Model Performance Differences in Fine-Mode Nitrate Aerosol during Wintertime over Japan in the J-STREAM Model Inter-Comparison Study
Abstract
:1. Introduction
2. Methodology
3. Results
Overview of Model Performance
4. Discussion
4.1. Investigation in Model External Settings
4.1.1. Meteorology and Boundary Conditions
4.1.2. Emission
4.2. Investigation in Internal Model Settings
4.2.1. Chemical Mechanism
4.2.2. KZMIN
4.2.3. HONO and Photolysis
5. Conclusions
- Boundary conditions and meteorology external settings: The difference due to different boundary conditions for the outermost domain and meteorological field ranged from −0.5 to +0.3 μg/m3 (−0.04 μg/m3; hereafter, the domain average is shown in parenthesis) over the Kansai region. In contrast, a different meteorological field showed higher NO3− concentrations over the Kanto region of up to +0.7 μg/m3 (+0.13 μg/m3). This could have been related to the land–sea breeze circulation in the Kanto region. The factor of boundary condition and meteorology need to be investigated separately in future study, and further investigation of the effects of several meteorological fields should be performed.
- Emissions external setting: Using different emissions led to higher NO3− concentrations over the Kansai region in one model and over the Kanto region in two models. Over the Kansai region, the difference ranged from −0.9 to +2.5 μg/m3 (+0.10 μg/m3). Over the Kanto region, these differences ranged from −0.4 to +0.8 μg/m3 (+0.16 μg/m3) and from −0.5 to +1.8 μg/m3 (+0.49 μg/m3). The different emissions were obtained with lower NOx emissions and higher NH3 emissions. The effective consumption under NH3-rich conditions over urban areas in Japan was related to the higher production of NO3−.
- Chemical mechanism internal setting: SAPRC99 showed a lower NO3− concentration compared with SAPRC07, CB05, and RACM2. The different chemical mechanisms caused a large difference over China, and this could affect western Japan and the Kansai region. The effect of the chemical mechanisms over western Japan was up to +1.0 μg/m3. Over the Kansai region, the difference between SAPRC07 and SAPRC99 was up to +0.8 μg/m3 (+0.23 μg/m3), that between CB05 and SAPRC99 was up to +0.8 μg/m3 (+0.22 μg/m3), and that between RACM2 and SAPRC99 was up to +0.8 μg/m3 (+0.26 μg/m3). In contrast, over the Kanto region, the difference between SAPRC07 and SAPRC99 was −0.2 to +0.3 μg/m3 (+0.09 μg/m3), the difference between CB05 and SAPRC99 was −0.3 to +0.4 μg/m3 (+0.08 μg/m3), and the difference between RACM2 and SAPRC99 was up to +0.3 μg/m3 (+0.12 μg/m3). The selection of the chemical mechanism could increase NO3− concentration over western Japan via long-range transport, and the difference over the Kanto region was smaller.
- KZMIN internal setting: The use of the KZMIN option, which calculates lower minimum vertical diffusion coefficients compared with the prescribed value, led to lower concentrations over the grids with a land use category of urban, as well as to higher concentration over other grids. Though there was a clear relation between the difference and the fraction of urban area, these differences over domains 3 and 4 (+0.05 and +0.04 μg/m3, respectively) were smaller.
- HONO and photolysis internal settings: The models in which the HONO option was switched off, including the heterogeneous reaction of HONO, showed a HONO concentration five times lower than in models with the option switched on. Based on the comparison with HONO observations in Japan, the HONO concentration simulated by models without the heterogeneous reaction were an order of magnitude too low. Some models also used a lookup table to calculate photolysis. The difference in model performance between these models and the M15 reference model suggested that the HONO option should be switched on and that inline photolysis calculation is required for simulating air quality over urban areas in Japan.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Carmichael, G.R.; Sandu, A.; Chai, T.; Daescu, D.N.; Constantinescu, E.M.; Tang, Y. Predicting air quality: Improvements through advanced methods to integrate models and measurements. J. Comp. Phys. 2008, 227, 3540–3571. [Google Scholar] [CrossRef]
- Morino, Y.; Chatani, S.; Hayami, H.; Sasaki, K.; Mori, Y.; Morikawa, T.; Ohara, T.; Hasegawa, S.; Kobayashi, S. Inter-comparison of chemical transport models and evaluation of model performance for O3 and PM2.5 prediction—Case study in the Kanto area in summer 2007. J. Jpn. Soc. Atmos. Environ. 2010, 45, 212–226. (In Japanese) [Google Scholar]
- Chatani, S.; Morino, Y.; Shimadera, H.; Hayami, H.; Mori, Y.; Sasaki, K.; Kajino, M.; Yokoi, T.; Morikawa, T.; Ohara, T. Multi-model analyses of dominant factors influencing elemental carbon in Tokyo metropolitan area of Japan. Aerosol Air. Qual. Res. 2014, 14, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Shimadera, H.; Hayami, H.; Chatani, T.; Morino, Y.; Mori, S.; Morikawa, Y.; Yamaji, K.; Ohara, T. Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate. J. Air Waste Manag. 2017, 64, 374–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimadera, H.; Hayami, H.; Chatani, S.; Morikawa, T.; Morino, Y.; Mori, Y.; Yamaji, K.; Nakatsuka, S.; Ohara, T. Urban air quality model inter-comparison study in Japan (UMICS) for improvement of PM2.5 simulation in greater Tokyo area of Japan. Asian J. Atmos. Environ. 2018, 12, 139–152. [Google Scholar] [CrossRef]
- Chatani, S.; Yamaji, K.; Sakurai, T.; Itahashi, S.; Shimadera, H.; Kitayama, K.; Hayami, H. Overview of model inter-comparison in Japan’s study for reference air quality modeling (J-STREAM). Atmosphere 2018, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Chatani, S.; Okumura, M.; Shimadera, H.; Yamaji, K.; Kitayama, K.; Matsunaga, S. Effects of a detailed vegetation database on simulated meteorological fields, biogenic VOC emissions, and ambient pollutant concentrations over Japan. Atmosphere 2018, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Chatani, S.; Yamaji, K.; Itahashi, S.; Saito, M.; Takigawa, M.; Morikawa, T.; Kanda, I.; Miya, Y.; Komatsu, H.; Sakurai, T.; et al. Identifying key factors influencing model performance on ground-level ozone over urban areas in Japan through model-intercomparisons. Atmos. Environ. 2020, 223, 117255. [Google Scholar] [CrossRef]
- Kitayama, K.; Morino, Y.; Yamaji, K.; Chatani, S. Uncertainties in O3 concentrations simulated by CMAQ over Japan using four chemical mechanisms. Atmos. Environ. 2019, 198, 448–462. [Google Scholar] [CrossRef]
- Yamaji, K.; Chatani, S.; Yamaji, K.; Itahashi, S.; Saito, M.; Takigawa, M.; Morikawa, T.; Kanda, I.; Miya, Y.; Komatsu, H.; et al. Model inter-comparison for PM2.5 components over urban areas in Japan in the J-STREAM framework. Atmosphere 2020, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Itahashi, S.; Yamaji, K.; Chatani, S.; Hayami, H. Refinement of modeled aqueous-phase sulfate production via the Fe- and Mn-catalyzed oxidation pathway. Atmosphere 2018, 9, 132. [Google Scholar] [CrossRef] [Green Version]
- Cohan, D.S.; Hu, Y.; Russell, A.G. Dependence of ozone sensitivity analysis on grid resolution. Atmos. Environ. 2006, 40, 126–135. [Google Scholar] [CrossRef]
- Bae, M.; Kim, B.-U.; Kim, H.C.; Kim, S. A multiscale tiered approach to quantify contributions: A case study of PM2.5 in South Korea during 2010–2017. Atmosphere 2020, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- Sudo, K.; Takahashi, M.; Kurokawa, J.; Akimoto, H. CHASER: A global chemical model of the troposphere—1. Model description. J. Geophys. Res. Atmos. 2002, 107, 4339. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Carmichael, G.R.; Pierce, R.B.; Jo, D.S.; Park, R.J.; Flemming, J.; Emmons, L.K.; Bowman, K.W.; Henze, D.K.; Davila, Y.; et al. Impact of intercontinental pollution transport on North American ozone air pollution: An HTAP phase 2 multi-model study. Atmos. Chem. Phys. 2017, 17, 5721–5750. [Google Scholar] [CrossRef] [Green Version]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef] [Green Version]
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, F.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmuller, R.; et al. HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 2015, 15, 11411–11432. [Google Scholar] [CrossRef] [Green Version]
- Chatani, S.; Morikawa, T.; Nakatsuka, S.; Matsunaga, S.; Minoura, H. Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan. Atmos. Environ. 2011, 45, 1383–1393. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Diehl, T.; Heil, A.; Chin, M.; Pan, X.; Streets, D.; Schultz, M.; Kinne, S. Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmos. Chem. Phys. 2012, 2012, 24895–24954. [Google Scholar] [CrossRef] [Green Version]
- Japan Meteorological Agency. Available online: http://www.data.jma.go.jp/svd/vois/data/tokyo/volcano.html (accessed on 2 February 2020).
- Fukui, T.; Kokuryo, K.; Baba, T.; Kannari, A. Updating EAGrid2000-Japan emissions inventory based on the recent emission trends. J. Jpn. Soc. Atmos. Environ. 2014, 49, 117–125. [Google Scholar]
- Kannari, A.; Tonooka, Y.; Baba, T.; Murano, K. Development of multiple-species 1km×1km resolution hourly basis emissions inventory for Japan. Atmos. Environ. 2007, 41, 3428–3439. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Power, J.G. A Description of the Advanced Research WRF Version 3; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Whitten, G.Z.; Heo, G.; Kimura, Y.; McDonald-Buller, E.; Allen, D.T.; Carter, W.P.L.; Yarwood, G. A new condensed toluene mechanism for carbon bond CB05-TU. Atmos. Environ. 2010, 44, 5346–5355. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Carter, W.P.L. Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment; California Environmental Protection Agency: Sacramento, CA, USA, 2000. [Google Scholar]
- Goliff, W.S.; Stockwell, W.R.; Lawson, C.V. The regional atmospheric chemistry mechanism, version 2. Atmos. Environ. 2013, 68, 174–185. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3−-Cl−-H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef] [Green Version]
- Reff, A.H.; Bhave, P.; Simon, H.; Pace, T.; Pouliot, G.; Mobley, D.; Houyoux, M. Emissions inventory of PM2.5 trace elements across the United States. Environ. Sci. Technol. 2009, 43, 5790–5796. [Google Scholar] [CrossRef]
- Carlton, A.G.; Bhave, P.V.; Napelenok, S.L.; Edney, E.D.; Sarwar, G.; Pinder, R.W.; Pouliot, G.A.; Houyoux, M. Model Representation of Secondary Organic Aerosol in CMAQv4.7. Environ. Sci. Technol. 2010, 44, 8553–8560. [Google Scholar] [CrossRef]
- Binkowski, F.S.; Arunachalam, S.; Adelman, Z.; Pinto, J. Examining photolysis rates with a prototype on-line photolysis module in CMAQ. J. Appl. Meteor. Clim. 2007, 46, 1252–1256. [Google Scholar] [CrossRef]
- Sarwar, G.; Roselle, S.J.; Mathur, R.; Appel, W.; Dennis, R.L.; Vogel, B. A comparison of CMAQ HONO predictions with observations from the Northeast Oxidant and Particle Study. Atmos. Environ. 2008, 42, 5760–5770. [Google Scholar] [CrossRef]
- Pleim, J.E.; Xiu, A.; Finkelstein, P.L.; Otte, T.L. A coupled land-surface and dry deposition model and comparison to field measurements of surface heat, moisture, and ozone fluxes. Water Air Soil Pollut. Focus 2001, 1, 243–252. [Google Scholar] [CrossRef]
- CMAQ v5.1 Dry Deposition Updates. Available online: https://www.airqualitymodeling.org/index.php/CMAQv5.1_Dry_Deposition_Updates (accessed on 3 March 2020).
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boylan, J.W.; Russell, A.G. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 2006, 40, 4946–4959. [Google Scholar] [CrossRef]
- CMAQ Version 5.0.2 (April 2014 Release) Technical Documentation. Available online: https://www.airqualitymodeling.org/index.php/CMAQ_version_5.0.2_(April_2014_release)_Technical_Documentation (accessed on 3 March 2020).
- CMAQ Version 5.1 (November 2015 Release) Technical Documentation. Available online: https://www.airqualitymodeling.org/index.php/CMAQ_version_5.1_(November_2015_release)_Technical_Documentation (accessed on 3 March 2020).
- CMAQ v5.1 SAPRC07 Changes. Available online: https://www.airqualitymodeling.org/index.php/CMAQ_v5.1_SAPRC07_changes (accessed on 3 March 2020).
- CMAQ v5.1 SOA Update. Available online: https://www.airqualitymodeling.org/index.php/CMAQv5.1_SOA_Update (accessed on 3 March 2020).
- CMAQ v5.1 In-line Calculation of Photolysis. Available online: https://www.airqualitymodeling.org/index.php/CMAQv5.1_In-line_Calculation_of_Photolysis_Rates (accessed on 3 March 2020).
- Chen, L.; Gao, Y.; Zhang, M.; Fu, J.S.; Zhu, J.; Liao, H.; Li, J.; Huang, K.; Ge, B.; Wang, X.; et al. MICS-Asia III: Multi-model comparison and evaluation of aerosol over East Asia. Atmos. Chem. Phys. 2019, 19, 11911–11937. [Google Scholar] [CrossRef] [Green Version]
- Itahashi, S.; Ge, B.; Sato, K.; Fu, J.S.; Wang, X.; Yamaji, K.; Nagashima, T.; Li, J.; Kajino, M.; Liao, H.; et al. MICS-Asia III: Overview of model intercomparison and evaluation of acid deposition over Asia. Atmos. Chem. Phys. 2020, 20, 2667–2693. [Google Scholar] [CrossRef] [Green Version]
- Kiriyama, Y.; Shimadera, H.; Itahashi, S.; Hayami, H.; Miura, K. Evaluation of the effect of regional pollutants and residual ozone on ozone concentrations in the morning in the inland of the Kanto region. Asian J. Atmos. Environ. 2015, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tsuchida, M.; Yoshikado, H. The winter sea breeze in the Tokyo Bay Area. TENKI 1995, 42, 283–292. (In Japanese) [Google Scholar]
- Yoshikado, H. Air pollution in Japan dominated by local meteorology. J. Jpn. Soc. Atmos. Environ. 2007, 42, 63–74. (In Japanese) [Google Scholar]
- Pinder, R.W.; Dennis, R.L.; Bhave, P.V. Observable indicators of the sensitivity of PM2.5 nitrate to emission reductions—Part I: Derivation of the adjusted gas ratio and applicability at regulatory-relevant time scales. Atmos. Environ. 2008, 42, 1275–1286. [Google Scholar] [CrossRef]
- Kim, Y.; Sartelet, K.; Seigneur, C. Formation of secondary aerosols over Europe: Comparison of two gas-phase chemical mechanisms. Atmos. Chem. Phys. 2011, 11, 583–598. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, G.; Godowitch, J.; Henderson, B.H.; Fahey, K.; Pouliot, G.; Hutzell, W.T.; Mathur, R.; Kang, D.; Goliff, W.S.; Stockwell, W.R. A comparison of atmospheric composition using the carbon bond and regional atmospheric chemistry mechanisms. Atmos. Chem. Phys. 2013, 13, 9695–9712. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Rappenglueck, B. A study of model nighttime ozone bias in air quality modeling. Atmos. Environ. 2018, 195, 210–228. [Google Scholar] [CrossRef]
- Itahashi, S.; Uno, I.; Osada, K.; Kamiguchi, Y.; Yamamoto, S.; Tamura, K.; Wang, Z.; Kurosaki, Y.; Kanaya, Y. Nitrate transboundary heavy pollution over East Asia in winter. Atmos. Chem. Phys. 2017, 17, 3823–3843. [Google Scholar] [CrossRef] [Green Version]
- Itahashi, S.; Yamaji, K.; Chatani, S.; Hisatsune, K.; Saito, S.; Hayami, H. Model performance differences in sulfate aerosol in winter over Japan based on regional chemical transport models of CMAQ and CAMx. Atmosphere 2018, 9, 488. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Okita, T. Long term measurements of atmospheric gaseous and aerosol species using an annular denuder system in Nara, Japan. Atmos. Environ. 1998, 32, 1419–1425. [Google Scholar] [CrossRef]
- Hayashi, K.; Noguchi, I. Indirect emission of nitrous acid from grasslands indicated by concentration gradients. J. Japan Soc. Atmos. Environ. 2006, 41, 279–287. [Google Scholar]
- Hayami, H.; Saito, S.; Hasegawa, S. Spatiotemporal variations of fine particulate organic and elemental carbons in greater Tokyo. Asian J. Atmos. Environ. 2019, 13, 161–170. [Google Scholar] [CrossRef]
ID | Version | External Settings | Internal Settings | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Domain 1 | Met. 2 | Emis. 3 | ICON 4 | BCON 5 | Chemical Mechanism | Aerosol Module | KZMIN 6 | Photolysis 7 | HONO 8 | ||||
1, 2 | 3 | 4 | |||||||||||
M01 | 5.2 | ― | X | X | X | X | X | X | CB05 | aero6 | Y | Inline | Y |
M02 | 5.1 | X | X | X | X | X | X | ― | SAPRC07 | aero6 | Y | Inline | Y |
M03 | 5.1 | X | X | X | X | Own | X | ― | SAPRC07 | aero6 | Y | Inline | Y |
M04 | 5.1 | ― | X | X | X | X | X | X | SAPRC07 | aero6 | N | Inline | N |
M05 | 5.1 | ― | X | X | X | X | X | X | SAPRC07 | aero6 | Y | Inline | Y |
M06 | 5.1 | ― | X | X | X | X | X | X | SAPRC07 | aero6 | Y | Table | N |
M07 | 5.0.2 | X | X | X | Own | X | Own | Own | SAPRC07 | aero6 | Y | Inline | Y |
M08 | 5.0.2 | X | X | X | X | X | Own | ― | SAPRC07 | aero6 | Y | Inline | Y |
M09 | 5.0.2 | X | X | X | X | X | Own | ― | CB05 | aero6 | Y | Inline | Y |
M12 | 5.0.2 | X | X | X | X | X | Own | ― | RACM2 | aero6 | Y | Inline | Y |
M13 | 5.0.2 | X | X | X | X | X | Own | ― | SAPRC99 | aero5 | Y | Inline | Y |
M14 | 5.0.2 | X | X | X | X | X | X | ― | SAPRC07 | aero6 | Y | Inline | Y |
M15 | 5.0.2 | X | X | X | X | X | X | ― | SAPRC07 | aero6 | Y | Inline | Y |
M22 | 5.0.1 | ― | X | X | X | X | X | X | SAPRC07 | aero6 | Y | Inline | Y |
M23 | 5.0.1 | ― | X | X | X | X | X | X | SAPRC07 | aero6 | N | Table | N |
M24 | 5.0.1 | ― | X | X | X | X | X | X | CB05 | aero6 | N | Table | N |
M25 | 5.0.1 | ― | ― | X | X | X | X | X | SAPRC99 | aero5 | Y | Inline | Y |
M26 | 5.0.1 | ― | X | X | X | X | X | X | SAPRC99 | aero5 | N | Table | N |
M27 | 4.7.1 | ― | ― | X | X | Own | X | X | SAPRC99 | aero5 | Y | Table | N |
M28 | 4.7.1 | ― | ― | X | X | X | X | X | SAPRC99 | aero5 | Y | Table | N |
R | NMB (%) | NME (%) | MFB (%) | MFE (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | d03 | d04 | d03 | d04 | d03 | d04 | d03 | d04 | d03 | d04 | ||||||
M01 | 0.21 | 0.37 | −18.7 | * | −51.9 | * | 74.2 | * | 68.8 | * | +2.9 | ** | −32.5 | * | 82.6 | 81.4 |
M02 | 0.16 | 0.29 | −9.9 | ** | −43.9 | * | 79.8 | * | 70.3 | * | +9.7 | ** | −19.9 | ** | 87.1 | 83.3 |
M03 | 0.20 | 0.31 | −8.6 | ** | −41.3 | * | 78.5 | * | 70.2 | * | +9.7 | ** | −18.8 | ** | 85.4 | 83.8 |
M04 | 0.16 | 0.29 | −16.8 | * | −48.0 | * | 79.0 | * | 70.9 | * | +1.2 | ** | −28.6 | ** | 87.6 | 84.1 |
M05 | 0.18 | 0.32 | −13.5 | ** | −46.1 | * | 78.6 | * | 69.3 | * | +4.4 | ** | −25.5 | ** | 86.4 | 83.0 |
M06 | 0.19 | 0.32 | −21.6 | * | −51.3 | * | 75.3 | * | 69.9 | * | −2.4 | ** | −32.5 | * | 85.6 | 83.4 |
M07 | 0.07 | 0.25 | −20.4 | * | −39.1 | * | 83.5 | * | 72.1 | * | −0.8 | ** | −13.7 | ** | 94.0 | 84.0 |
M08 | 0.19 | 0.30 | −14.2 | ** | −46.9 | * | 76.5 | * | 69.5 | * | +5.4 | ** | −25.0 | ** | 84.9 | 82.4 |
M09 | 0.18 | 0.28 | −16.9 | * | −49.2 | * | 76.3 | * | 69.9 | * | +3.5 | ** | −27.3 | ** | 85.8 | 83.1 |
M12 | 0.18 | 0.30 | −9.5 | ** | −41.8 | * | 79.1 | * | 69.8 | * | +8.7 | ** | −18.2 | ** | 86.0 | 83.0 |
M13 | 0.13 | 0.26 | −23.9 | * | −44.9 | * | 77.9 | * | 70.1 | * | −5.2 | ** | −20.3 | ** | 88.4 | 82.6 |
M14 | 0.19 | 0.30 | −14.1 | ** | −46.9 | * | 76.5 | * | 69.5 | * | +5.4 | ** | −25.0 | ** | 85.0 | 82.4 |
M15 | 0.19 | 0.30 | −14.2 | ** | −46.9 | * | 76.5 | * | 69.5 | * | +5.4 | ** | −25.0 | ** | 84.9 | 82.4 |
M22 | 0.20 | 0.31 | −18.4 | * | −49.4 | * | 74.6 | * | 69.3 | * | +1.6 | ** | −28.5 | ** | 84.1 | 81.7 |
M23 | 0.17 | 0.28 | −21.9 | * | −50.8 | * | 75.5 | * | 70.7 | * | −1.7 | ** | −30.4 | * | 85.9 | 83.5 |
M24 | 0.17 | 0.28 | −23.6 | * | −52.1 | * | 74.9 | * | 70.8 | * | −3.2 | ** | −32.2 | * | 85.8 | 84.0 |
M25 | ― | 0.28 | ― | −47.1 | * | ― | 69.6 | * | ― | −22.8 | ** | ― | 81.2 | |||
M26 | 0.14 | 0.24 | −29.7 | * | −50.3 | * | 75.5 | * | 71.0 | * | −10.5 | ** | −27.4 | ** | 87.1 | 82.9 |
M27 | ― | 0.25 | ― | −28.7 | * | ― | 73.7 | * | ― | −1.54 | ** | ― | 82.5 | |||
M28 | ― | 0.24 | ― | −47.3 | * | ― | 71.6 | * | ― | −25.8 | ** | ― | 83.7 | |||
Ens. | 0.17 | 0.29 | −17.4 | * | −46.2 | * | 76.5 | * | 69.8 | * | +2.7 | ** | −23.3 | ** | 85.8 | 82.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itahashi, S.; Yamaji, K.; Chatani, S.; Kitayama, K.; Morino, Y.; Nagashima, T.; Saito, M.; Takigawa, M.; Morikawa, T.; Kanda, I.; et al. Model Performance Differences in Fine-Mode Nitrate Aerosol during Wintertime over Japan in the J-STREAM Model Inter-Comparison Study. Atmosphere 2020, 11, 511. https://doi.org/10.3390/atmos11050511
Itahashi S, Yamaji K, Chatani S, Kitayama K, Morino Y, Nagashima T, Saito M, Takigawa M, Morikawa T, Kanda I, et al. Model Performance Differences in Fine-Mode Nitrate Aerosol during Wintertime over Japan in the J-STREAM Model Inter-Comparison Study. Atmosphere. 2020; 11(5):511. https://doi.org/10.3390/atmos11050511
Chicago/Turabian StyleItahashi, Syuichi, Kazuyo Yamaji, Satoru Chatani, Kyo Kitayama, Yu Morino, Tatsuya Nagashima, Masahiko Saito, Masayuki Takigawa, Tazuko Morikawa, Isao Kanda, and et al. 2020. "Model Performance Differences in Fine-Mode Nitrate Aerosol during Wintertime over Japan in the J-STREAM Model Inter-Comparison Study" Atmosphere 11, no. 5: 511. https://doi.org/10.3390/atmos11050511
APA StyleItahashi, S., Yamaji, K., Chatani, S., Kitayama, K., Morino, Y., Nagashima, T., Saito, M., Takigawa, M., Morikawa, T., Kanda, I., Miya, Y., Komatsu, H., Sakurai, T., Shimadera, H., Uranishi, K., Fujiwara, Y., Hashimoto, T., & Hayami, H. (2020). Model Performance Differences in Fine-Mode Nitrate Aerosol during Wintertime over Japan in the J-STREAM Model Inter-Comparison Study. Atmosphere, 11(5), 511. https://doi.org/10.3390/atmos11050511