, J.; Dai, W.; Liu, S.; Shen, Z.; Huang, R.; Wang, G.; Han, Y. Characterization of PM2.5 in Guangzhou, China: Uses of organic markers for supporting source apportionment. Sci. Total Environ. 2016, 550, 961–971. [Google Scholar] [CrossRef]
- Zong, Z.; Tan, Y.; Wang, X.; Tian, C.; Li, J.; Fang, Y.; Chen, Y.; Cui, S.; Zhang, G. Dual-modelling-based source apportionment of NOx in five Chinese megacities: Providing the isotopic footprint from 2013 to 2014. Environ. Int. 2020, 137, 105592. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.; Cheng, Z.; Zhong, G.; Zhu, S.; Ding, P.; Shen, C.; Tian, C.; Chen, Y.; Zhi, G.; et al. Sources of non-fossil-fuel emissions in carbonaceous aerosols during early winter in Chinese cities. Atmos. Chem. Phys. 2017, 17, 11491–11502. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Perron, N.; Ciobanu, V.G.; Zotter, P.; Minguillón, M.C.; Wacker, L.; Prévôt, A.S.H.; Baltensperger, U.; Szidat, S. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols. Atmos. Chem. Phys. 2012, 12, 10841–10856. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Huang, R.J.; El Haddad, I.; Ho, K.F.; Cao, J.J.; Han, Y.; Zotter, P.; Bozzetti, C.; Daellenbach, K.R.; Canonaco, F.; et al. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmos. Chem. Phys. 2015, 15, 1299–1312. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Vonwiller, M.; Li, J.; Liu, J.; Szidat, S.; Zhang, Y.; Tian, C.; Chen, Y.; Cheng, Z.; Zhong, G. Fossil and Non-fossil Fuel Sources of Organic and Elemental Carbon Aerosols in Beijing, Shanghai and Guangzhou: Seasonal Carbon-source Variation. Aerosol Air Qual. Res. 2020, submitted. [Google Scholar]
- McIlvin, M.R.; Altabet, M.A. Chemical Conversion of Nitrate and Nitrite to Nitrous Oxide for Nitrogen and Oxygen Isotopic Analysis in Freshwater and Seawater. Anal. Chem. 2005, 77, 5589–5595. [Google Scholar]
- Paatero, P.; Tapper, U. Analysis of different modes of factor analysis as least squares fit problems. Chemometrics Intell. Lab. Syst. 1993, 18, 183–194. [Google Scholar] [CrossRef]
- Paatero, P.; Hopke, P.K.; Song, X.H.; Ramadan, a.Z. Understanding and controlling rotations in factor analytic models. Chemometrics Intell. Lab. Syst. 2002, 60, 253–264. [Google Scholar] [CrossRef]
- Parnell, A.C.; Phillips, D.L.; Bearhop, S.; Semmens, B.X.; Ward, E.J.; Moore, J.W.; Jackson, A.L.; Grey, J.; Kelly, D.J.; Inger, R. Bayesian stable isotope mixing models. Environmetrics 2013, 24, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Zong, Z.; Chen, Y.; Tian, C.; Fang, Y.; Wang, X.; Huang, G.; Zhang, F.; Li, J.; Zhang, G. Radiocarbon-based impact assessment of open biomass burning on regional carbonaceous aerosols in North China. Sci. Total Environ. 2015, 518-519, 1–7. [Google Scholar] [CrossRef]
- Geng, X.; Zhong, G.; Li, J.; Cheng, Z.; Mo, Y.; Mao, S.; Su, T.; Jiang, H.; Ni, K.; Zhang, G. Molecular marker study of aerosols in the northern South China Sea: Impact of atmospheric outflow from the Indo-China Peninsula and South China. Atmos. Environ. 2019, 206, 225–236. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Modell. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Li, Y.; An, X.; Fan, G. Transport pathway and potential source area of atmospheric particulates in Beijing (in Chinese). Chin. Environ. Sci. 2019, 39, 915–927. [Google Scholar]
- Jain, S.; Sharma, S.K.; Choudhary, N.; Masiwal, R.; Saxena, M.; Sharma, A.; Mandal, T.K.; Gupta, A.; Gupta, N.C.; Sharma, C. Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environ. Sci. Pollut. Res. 2017, 24, 14637–14656. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, B.; Sarin, M.M. PM2.5, EC and OC in atmospheric outflow from the Indo-Gangetic Plain: Temporal variability and aerosol organic carbon-to-organic mass conversion factor. Sci. Total Environ. 2014, 487, 196–205. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Zhang, J.; Wen, T.; Ji, D.; Wang, Y. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing. Atmos. Res. 2016, 168, 70–79. [Google Scholar] [CrossRef]
- Huang, X.-F.; Zou, B.-B.; He, L.-Y.; Hu, M.; Prévôt, A.S.H.; Zhang, Y.-H. Exploration of PM2.5 sources on the regional scale in the Pearl River Delta based on ME-2 modeling. Atmos. Chem. Phys. 2018, 18, 11563–11580. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhuang, G.; Tang, A.; Yuan, H.; Sun, Y.; Chen, S.; Zheng, A. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos. Environ. 2005, 39, 3771–3784. [Google Scholar] [CrossRef]
- Wu, X.; Chen, B.; Wen, T.; Habib, A.; Shi, G. Concentrations and chemical compositions of PM10 during hazy and non-hazy days in Beijing. J. Environ. Sci. (China) 2020, 87, 1–9. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, W.; Yu, Y.; Hu, B.; Xin, J.; Sun, Y.; Wang, L.; Wang, G.; Bi, X.; Zhang, G.; et al. Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: Emerging results from the CARE-China network. Atmos. Chem. Phys. 2018, 18, 8849–8871. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Duan, J.; Ma, Y.; He, K.; Cheng, Y.; Deng, S.X.; Huang, Y.L.; Si-Tu, S.P. Long-term trends of chemical characteristics and sources of fine particle in Foshan City, Pearl River Delta: 2008-2014. Sci. Total Environ. 2016, 565, 519–528. [Google Scholar] [CrossRef]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y.; Duan, F.; Chen, G.; Zhao, Q. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 2011, 11, 5207–5219. [Google Scholar] [CrossRef] [Green Version]
- Ming, L.; Jin, L.; Li, J.; Fu, P.; Yang, W.; Liu, D.; Zhang, G.; Wang, Z.; Li, X. PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events. Environ. Pollut. 2017, 223, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Wang, S.X. Particulate and Trace Gas Emissions from Open Burning of Wheat Straw and Corn Stover in China. Environ. Sci. Technol. 2007, 41, 6052–6058. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.-B.; Huang, X.-F.; Zhang, B.; Dai, J.; Zeng, L.-W.; Feng, N.; He, L.-Y. Source apportionment of PM2.5 pollution in an industrial city in southern China. Atmos. Pollut. Res. 2017, 8, 1193–1202. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Calzolai, G. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS—Diurnal variations and PMF receptor modelling. Atmos. Chem. Phys. 2013, 13, 4375–4392. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zong, Z.; Tian, C.; Chen, Y.; Luo, C.; Li, J.; Zhang, G.; Luo, Y. Combining Positive Matrix Factorization and Radiocarbon Measurements for Source Apportionment of PM2.5 from a National Background Site in North China. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.H.; Duan, J.C.; Ma, Y.L.; Yang, F.M.; Cheng, Y.; He, K.B.; Yu, Y.C.; Wang, J.W. Source of atmospheric heavy metals in winter in Foshan, China. Sci. Total Environ. 2014, 493, 262–270. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, Y.; Tian, H.; Gao, X.; Zhang, Y.; Wu, X.; Zhu, C.; Gao, J. Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China. Environ. Sci. Technol. 2015, 49, 1206–1214. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, S.; Wu, S.; Wang, C.; He, D. Concentration, fluxes, risks, and sources of heavy metals in atmospheric deposition in the Lihe River watershed, Taihu region, eastern China. Environ. Pollut. 2019, 255, 113301. [Google Scholar] [CrossRef]
- Sha, Q.; Lu, M.; Huang, Z.; Yuan, Z.; Jia, G.; Xiao, X.; Wu, Y.; Zhang, Z.; Li, C.; Zhong, Z.; et al. Anthropogenic atmospheric toxic metals emission inventory and its spatial characteristics in Guangdong province, China. Sci. Total Environ. 2019, 670, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, M.; Cheng, C.; Cheng, p.; Bai, L.; Liu, J.; Zhou, Y.; Huang, B. Mass spectral features of fine particles from biomass boilers (in Chinese). Environ. Pollut. Control 2018, 40, 1167–1174. [Google Scholar]
- Bäfver, L.S.; Leckner, B.; Tullin, C.; Berntsen, M. Particle emissions from pellets stoves and modern and old-type wood stoves. Biomass Bioenergy 2011, 35, 3648–3655. [Google Scholar] [CrossRef]
- Tissari, J.; Hytönen, K.; Sippula, O.; Jokiniemi, J. The effects of operating conditions on emissions from masonry heaters and sauna stoves. Biomass Bioenergy 2009, 33, 513–520. [Google Scholar] [CrossRef]
- He, L.-Y.; Hu, M.; Zhang, Y.-H.; Huang, X.-F.; Yao, T.-T. Fine Particle Emissions from On-Road Vehicles in the Zhujiang Tunnel, China. Environ. Sci. Technol. 2008, 42, 4461–4466. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, D.; Fan, S.; Mao, X.; Chen, H. A one-year, on-line, multi-site observational study on water-soluble inorganic ions in PM2.5 over the Pearl River Delta region, China. Sci. Total Environ. 2017, 601, 1720–1732. [Google Scholar] [CrossRef]
- Masiol, M.; Hopke, P.K.; Felton, H.D.; Frank, B.P.; Rattigan, O.V.; Wurth, M.; LaDuke, G.H. Analysis of major air pollutants and submicron particles in New York City and Long Island. Atmos. Environ. 2017, 148, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Cadle, S.H.; Mulawa, P.A.; Ball, J.; Donase, C.; Weible, A.; Sagebiel, J.C.; Knapp, K.T.; Snow, R. Particulate Emission Rates from In-Use High-Emitting Vehicles Recruited in Orange County, California. Environ. Sci. Technol. 1997, 31, 3405–3412. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, L.; Shang, B.; Li, J.; Lv, G.; Wu, Y. Pollution Characterization and Source Apportionment of Day and Night PM2.5 Samples in Urban and Suburban Communities of Tianjin (China). Arch. Environ. Contam. Toxicol. 2019, 76, 591–604. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region. Environ. Sci. Technol. 2013, 47, 3752–3760. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, X.H.H.; Tam, F.C.V.; Zhang, X.; Liu, K.M.; Yeung, C.; Feng, Y.; Cheng, Y.Y.; Wong, Y.K.; Ng, W.M.; et al. Source apportionment of fine particulate matter in Macao, China with and without organic tracers: A comparative study using positive matrix factorization. Atmos. Environ. 2019, 198, 183–193. [Google Scholar] [CrossRef]
- Li, Y.-y.; Ge, C. Research progress of PM2.5 source analysis in three main regions of China (in Chinese). Mod. Chem. Ind. 2017, 37, 1–5. [Google Scholar] [CrossRef]
- Zhou, J.; Xiong, Y.; Xing, Z.; Deng, J.; Du, K. Characterizing and sourcing ambient PM2.5 over key emission regions in China II: Organic molecular markers and CMB modeling. Atmos. Environ. 2017, 163, 57–64. [Google Scholar] [CrossRef]
- Yang, J. A Study on Refining Temporal and Spatial Allocation for the 2012-Based on Air Pollution Emission Inventory in the Pearl River Delta Region; South China University of Technology: Guangzhou, China, 2015. (In Chinese) [Google Scholar]
- Zhang, Y.; Ren, H.; Sun, Y.; Cao, F.; Chang, Y.; Liu, S.; Lee, X.; Agrios, K.; Kawamura, K.; Liu, D.; et al. High Contribution of Nonfossil Sources to Submicrometer Organic Aerosols in Beijing, China. Environ. Sci. Technol. 2017, 51, 7842–7852. [Google Scholar] [CrossRef] [PubMed]
- Miyakawa, T.; Komazaki, Y.; Zhu, C.; Taketani, F.; Pan, X.; Wang, Z.; Kanaya, Y. Characterization of carbonaceous aerosols in Asian outflow in the spring of 2015: Importance of non-fossil fuel sources. Atmos. Environ. 2019, 214. [Google Scholar] [CrossRef]
- Matsui, H.; Koike, M.; Kondo, Y.; Takami, A.; Fast, J.D.; Kanaya, Y.; Takigawa, M. Volatility basis-set approach simulation of organic aerosol formation in East Asia: Implications for anthropogenic–biogenic interaction and controllable amounts. Atmos. Chem. Phys. 2014, 14, 9513–9535. [Google Scholar] [CrossRef] [Green Version]
- Weber, R.J.; Sullivan, A.P.; Peltier, R.E.; Russell, A.; Yan, B.; Zheng, M.; de Gouw, J.; Warneke, C.; Brock, C.; Holloway, J.S.; et al. A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Yadav, I.C.; Linthoingambi Devi, N.; Li, J.; Syed, J.H.; Zhang, G.; Watanabe, H. Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review. Environ. Pollut. 2017, 227, 414–427. [Google Scholar] [CrossRef]
Components | Autumn | Winter | Spring | Summer | Average |
---|---|---|---|---|---|
Mean ± Standard Deviation | Mean ± Standard Deviation | Mean ± Standard Deviation | Mean ± Standard Deviation | Mean ± Standard Deviation | |
Organic Fractions (μg C/m3) | |||||
OC | 17.9 ± 9.3 | 26.2 ± 9.8 | 15.6 ± 5.6 | 10.1 ± 4.8 | 17.3 ± 9.6 |
EC | 2.3 ± 1.6 | 3.0 ± 1.5 | 3.3 ± 0.9 | 2.9 ± 0.7 | 2.9 ± 1.3 |
OC/EC | 8.58 ± 2.89 | 9.64 ± 3.16 | 4.86 ± 1.81 | 3.68 ± 1.93 | 6.69 ± 3.52 |
PM2.5 and Water-Soluble Ions (μg/m3) | |||||
PM2.5 | 87.1 ± 29.3 | 104 ± 34.3 | 76.8 ± 16.7 | 55.4 ± 17.5 | 80.4 ± 30.7 |
SO42− | 17.0 ± 10.0 | 25.5 ± 7.76 | 9.01 ± 3.68 | 7.89 ± 4.77 | 13.5 ± 9.19 |
NO3− | 5.68 ± 5.17 | 25.0 ± 9.41 | 10.3 ± 8.79 | 4.38 ± 8.31 | 9.13 ± 10.2 |
Cl− | 0.54 ± 0.51 | 1.67 ± 1.26 | 1.32 ± 0.75 | 0.49 ± 0.36 | 0.89 ± 0.83 |
NH4+ | 8.14 ± 4.11 | 14.02 ± 3.55 | 5.69 ± 2.67 | 3.19 ± 3.37 | 6.88 ± 4.88 |
Na+ | 0.47 ± 0.29 | 0.44 ± 0.10 | 0.58 ± 0.21 | 0.68 ± 0.15 | 0.56 ± 0.23 |
K+ | 1.01 ± 0.45 | 1.56 ± 0.47 | 0.60 ± 0.22 | 0.57 ± 0.20 | 0.85 ± 0.49 |
Ca2+ | 1.92 ± 1.51 | 2.90 ± 0.81 | 1.71 ± 0.82 | 2.07 ± 0.54 | 2.05 ± 1.07 |
Mg2+ | 0.18 ± 0.08 | 0.28 ± 0.07 | 0.18 ± 0.07 | 0.21 ± 0.07 | 0.20 ± 0.08 |
Trace Elements (ng/m3) | |||||
Fe | 652 ± 311 | 1030 ± 358 | 730 ± 316 | 591 ± 229 | 708 ± 325 |
As | 16.4 ± 8.51 | 28.5 ± 11.0 | 9.32 ± 5.83 | 3.07 ± 1.58 | 12.4 ± 10.9 |
Cu | 64.5 ± 68.0 | 61.5 ± 19.7 | 27.8 ± 13.4 | 19.9 ± 12.5 | 41.4 ± 43.8 |
Cr | 18.5 ± 14.1 | 23.3 ± 15.2 | 9.67 ± 7.26 | 3.98 ± 2.15 | 12.6 ± 12.5 |
Mn | 29. 5 ± 12.5 | 47.0 ± 15.6 | 32.7 ± 12.5 | 19.2 ± 6.89 | 29.8 ± 14.4 |
Ni | 5.64 ± 2.85 | 6.62 ± 1.90 | 7.41 ± 2.76 | 4.19 ± 1.52 | 5.81 ± 2.60 |
Pb | 106 ± 43.1 | 183 ± 51.5 | 47.4 ± 19.2 | 22.6 ± 9.92 | 77.1 ± 63.3 |
V | 12.8 ± 8.72 | 5.55 ± 3.68 | 12.9 ± 4.89 | 7.13 ± 3.44 | 10.2 ± 6.32 |
Zn | 290 ± 111 | 417 ± 139 | 175 ± 55.3 | 119 ± 45.7 | 228 ± 134 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Li, J.; Jiang, H.; Chen, D.; Zong, Z.; Tian, C.; Zhang, G. Source Apportionment of PM2.5 in Guangzhou Based on an Approach of Combining Positive Matrix Factorization with the Bayesian Mixing Model and Radiocarbon. Atmosphere 2020, 11, 512. https://doi.org/10.3390/atmos11050512
Li T, Li J, Jiang H, Chen D, Zong Z, Tian C, Zhang G. Source Apportionment of PM2.5 in Guangzhou Based on an Approach of Combining Positive Matrix Factorization with the Bayesian Mixing Model and Radiocarbon. Atmosphere. 2020; 11(5):512. https://doi.org/10.3390/atmos11050512
Chicago/Turabian StyleLi, Tingting, Jun Li, Hongxing Jiang, Duohong Chen, Zheng Zong, Chongguo Tian, and Gan Zhang. 2020. "Source Apportionment of PM2.5 in Guangzhou Based on an Approach of Combining Positive Matrix Factorization with the Bayesian Mixing Model and Radiocarbon" Atmosphere 11, no. 5: 512. https://doi.org/10.3390/atmos11050512
APA StyleLi, T., Li, J., Jiang, H., Chen, D., Zong, Z., Tian, C., & Zhang, G. (2020). Source Apportionment of PM2.5 in Guangzhou Based on an Approach of Combining Positive Matrix Factorization with the Bayesian Mixing Model and Radiocarbon. Atmosphere, 11(5), 512. https://doi.org/10.3390/atmos11050512