Improving the Processes in the Land Surface Scheme TERRA: Bare Soil Evaporation and Skin Temperature
Abstract
:1. Introduction
2. Model Description
3. Bare Soil Evaporation and Surface Temperature
3.1. Bare Soil Evaporation
3.1.1. Current Formulation
3.1.2. New Formulation
3.2. Surface Temperature
3.2.1. Current Formulation
3.2.2. New Formulation
4. Experiments and Observational Data
4.1. Lindenberg/Falkenberg
4.2. Central Europe
5. Results of Numerical Experiments
5.1. Offline Mode
5.1.1. Bare Soil Evaporation
5.1.2. Surface Temperature
5.2. Coupled Mode
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arora, V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys. 2002, 40, 1006. [Google Scholar] [CrossRef] [Green Version]
- Koster, R.D.; Dirmeyer, P.A.; Hahmann, A.N.; Ijpelaar, R.; Tyahla, L.; Cox, P.; Suarez, M.J. Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J. Hydrometeorol. 2002, 3, 363–375. [Google Scholar] [CrossRef]
- Steppeler, J.; Doms, G.; Schättler, U.; Bitzer, H.-W.; Gassmann, A.; Damrath, U. Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol. Atmos. Phys. 2003, 82, 75–96. [Google Scholar] [CrossRef]
- Balsamo, G.; Boussetta, S.; Dutra, E.; Beljaars, A.; Viterbo, P.; Van den Hurk, B. Evolution of Land Surface Processes in the IFS; ECMWF Newsletter 127; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2011; pp. 17–22. [Google Scholar]
- Albergel, C.; Balsamo, G.; de Rosnay, P.; Muñoz-Sabater, J.; Boussetta, S. A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data. Hydrol. Earth Syst. Sci. 2012, 16, 3607–3620. [Google Scholar] [CrossRef] [Green Version]
- Doms, G.; Förstner, J.; Heise, E.; Herzog, H.-J.; Mironov, D.; Raschendorfer, M.; Reinhardt, T.; Ritter, B.; Schrodin, R.; Schulz, J.-P.; et al. A Description of the Nonhydrostatic Regional COSMO Model. Part II: Physical Parameterization; Deutscher Wetterdienst: Offenbach, Germany, 2011; 154p. [Google Scholar]
- Schulz, J.-P.; Vogel, G.; Becker, C.; Kothe, S.; Rummel, U.; Ahrens, B. Evaluation of the ground heat flux simulated by a multi-layer land surface scheme using high-quality observations at grass land and bare soil. Meteorol. Z. 2016, 25, 607–620. [Google Scholar] [CrossRef]
- Deardorff, J.W. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res. 1978, 83, 1889–1903. [Google Scholar] [CrossRef] [Green Version]
- Schulz, J.-P.; Dümenil, L.; Polcher, J.; Schlosser, C.A.; Xue, Y. Land surface energy and moisture fluxes: Comparing three models. J. Appl. Meteorol. 1998, 37, 288–307. [Google Scholar] [CrossRef] [Green Version]
- Vogel, G.; Shrestha, P.; Schulz, J.-P.; Becker, C.; Rummel, U. Modelluntersuchungen zum Einfluss der solaren Abschattung auf die Erdbodentemperaturen in Falkenberg; MOL-RAO Aktuell 3/2015; Deutscher Wetterdienst: Lindenberg, Germany, 2015; 2p. [Google Scholar]
- Haiden, T.; Sandu, I.; Balsamo, G.; Arduini, G.; Beljaars, A. Addressing Biases in Near-Surface Forecasts; ECMWF Newsletter 157; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2018; pp. 20–25. [Google Scholar]
- Rockel, B.; Will, A.; Hense, A. The regional climate model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Mueller, B.; Seneviratne, S.I. Hot days induced by precipitation deficits at the global scale. Proc. Nat. Acad. Sci. USA 2012, 109, 12398–12403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiermeier, Q. Europe’s mega-heatwave boosted by climate change. Nature 2019, 571, 155. [Google Scholar] [CrossRef] [PubMed]
- Bucchignani, E.; Mercogliano, P.; Garbero, V.; Milelli, M.; Varentsov, M.; Rozinkina, I.; Rivin, G.; Blinov, D.; Kirsanov, A.; Wouters, H.; et al. Analysis and Evaluation of TERRA_URB Scheme: PT AEVUS Final Report; COSMO Technical Report 40; Deutscher Wetterdienst: Offenbach, Germany, 2019; 60p. [Google Scholar]
- Schulz, J.-P.; Vogel, G. An evaluation of the simulated bare soil evaporation of an atmospheric model. In Proceedings of the EGU General Assembly, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Oleson, K.W.; Lawrence, D.M.; Bonan, G.B.; Drewniak, B.; Huang, M.; Koven, C.D.; Levis, S.; Li, F.; Riley, W.J.; Subin, Z.M.; et al. Technical Description of Version 4.5 of the Community Land Model (CLM); Technical Note NCAR/TN-503+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2013; 420p. [Google Scholar]
- Viterbo, P.; Beljaars, A.C.M. An improved land surface parameterization scheme in the ECMWF model and its validation. J. Clim. 1995, 8, 2716–2748. [Google Scholar] [CrossRef] [Green Version]
- Schulz, J.-P.; Vogel, G. An improved representation of the land surface temperature including the effects of vegetation in the COSMO model. In Proceedings of the EGU General Assembly, Vienna, Austria, 23–28 April 2017. [Google Scholar]
- Baldauf, M.; Seifert, A.; Förstner, J.; Majewski, D.; Raschendorfer, M.; Reinhardt, T. Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Weather Rev. 2011, 139, 3887–3905. [Google Scholar] [CrossRef]
- Dickinson, R.E. Modeling evapotranspiration for three-dimensional global climate models: Climate processes and climate sensitivity. In American Geophysical Union Geophysical Monograph; Hansen, J.E., Takahashi, K., Eds.; American Geophysical Union: Washington, DC, USA, 1984; pp. 58–72. [Google Scholar]
- Chen, T.H.; Henderson-Sellers, A.; Milly, P.C.D.; Pitman, A.J.; Beljaars, A.C.M.; Polcher, J.; Abramopoulos, F.; Boone, A.; Chang, S.; Chen, F.; et al. Cabauw experimental results from the Project for Intercomparison of Land-surface Parameterization Schemes. J. Clim. 1997, 10, 1194–1215. [Google Scholar] [CrossRef] [Green Version]
- Neisser, J.; Adam, W.; Beyrich, F.; Leiterer, U.; Steinhagen, H. Atmospheric boundary layer monitoring at the Meteorological Observatory Lindenberg as a part of the “Lindenberg Column”: Facilities and selected results. Meteorol. Z. 2002, 11, 241–253. [Google Scholar] [CrossRef]
- Richter, S.H.; Rummel, U.; Weisensee, U. Ausgewählte Ergebnisse von Bodenfeuchtemessungen am Meteorologischen Observatorium Lindenberg; Arbeitsergebnisse Nr. 84; Beyrich, F., Ed.; Deutscher Wetterdienst–Forschung und Entwicklung: Offenbach am Main, Germany, 2006; 46p. [Google Scholar]
- Beyrich, F.; Adam, W.K. Site and Data Report for the Lindenberg Reference Site in CEOP—Phase 1; Berichte des Deutschen Wetterdienstes No. 230; Deutscher Wetterdienst–Forschung und Entwicklung: Offenbach am Main, Germany, 2007; 55p. [Google Scholar]
- Hierold, W.; Schumacher, U.; Ziethen, R.; Becker, D. Ergebnisse der bodenkundlichen Kartierung zum Messfeld Falkenberg des Meteorologischen Observatoriums Lindenberg des DWD; Internal Report; Deutscher Wetterdienst: Lindenberg, Germany, 1997; 26p. [Google Scholar]
- Schulz, J.-P.; Dümenil, L.; Polcher, J. On the land surface-atmosphere coupling and its impact in a single-column atmospheric model. J. Appl. Meteor. 2001, 40, 642–663. [Google Scholar] [CrossRef] [Green Version]
- Baldauf, M.; Gebhardt, C.; Theis, S.; Ritter, B.; Schraff, C. Beschreibung des operationellen Kürzestfristvorhersagemodells COSMO-D2 und COSMO-D2-EPS und seiner Ausgabe in die Datenbanken des DWD; Deutscher Wetterdienst: Offenbach, Germany, 2018; 115p. [Google Scholar]
- Jacobsen, I.; Heise, E. A new economic method for the computation of the surface temperature in numerical models. Contr. Atmos. Phys. 1982, 55, 128–141. [Google Scholar]
- Steiner, A.; Bachmann, V.; Förstner, J. PerduS—Photovoltaikertragsreduktion durch Saharastaub. Projektzwischenbericht; Internal Report; Deutscher Wetterdienst: Offenbach, Germany, 2017; 26p. [Google Scholar]
- Schulz, J.-P.; Vogel, G.; Ahrens, B. A New Leaf Phenology for the Land Surface Scheme TERRA of the COSMO Atmospheric Model; COSMO Newsletter 15; Deutscher Wetterdienst: Offenbach, Germany, 2015; pp. 21–29. [Google Scholar]
Parameter | (m) | (m) | ||||||
---|---|---|---|---|---|---|---|---|
Value | 0.55 | 0.80 | 0.5 | 2.5 | 0.18 | 0.20 | 0.03 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulz, J.-P.; Vogel, G. Improving the Processes in the Land Surface Scheme TERRA: Bare Soil Evaporation and Skin Temperature. Atmosphere 2020, 11, 513. https://doi.org/10.3390/atmos11050513
Schulz J-P, Vogel G. Improving the Processes in the Land Surface Scheme TERRA: Bare Soil Evaporation and Skin Temperature. Atmosphere. 2020; 11(5):513. https://doi.org/10.3390/atmos11050513
Chicago/Turabian StyleSchulz, Jan-Peter, and Gerd Vogel. 2020. "Improving the Processes in the Land Surface Scheme TERRA: Bare Soil Evaporation and Skin Temperature" Atmosphere 11, no. 5: 513. https://doi.org/10.3390/atmos11050513
APA StyleSchulz, J. -P., & Vogel, G. (2020). Improving the Processes in the Land Surface Scheme TERRA: Bare Soil Evaporation and Skin Temperature. Atmosphere, 11(5), 513. https://doi.org/10.3390/atmos11050513